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Abstract

We introduce the signless 1-Laplacian and the dual Cheeger constant on simpli-
cial complexes. The connection of its spectrum to the combinatorial properties like
independence number, chromatic number and dual Cheeger constant is investigated.
Our estimates can be comparable to Hoffman’s bounds on Laplacian eigenvalues of
simplicial complexes. An interesting inequality involving multiplicity of the largest
eigenvalue, independence number and chromatic number is provided, which could
be regarded as a variant version of Lovasz sandwich theorem. Also, the behavior of
1-Laplacian under the topological operations of wedge and duplication of motifs is
studied. The Courant nodal domain theorem in spectral theory is extended to the
setting of signless 1-Laplacian on complexes.
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1 Introduction

It is widely known that the discrete Laplacian on graphs has been studied for a long his-
tory, and B. Eckmann has generalized it to simplicial complexes which encodes the topo-
logical and combinatorial data [10]. Some recent remarkable results on discrete Laplacian
for simplicial complexes involve lots of algebraic and geometric aspects for complexes,
which are applied in the study of expansion, mixing, colorings, random walks, geometric
and topological overlap [12, 13, 2, 11, 24]. Other relevant operators like adjacency oper-
ator and Hecke operator (see [9]), as well as signless Laplacians [18], are systematically
studied with many interesting applications [17, 20, 21, 22].

On the other hand, the (signless) 1-Laplacian on graph has been also investigated sys-
tematically, see [16, 5, 6, 7, 4]. For (signless) 1-Laplacian, the (dual) Cheeger inequality
turns out to be an equality which is rather different from the discrete Laplacian. Besides,
the multiplicity of the maximum eigenvalue possesses strong relations with the indepen-
dence number and chromatic number [27]. Due to these exciting results, 1-Laplacian seems
to perform better on combinatorial properties of graphs than Laplacian. In a sense, the
(signless) 1-Laplacian provides a zero-homogenous spectral theory on graph, with which
some advantages on graphic features are founded.

To some extent, the previous explorations indicate that finding a zero-homogenous
spectral theory for a combinatorial object may bring new discoveries and better discrete
features — this is the big picture behind our researches. In the present paper, the motiva-
tion is to realize a zero-homogenous spectral theory for simplicial complexes, which is a
preliminary attempt under the big picture. As a good starting point, signless 1-Laplacian
seems to be a suitable and simple choice along this direction — because we don’t need to
consider the routine orientations of a simplical complex when we use signless 1-Laplacian
rather than 1-Laplacian.

In the present paper, we will mainly focus on bridging the spectrum of signless 1-
Laplacian and some combinatorial data of complexes including the independence number,
chromatic number and clique covering number, etc. The organization of this paper is as
follows. Some basic definitions and a preliminary result involving the spectrum of signless
1-Laplacian on complexes is shown in the following subsections. The Courant nodal
domain theorem (see Theorem 5) is investigated in Section 2. One of the main parts is
Section 3 where one can find strong and close relations between the spectrum of signless
1-Laplacian and some combinatorial parameters of complexes (see Theorems 7, 10 and
13). Finally, we study the spectrum for 1-Laplacian on complexes constructed via wedges
and duplication of motifs in Section 4.

We highlight here that both Theorem 7 and Theorem 10 provide Hoffman-type bounds
on independence number and chromatic number of a simplicial complex, which can be
comparable to the classical versions of Hoffman’s bounds [2, 11, 14, 15, 23]. Mean-
while, Theorem 10 bridges the 1-Laplacian spectrum, the chromatic number and the dual
Cheeger constant. And interestingly, Theorem 13 shows a variant analog of the Lovasz
Sandwich theorem a < © < 0 < k with © the Shannon capacity and 6 the Lovasz theta
number [2].
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1.1 Preliminary and definitions

An abstract simplicial complex K = (V,S) on a finite vertex set V' is a collection of subsets
of V that is closed under inclusion, i.e. F/ C F € S = F' € S. A d-face is an element of
cardinality (d41) in S. The collection of all d-faces of the simplicial complex K is denoted
by Sq(K) and the number of all d-faces is denoted by #S4(K) or [Sy(K)|.! Assume that
F = {vp,v1,...,v441} is a (d + 1)-face of a complex K, then F; = {vg,...,0i,...,Vq41}
is a d-face of F which can be denoted by F; < F. The boundary set OF can be divided
into (d+ 2) boundary faces, {F;}o<i<at1. For two d-faces F; and Fj sharing a (d — 1)-face,

down

we say they are (d — 1)-down neighbours and denote by F; ~ Fj. Similarly, for two
d-faces F; and F; which are boundaries of a (d+ 1)-simplex, we use the term of (d+1)-up
neighbours and write as F; 1rl\gl?]-.

According to the combinatorial structure related to up or down adjacency, we define
signless up 1-Laplacian and signless down 1-Laplacian respectively. Henceforth, we
omit the word ‘signless’ for simplicity, that is, we will use (up and down)
1-Laplacian instead of signless 1-Laplacian.

Let p = #Sa41(K), ¢ = #Sa(K) and | = #5;-1(K). The incidence matrix corre-
sponding to Sgy1(K) and Sy(K) is defined by By’ = (b;{’Fj)pxq, where

w )1, if Fj € 0F,
FE10,  if Fy € OF,.

Similarly, the incidence matrix corresponding to Sq(K) and S;_;(K) is Bvn = (de‘;‘}’;?)qu,

where

BP0, if By & OF.
For any f = (f1, -+, f,) € RY, define the set valued mapping Sgn : R? — 2% by
Sgn(f) = {(’U1’ e "Uq)T [ Rq LU - Sgn(fz)7 Z — 1’ e 7q}

ioun _ {1, if E; € OF,

ie.,
Sgn(f) = Sgn(f1) x Sgn(faz) x --- x Sgn(fy)

where 2%’ is the power set of R? and

{1}, iftt >0,
Sgn(t) =< {-1}, ift<0,
[—1,1], ift=0.

Then define the up and down 1-Laplacian respectively as follows:
AYf = (BF") Sen(B"f),
A" f = (BT Sen(B ),

1 Sometimes, we will also use || to denote the absolute value. While the readers could easily distinguish
the meanings.
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where f = (f1, f2,- -+, f;) is a real g-dimensional vector with components corresponding
to the function values on every d-face, i.e., f; := f(F;). And BT Sgn(Bf) is defined as
{BTg:g e Sgn(Bf)} in which B = BJ¥ or Bi“". Hereafter, for convenience, with some
abuse of notation, f; also represents the d-face with subscript i.

Remark 1. 1f we remove the ‘Sgn’ in the definition of (signless) 1-Laplacians A} and
Ail’oc}“”", then we can get the signless Laplacian defined on a simplicial complex [18]. This
can be verified in the following way: note that (By*)' By f = (D* + AP)f, where
Dg” = diag(deg)”, ..., deg,?) with deg;” is the number of (d + 1)-faces containing f; in
boundary, and A" = (a;j;/)gxq is the adjacent matrix defined as

asj!

_ 1, ifFjUFj/ GSd_H(K),
0, otherwise.

If we adopt the more general form

per \/Wzﬁ if Fj S aE,
0, if F; ¢ OF;.

where w; is a nonnegative weight on F; € Sy,1(K), then by standard normalization, we
arrive at the (normalized) signless Laplacian

1

5 (DB B (D)

T+ (D) PAT (D)),

which is called the upper random walk on d-simplices defined by a transition probability
matrix (Definition 3.1 in [18]). For the lower case in [18], we have a similar discussion as
above.

Definition 1 (eigenvalue problem for up 1-Laplacian). A pair (i, f) € R x (R?\ {0}) is
called an eigenpair of the up 1-Laplacian A" a0 i

0€ A f — uD" Sgn(f) (or D" Sgn(f) [ AL # 2), (1)

where D" = diag(deg,”, ..., deg;”) and deg;” is the number of (d 4 1)-faces containing
fi in boundary. It should be noted that A f — uD"PSgn(f) means the Minkowski
summation of the vector sets A" f and —u D" Sgn(f).

A pair (u, f) € Rx (R?\ {0}) is called an unnormalized eigenpair of the up 1-Laplacian
AT, if

0€ A f — pSen(f) (or pSen(f)[ AL # 2). (2)

Definition 2 (eigenvalue problem for down 1-Laplacian). A pair (g, f) € R x (R?\ {0})
is called an eigenpair of the down 1-Laplacian Ad"w”, if

0€ A" — pD™"" Sgn(f) (or pD" Seu(f) (| AL" f # @), ®)
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where D%v" = diag(deg™"",... ,deggow") and deg?"™ = (d + 1), i.e., the number of
(d — 1)-faces of f;.

Similarly, a pair (u, f) € R x (R?\ {0}) is called an unnormalized eigenpair of the
down 1-Laplacian Acfﬁ‘m, if

0€ A{" f — pSgn(f) (or uSen(f) (AL f # 2). (4)

Direct calculation shows

(AL =3 D Zijpdan | Zijndan €S20+ fir 4+ Fius)

JlseosJd+1

where the summation Zjl,...,jd+1 Ziji-jas 1 taken over all d-faces that f;,---, f;,., and f;
are in a same (d + 1)-face. Moreover, zj;,...j,,, is symmetric on its indices. In coordinate
form, the eigenvalue problem (1) for up 1-Laplacian is to solve 4 € R and f € R?\ {0}
such that there exists z;;,..;,,, satisfying

Z Zij1as1 € ,U/deg?p Sgn(fl), 1= 1, 27 o q. (5)
JlyesJd+1
Similarly, the coordinate form of down 1-Laplacian reads as

(Aﬁm )i = { Z Ziiy-im

1,0 i

Ziiy iy € SGO(fi + fiy -+ fz‘m)}

where the summation Zil o4, By, 18 taken over all d-faces that f;,,..., f; and f;
sharing a same (d — 1)-face. Moreover, z;,..;, is symmetric on its indices. The coordinate
form of eigenvalue problem for down 1-Laplacian (3) is:

> Ziein € pld+1)Sgn(fy), i =1,2,...q. (6)
/Lla,lm

From the variational point of view, A}*, and A‘fﬁ"" are respectively the subdifferential

of the following convex functions

I""(f) = Z |ZfF|:Z|fj1+"'+fjd+2|

FeSy1(K) F<F

Idown(f): Z ZfF|:Z|fjl++me|v

EeS,_1(K) F>E

ie., A" f = OI*’(f) and A{" f = 919“"(f). Indeed, the eigenvalue problem (1) for
AT (resp. (3) for Af%™) could be derived from the variational problem of I*P(-) (resp.

and
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Iwn(.)) on the piecewise linear manifold determined by || f||“? = 1 (resp. || f]|%*" = 1),
where [l = SX0_, deg!” |i] (resp. || £ = S0, degi®™ | ).

It is known that critical points of I'P(-)/|| - || (vesp., I9“"(-)/]| - ||%*™) must be eigen-
vectors of A% (resp., Afewn), and the minimal and maximal eigenvalues of AV (resp.,
A{%'™) are respectively the minimum and maximum of I(-)/| - ||** (resp., I9*"(-)/| -
|%°"). Moreover, the number of eigenvalues of A} (resp., A{%"") is finite. The proof is
based on the standard and routine calculations similar to the related results in [5, 6, 4]

and thus we omit it.

1.2 A glimpse of the spectrum of signless 1-Laplacian on complexes

For a graph, we know that 0 is an eigenvalue of the signless 1-Laplacian if and only if the
graph has a bipartite component. As a related analog on simplicial complex, we may take
a look at the following result:

Proposition 1. A} has eigenvalue 0 if one of the following conditions holds.

(1) #5a(K) > #Sa41(K);

(2) the up-degree of each d-face is less than or equal to (d + 2) and there is at least one
d-face with the degree less than (d + 2);

(3) Su(K) is (d + 2) colorable, i.e., the colors of faces of each (d 4 1)-dim simplex are
pairwise different.

Proof. (1) It is clear that 0 is an eigenvalue if and only if I"P(f) = 0 has a nonzero
solution f, i.e., fj, + -+ fi, = 0, VF; € Sgy1(K). Since the number of coordinate
components of f is #S4(K) but the number of absolute terms of I'"P is #S,.1(K), and
by #S4(K) > #S441(K), the related linear system of equations has nonzero solution f.
So there exists an eigenvector corresponding to 0.

(2) Since

(d+2)#Sa1(K) = Z degi” < (d + 2)#S4(K)
i€Sq(K)

implies #S4(K) > #S4:1(K), it follows from (1) that (2) holds.

(3) Let c: Sg(K) = {1,...,d+2} be a coloring map such that {c(f;,),...,c(fj..)} =
{1,...,d+ 2} whenever ji, ..., jai2 are d-dimensional faces of a (d + 1)-dimensional sim-
plex. Letting

L, if C(fz) =1,
fi=< -1, ifc(fi)=2,

0, otherwise,
fori = 1,...,q, we have f; +---+ f;,,, = 0 whenever ji,...,ja42 are d-dimensional
faces of a (d + 1)-dimensional simplex. Thus, one can take p = 0 and 2;j,..;,,, = 0 in (5).
Consequently, 0 is an eigenvalue of A,. O
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Remark 2. Proposition 1 is only about the combinatorial properties of a simplicial com-
plex, since our definition of signless 1-Laplacian doesn’t involve the orientation of a sim-
plicial complex. For example, let K be determined by its facets {0, 1,2,3}, {1,2,3,4} and
{0,2,3,4}. Then Sy(K) is 4-colorable?, but {0,1,2,3} and {1, 2, 3,4} induce the different
orientations on {1,2, 3}.

Example 3. We show the detailed computation of spectrum of signless 1-Laplacian on
the tetrahedron.

1 4

Consider the signless up 1-Laplacian for 2-faces {(123), (124), (134), (234)}. The eigen-
value problem is to solve the pair (u, f) € R x (R™\ {0}) such that

21934 € Sgn(fizs + fioa + fisa + fos4),
and 2193 € Sgn(fi2s), 2124 € SgN(f124), 2134 € SgN(f134), 2234 € Sgn(faz4), s.t.

21234 = HUZ123 = HRZ124 = HZ134 = [Z234.

We first check n = 0. In this situation, 21934 — 0, which 1mphes that f123 + f124 + f134 +
fo3a=0. And f = (1,—1,1,—1) is a solution.

Now we assume that p # 0. Since f has a nonzero component, we can assume without
loss of generality that fio3 > 0, which implies that 2103 = 1. Note that u = pz193 = 2104,
which follows that 2124 = 1 and thus fio4 > 0. Similarly, we have fi34 > 0 and fa34 > 0.
So, fi2s + fi2a + fiza + fa3a > 0 and then 21234 = 1. Consequently, 1 = 21934 = 12123 = p.
And f = (1,0,0,0) is a solution. Therefore, ;x = 1 is the eigenvalue.

In summary, the spectrum of signless 1-Laplacian for 2-faces of K is {0, 1}.

Remark 4. In fact, the above example could be generalized to Af‘;_l for d-dimensional
simplex. That is, the spectrum of Aqf,]zzq for d-dimensional simplex is {0, 1}.

2 Courant nodal domain theorem

In this section, we develop Courant nodal domain theorem for 1-Laplacian on complexes.
Similar to the reason (see [4] Page 8), we should modify the definition of nodal domain
as follows.

Definition 3. A set of d-simplexes is up-connected (resp., down-connected), if for any o

. . - up up up
and o’ in such set, there exists a sequence of {o;}\=(" such that c = og~ 01~ ~0,, =0’

down down down /
(resp., 0 =09 ~ 01 ~ -+ ~ Oy =0").

2Indeed, in this example, all the conditions (1),(2),(3) in Proposition 1 hold.
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Definition 4. The (up-/down-) nodal domains of an eigenvector f = (fi, fa,..., f,) of
A; are defined to be maximal (up-/down-) connected components of the support set

D(f) = {i: f: #0}.
Proposition 2. Suppose (u, f) is an eigenpair of the signless (up-/down-) 1-Laplacian and
Dy, ..., Dy are (up-/down-) nodal domains of f. Let f* be defined as

fi . . .
ﬁ:{iﬂﬁam>ﬂieﬂﬁ%

] . .
0, if j¢&Di(f),

for j =1,2,...,q. Then (u, f') is an eigenpair, 1 = 1,2,... k.

Proof. Tt can be directly verified that i~ j (resp. § j) if and only if f; and f; appear
in a same term | - | in the summation form of I*P(-) (resp. [%“"(-)). Hence, we derive
that Sgn(f?) D Sgn(f;) and Sgn(f; + fj, +---+ f; ) D Sen(fj + fj + -+ fi..), 7' ~ 4,
17=12,....,n,i=1,2,..., k. Then, using the coordinate form of 1-Laplacian eigenvalue
problems (5) and (6), we complete the proof. O

Fixing the dimension d and n := #S4(K), denote I(-) = I*P(-) (resp. I%*"(-)) and
|-l =1-|“P (vesp. || - ||*“™). We apply the Liusternik-Schnirelmann theory to A;. Note
that I(f) is even, and X = {f : || f|| = 1} is symmetric. For a symmetric set T C X, i.e.,
—T =T, the Krasnoselski genus (see [8, 25]) of T" is defined to be

{0 T =@,
T min{k € Z : 3 odd continuous h : T'— S*7'}  otherwise.

Obviously, the genus is a topological invariant. Let us define

1(f)

¢, = inf max I(f)= inf max ——=, k=12,...n. 7
T (T)sk feTCX (/) T)=k feTcR\{0} | f]] (7)

By the same way as already used in [5], it can be proved that these ¢ are critical values
of I(f). One has

€1 S C < K Gy,

and if 0 < -+~ < g < ¢ = - = Cpar1 < Chur < -+ < 1, the multiplicity of ¢ is
defined to be r. The Courant nodal domain theorem for the signless 1-Laplacian reads

Theorem 5. Let ¢, be an eigenvalue with multiplicity v and let f* be an eigenvector
associated with c;,. Then
LS N(ff <k+r—1,

where N(f*) is the number of nodal domains of f*.

Proof. Assume there are n d-faces in the complex. Suppose the contrary, that there exists
an eigenvector f* = (fi, fa,..., fn) corresponding to the variational eigenvalue ¢, with
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multiplicity r such that N(f*) > k +r. Let Di(f*), ..., Dy (f¥) be the nodal domains
of f*. Let ¢’ = (g1, 93, -- -, gh), Where

fi . . ’

gZ: {W’ if jEDz(f)y
‘7 . .

0, if j & Di(f),

fori=1,2,....,k+r, j=1,2,...,n. By the construction of ¢°, i = 1,2,...,k + 17, we
have:

(1) The nodal domain of g’ is the i-th nodal domain of f*, i.e., D(g%) = D;(f*);

(2) D(¢')ND(¢)) =2, i # j;

(3) By Proposition 2, g*, ..., g"" are all eigenvectors with the same eigenvalue cy.

Now, for any f € span(g',---,¢**"") N X, there exist ay,...,ar., such that f =
k+r ) ;
> a9 € X. And for any [ € {1,2,...,n}, there exists a unique j such that f; = a;g/.
i=1

k+r

Hence, |fi| :Zk+r|a3||gl| Since f € X, ¢’ € X, j=1,...,k+r, we have

k+r k+r k+r

1= deg |fil = Zdegzz lajllg7| = Z |aj] Zdegz 971 = laj.
=1 Jj=1

Note that I(-) is convex and even. Therefore, we have

k+r k+r
=10 _aig") = 1) _ lai| sgn(a:)g
i=1 i=1
k+r k+r

Z|az|l sgn(a;)g Z|az|l

< max  I(g").

i=1,2,....k+r
Note that g¢',...,¢""" are non-zero orthogonal vectors, so span(g!, ... ,gk”) isak+r
dimensional linear space. It follows that span(g', ..., ¢*"") N X is a symmetric set which

is homeomorphous to S¥¥7~1. Obviously, v(span(g!,...,¢*"") N X) = k + r. Therefore,
we derive that

Cpyr = Inf supl
s Y(A) Zk+r feAI? (/)

< sup I(f)
fespan(gl,...,gktm)NX

= I(q*
i=]i?.z~%,:;€(+r (g )
= Cg,

which contradicts with the fact ¢; < cxy. The proof is completed. O
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3 On some combinatorial parameters of complexes

In this section, we concentrate on the relationships between the eigenvalues of signless 1-
Laplacian and other combinatorial parameters, such as chromatic number, independence
number and clique covering number.

3.1 Independence number and chromatic number for vertices

Firstly, we recall the concepts of independence number and chromatic number of a hyper-
graph. The definition of chromatic number of hypergraphs generalize chromatic number
of graphs in various ways, see for example [19]. The chromatic number for r-unifrorm
hypergraphs is defined as

Xs = min{k : k-partition (Vi,...,V}) such that |V; N E| < s,V edge £,V i},
while the independence number of a hypergraph is defined by
as; =max{|A| : |[AN E| < s,V edge E}

for 1 < s < r—1 (see [19]). Note that a simplicial complex can be regarded as a
hypergraph. Thus, the definition of independence number and chromatic number for
simplicial complexes can be defined as follows:

Definition 5 (Independence number). For a simplicial complex K = (V,S), the indepen-
dence number is

as = max{|A| : [ANF| < s, Vface F}.

Definition 6 (Chromatic number). For a simplicial complex K = (V,S), the chromatic
number is

Xs = min{k : 3 k-partition (V1,...,V,) such that |V; N F| < s, V face F,Vi}.

In [11], the independence number and chromatic number of a simplicial complex are
respectively defined by

a =max{|A| : A p F,V maximal face F'}
and
X = min{k : Jk-partition (Vi,..., V%) such that V; % F,V maximal face F,Vi}

However, in the proof of main theorems in [11], the author essentially deals with a4 and
X4, where d is the dimension of complex. That is, the results still hold if we replace ‘o’
and “x’ by ‘ayq’ and ‘x4 in those theorems. In this subsection, we will concentrate on y
and o, and study their relations with eigenvalues of 1-Laplacian. An elementary result
for the relations of these concepts is:

Proposition 3. For simplicial complex K = (V,S), we have:
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(1) xsas = |V, xs < [x1/s], for all s. Here [z] is the ceiling function on z, i.e., the
minimum integer that does not less than x. Moreover, xs < [x:/[s/t]], where |z|
is the Gauss function on z, i.e., the maximum integer that does not exceed x.

(2) xa = V|, xa < x < [x1/d], @ < a4, where d is the dimension of the complex. For
a pure (i.e., homogeneous) complex, o = ay.

(3) The above definitions for independence number «, and chromatic number y; are
respectively equivalent to

o, =max{|A|: |ANF| < s,Vs-face F'}
and

X; = min{k : Jk-partition (Vi,..., V) such that |V; N F| < s,V s-face F,Vi}.

Proof.

(1) It is evident that xsas > |V by the definitions. To prove x, < x1/s, let (Vi,...,V},)
be a partition of V' such that |V;NF| < 1, for any face F. Let U; = V(;_1)s41U- - -UV,
fori=1,....,m—1, and Uy, = Vip-1)s11 U --- U V,,, where m = [x1/s]. Then

|U; N F| < 2;21 Vii—ys+; N F| < s,i=1,...,m. Therefore, y, < m.

The rest of the proof is similar with the above, but we shall provide the details for
reader’s convenience. Let (V1,...,V,,) be a partition of V such that |V;NF| < t, VF.
Let Ul = ‘/(7;_1)5/4_1 Uy---u ‘/;s/ for i = 1, e, M — 1, and Um = Vv(m_l)sq_l U---u VXt’
where m = [x;/s"] and s = |s/t|. Then

UiNF| <Y [Vicnyway NF < 't = [s/t]t < s,

j=1
for i = 1,...,m. Therefore, ys < m.

(2) Note that ya > |V| and x < [x1/d] have been proved in [11]. Now we prove a < ag.
Since the dimension of K is d, the maximal face F' has at most d + 1 elements. So
F ¢ Aimplies |[FFN A| < |F| —1 < d, for any maximal face F. Thus, |[FNA| <d
holds for any face F. This deduces that

{|A] : A 2 F,V maximal face F'} C {|A|: |[ANF| < d,V face F}.

Therefore, o < ay. Similarly, x > xq4.

A maximal face (i.e., facet) is not necessary to be a d-face. But if the complex is
homogeneous (or pure), then facets must coincide with d-faces. So, it is easy to
check that o = «ay.
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(3) It is easy to check that o > a,. Next we will show the reverse inequality. Indeed,
it is enough to show that for any set A with |[AN F| < s for all s-faces F', we have
|AN F| < s for any face whose dimension is larger than s. For the contrary, there
is some (s + k)-face F’ satisfying |A N F’| > s+ 1. Then there is one s-face whose
vertices are in A, which is a contradiction. The proof for x/, = x; is similar. m

Remark 6. There exists a complex K such that o < «ag4, where d = dim(K). Indeed, let
V ={1,2,3,4,5} and let

K ={{1},{2}, {3}, {4}, {5}, {1,2},{1,3},{2,3},{1,2,3},{1,4},{2,5}}. Then K is a
complex of dimension d = 2. It can be verified that o = 3 ({3,4,5} is an independent
set) and ay = 4 with a corresponding independent set {1,2,4,5}.

Theorem 7. Let K = (V,S) be a nonempty d-dimensional complex. Then

- Hd—1 M Mo — po
a<ag<min< [V|(1 — , |V
= {| I QMO) | |M0+,Md—1 | M0+m0}
and hence oM L
0 Ha—1 Mo+ mg
2 Xqg 2 maxy ——, 1 + ,
X {2MO e My Mo — o }

where My and mq are the largest and smallest degree of vertices in K, pg_1 is the mini-
mum unnormalized eigenvalue of AV, |, and similarly jio is the minimum unnormalized
eigenvalue of AY%.

Proof. Let A C V be the largest independent set with |A| = a4, and for some fixed
constants a,b € R, let

f = a, 1€ A,
b, i€ A=V \ A
Then
SNt fil= D> la+bl+ > 20al+ > 2|
inej inji€A,jEAC irj in A irj in Ac
= la+b] - [E(A, A)| + [b](vol(A%) — |E(A, A9)[)
and
D Ifil = lallA] + [b]| A%,
eV
Thus,

irvj 1% + 9j i~ 1J1 +Jj bl - |E A, A°
maXdeg;ﬁP:m@{Z ]’g g]’ > Z ]|f f3| > \a+ ‘ ‘ ( )‘
iev 70 Diev |9l Diev Lfil |al|A] + [b]| A°]

Taking a = |A°| and b = |A|, we get

14
max deg;? > |E(A, A° —| )
iy (OB B4, )|2ad(|V| — ag)
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Let M; and m; be the maximum and minimum number of (i 4 1)-faces that contains
an i-face, respectively, i € {0,1,...,d — 1}.

Since A is independent, for each (d — 1)-face F' C A, the number of d-faces that
contains F' and meets A€ is larger than or equals to mg_;. And it can be proved that
mg >mqp >+ > Mg_1.

Claim: for any i-face FF C A with ¢ € {0,...,d — 1}, the number of (i 4 1)-faces that
contains F' and meets A° is larger than or equal to mgy_;.

We prove the above claim by induction on ¢ from (d — 1) to 0.

For i = d—1, the claim holds according to the definition of m,_; and the independence
of A.

Suppose the claim holds for i. Then for the case of (i —1), for any (i —1)-face F', there
are two subcases:

1. F contains in an i-face F” with all its vertices in A.

In this case, using the inductive hypothesis for F”’, there exist vy,..., vy, , € A°
such that F' U {vi}, ..., F"U{vn, ,} are (i + 1)-faces. In consequence, F'U {v;},
o, FU{vy,, .} are i-faces, which means that the claim holds for such F'.

2. There is no i-face with all its vertices in A that contains F'.

In this case, all i-faces that contains F' must meet A€, and the number of i-faces
containing F' is at least m;_; > mgy_1. Thus the claim holds.

In particular, for i = 0, it means that |E({i}, A°)| > m4— for any i € A. Thus,

|B(A, A% = [B{i}, A > [Alma-r = agmar.
i€A

Taking ¢ = €f,, where Fy is a (d — 1)-face such that |{i € F§ : Fy U {i} is d-face}| =
mg—1. Then mg_y = I"P(g)/|g]l1 = pa—1 and hence,

|E(A, A9)| 2 aapta—1- (9)

Combining (8) and (9), we have

4
M, = deg? > 1, |—
0T 2y T ay)

which derives our desired inequality.
It is also clear that agmgy < |E(A, A%)| < agMy and vol(A¢) < (V| — aq) M.
Taking a = —1 and b = 1, we obtain

> i l9i + g5l - D i lfi+ fil vol(A°) — |E(A, A°)| _ (VI = aa) Mo — aamy

Mo = 1n§ X - X
G40 ey |9il > iev |fil Vi V]
which implies oy < |V|%
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Note that
la + b 11 11
max = max{—, —} =max{—, ——}.
S Tl A oA~ Ay A T N ey el

This implies

1 1
“w > B(A, A° -
rzne.‘:%/xdegZ |E(A, )\max{&d, V= oy

Combining (10) and (9), we have

Iz (10)

0%
My = maxdeg;? > pg_1 max{l, ———},
0 iEVX gi Hd—1 X{ ’V| _ ad}

which derives ay < MO‘f]\‘/,[l(L)d -[V]. -

Remark 8. Here the proof of Theorem 7 is inspired by the technique of the proof of
Theorem 2 in [11].

We can also give a lower bound for the independence number by means of the proof
of Theorem 7. Since A is the maximal independent set, for any j € A°, AU {j} is not
independent, i.e., there is a d-face in AU{j} containing j as its vertex, which implies that
IB(A, {j})| > d. Thus,

[B(A, A9 = |E(A {j})] > |A%d = (V] - aa)d. (11)

jeAe

Combining (10) and (11), we have

d
> :
> VT
Combining (8) and (11), we have
d
> —.
> Vigg

Remark 9. In the one-dimensional case, i.e., the graph case, we note Hoffman’s re-
sult a < |V]w, where A is the largest eigenvalue of the Laplacian, mg is the
minimal degree.mdﬁor a b-order cyclical graph G = (V, E) with V' = {1,2,3,4,5} and
E ={{1,2},{2,3},{3,4},{4,5}, {5, 1}}, Anax(G) = 2 — 2cos 37 ~ 3.618 and thus Hoff-

man’s upper bound ~ 5 x 3'36.%8&2 = 2.23. Note that the upper bound in Theorem 7 is

5 X % = 2, which is better than Hoffman’s upper bound.

Since Theorem 1.2 in [11] coincides with Hoffman’s bound when the simplicial complex
is 1-dimensional, it is clear that Theorem 7 could provide better bounds on some special
cases. That is, Theorem 7 can be comparable to some kinds of Hoffman’s bound like
Theorem 1.2 in [11].

So far, we focused on vertices of simplicial complexes, i.e. O-faces. In fact, we can also
define independence number and chromatic number on ¢-faces of simplicial complexes.
In the following subsection, we will introduce corresponding definitions and study the
relationships between eigenvalues of 1-Laplacian and them.
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3.2 Chromatic number and dual Cheeger constant for d-faces

Definition 7 (chromatic number). A d-face coloring of a simplicial complex assigns a color
to each d-face so that no two faces that contain in the same (d + 1)-face have the same
color. The smallest number of colors needed is called its chromatic (or coloring) number.

In this subsection, we will use y to denote the chromatic number of Sy (the set of
d-faces). One can easily see that the chromatic number of all d-faces is at least d + 2.

Definition 8 (dual Cheeger constant). The dual Cheeger constant on the set Sy consisting
of d-faces is defined as

2|Es, (A, B)|

hre =
ANB=DAAUBCS, vol(A) + vol(B)’

where Fg, (A, B) is the collection of all (d + 1)-simplices that has some d-face in A and
also has some d-face in B. Hereafter, vol(S) := > .o deg"?(i) is the volume of S, for any
S C Sy

€S

Theorem 10. Let ||f|| =Y. .o deg(i)|fi| for any f € R%. Then

1€Sy

2(d+1)
d+x

2(d + 1)

hup*

—d.

p <1— and x =

where pi? = min ) Furthermore, these bounds are sharp.

T

Proof of Theorem 10. Let S, ..., S} be the color classes of S;. Given an integer k €
{1,2,...,x}, we define the vector f by

i a, ifie Sk
“ )b, ifig SE

We have
mP I fI < IP(f)-
It is evident that

If1] = lal vol(S}) 4 b vol(Sq \ S§) = (la| — [b]) vol(S}) + |b] vol(Sq),
and

1'"(f) = |a+ (d + 1)blega(S, Sa \ S5) + (d + 2)[blear1(Sa \ SF)
= (Ja+ (d+1)b| = (d+ 2)[b])eo.a(Si, Sa \ Si) + (d + 2)[blea+1(Sa),
where e 4(S¥, Sy \ S¥) counts the number of (d 4 1)-simplexes with one d-face in S% and

others in Sy \ S%, and egy1(Ss \ S¥) (vesp. eqy1(Sq)) is the number of (d + 1)-simplexes
with d-faces in Sy \ S¥ (resp. Sa).
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In summary, for every kK =1,...,x, we have

pr” ((al —[b]) vol(Sg) + b vol(Sa)) < (la-+(d+1)b|—(d+2)[b)eo,a(SF, Sa\Sg) +(d+2)|blear1(Sa)-

(12)
Summing these inequalities for k = 1,2,--- , x, we obtain u* > ¥_, ((Ja|] — |b]) vol(S¥) +

bl vol(Sa)) < 325y ((la + (d + 1) = (d + 2)[b])eo.a(Sq, Sa \ Sg) + (d + 2)[bleas1(Sa)).

Elementary computation gives

p1” ((lal=18]) vol(Sa)+b] vol(Sq)x) < (la-t(d+1)b|—(d+2)[b])(d+2)eq+1(Sa) +(d+2)[blear1(Sa)x-

Now we get

w (4 Deaia(S) o+ (d+ Db — (d+2)[pl + Plx
1

vol(Sa) |a| —[b] +[b]x
_ (d+2)eg1(Sq) (1 _ la| + (d + 1)|b| — |a + (d + 1)b|)
vol(Sq) la] + (x = 1)[]
It is easy to see that
la] + (d+ 1)|b| — |a + (d + 1) t|+(d+1)—[t+(d+1)] 2(d+1)
max = Imax —
(a,b)#(0,0) la| + (x — 1)b| £<0 ltl+ (x — 1) d+ x
where the maximum arrives at ¢t = —d — 1, and this implies the desired inequality
up < (d + 2)ed+1(Sd) 2(d + 1)
1T X

vol(Sy) (1= d+x )

By the elementary fact (d + 2)eq41(S4) = vol(Sy), we have

C2(d+1)

! .
/‘Ll\ d+X

Using the equality® ui* + h*?* =1, we get QSidTJer) < h“P* and thus y > 2%;1 ) 4.
Finally, we prove that the bounds are sharp. In fact, if K is a (d + 1)-simplex, then
these equalities hold. O

Remark 11. It is worth noting that Proposition 1 (3) is a special case of Theorem 10 by
taking y = d + 2.

Corollary 1. Let x be the classical chromatic number of a graph, then

2
Jup* < X-

2
w? <1—= and
X

3This relation can be proved in the same way as shown in [4].
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Remark 12 For the normalized signless Laplacian on a graph [18], we similarly have
AP <1 - . And combining with Corollary 1, we obtain

2 1
X}max{ , —l—l}.
L=y 1= A

Interestingly, by dual Cheeger inequality, there is an inequality

< < VAT,

where \[” is the smallest eigenvalue of signless Lapalacian and p;” is the minimal eigen-
value of signless 1-Lapalacian.

Hoffman [14] has the following estimate y > 1 — % of the chromatic number in-
volving adjacent matrix A of a graph. Some update results can be found in [26]. Moreover,
in [1], there is an estimate

14—
X +AW(L)—1

which coincides with the inequality x > 1+ 7 /\up as above.
On a cyclical graph with n vertices, Corollary 1 gives better estimate of the chromatic
number than Hoffman’s bound. For example, let’s look at an odd cyclical graph, a

ring With (2m + 1) vertices, With m > 2. The largest Laplacian eigenvalue Ayax(L) =
1 —coss; while pf? =1 — Then Hoffman’s lower bound for chromatic number

+17 2 +1
is1— cos+m” which is smaller than our lower bound _Mup =2 + =
2m+1

3.3 Independence number and clique covering number for d-faces

Similar to the results in [27], we give the counterpart of connections between the indepen-
dence number and clique covering number of K as well as the multiplicity of the eigenvalue
1 of A;. The definitions and notions are listed below.

e 7: topological multiplicity of the maximal eigenvalue 1 of A;.
e ¢: times of 1 appearing in the sequence of variational eigenvalues (c¢x)i_;.

e «: independence number of Sy, i.e., the cardinality of the largest subset of d-faces
that does not adjacent to each other. It is defined by @ = max{p : there exist p faces
in S; which are pairwise non-adjacent}.

e r: the clique covering number (the smallest number of cliques of S; whose union
covers Sy). Here a clique is a subset of S; such that any two d-faces in such clique
are adjacent.

Theorem 13. The constants «, t, v and Kk satisfy

a<t<y<k. (13)
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Proof The inequality ¢ < 7 is a basic result [5]. So it suffices to prove a < ¢t and v <
< t: We only need to show that ¢, = 1 whenever k£ > n — a + 1, where n := #Sd.

Since n —k+ 1 < «, there exist n — k + 1 non-adjacent d-faces in Sy, denoted by
i1y 1. Set Xy pr = X Nspan(e;,,...,e;, ,.,), where e; = (1,0,0,...,0),es =
(0,1,0,...,0),...,e, = (0,0,...,0,1) € R™. For each f in X, .1, there exists some
(liy .. lp—g41) # O such that f =lye;, +- -+ lh—g41€i, ., It should be noted that i ¢ j
if fif; # 0. Thus, each nodal domain of f must be a singleton set, which implies that
I(f) = 1. Therefore, it follows from A N span(e;,...,e;, ,,,) C X and the properties of
genus that

AN Xy pp1 = ANspan(e;,,...,e, ., )N X =ANspan(e;, ..., e, ,..)

is nonempty for any A with v(A) > k. Hence sup;cs I(f) > infrex,,, , I(f) = 1 and
then ¢, = 1.

v < k: For a subset W of Sy, let I}, = {f € X : I(f)=1,fi=0,Vi € Sg\ W}. Our
purpose is to show v(Ig,) < k. We first prove that for any disjoint subsets W and W,
Ly, ow, C iy, * Ijy,. Here  is the topological join®. Given a € Iy, y,, let

o o
a; = %) 1 Z_Ewl and a; = s l Z,EWZ fori e V.
0, if ¢¢&€W; 0, if i€ Ws

Since W, and W, are disjoint, one can easily verify that a = a' +a? and 1 = I(a) <
I(a') + I(a®) < ||a*|| + ||a®|| = |la]] = 1. Hence, I(a') = ||a'|| and I(a*) = ||a*|| hold.
Taking f = a'/lla}]l and g = a*/]}a?], one has 1(f) = |fl| = I(g) = llgll = 1, which
implies that f € Iy}, and g € I}, . Therefore, we have a = [|a'||f + ||a®||g = tf + (1 —t)g,
where t = ||a'||. Then we obtain

Lyow, C{tf + (1 —=t)g | f €Ly, g € Iy, t € [0,1]} = Iy, * Iy,

Combining the subadditivity of Krasnoselski genus with respect to topological join (see
[27]), we have
Y ows) <YLy * L) < (L) + (T (14)

According to the mathematical induction, we can easily deduce that

Isd min {27 IW : W, ..., W, form a partition of Sd} , (15)

which provides a recurrence method to estimate a large complex by smaller one.

Note that for a clique W of Sy, I}, = {f € F : I(f) = 1, fjfi = 0,Vj,l € W; f; =
0,Vi € W}. We can easily construct an odd continuous function F : I};, — S° = {—1,1}
defined by

Ff) = 1, if there exists ¢ € W such that f; > 0,
] =1, if there exists i € W such that fi <O0.

4The topological join of two sets A and B in a linear space is usually defined to be AxB := {ta+(1—t)b :
Vae€ A, be B, t€|0,1]}.
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This means that v(I};,) = 1.
Then (15) implies that

!
v(Ig,) < min {Z’y([&v) : cliques Wy, ..., W, form a partition of Sd}
i=1

l
= min {l = Z 1 : cliques Wy, ..., W, form a partition of Sd} = K. O

i=1

Remark 14. Theorem 13 holds for both signless up 1-Laplacians and signless down 1-
Laplacians.

Remark 15. The inequality provided in Theorem 13 looks like the Lovéasz Sandwich the-
orem:
a<OL<iL<k

where © is the Shannon capacity of a graph, and € is the Lovasz number (or Lovész theta
function).

4 Constructions and their effect on the spectrum

Denote by spec(K) the set of all eigenvalues of A;. Considering the topological multiplic-

ity, we use Spec(K) to denote the multiset of A;-eigenvalues. Furthermore, A 0B is the
sum of two multisets A and B. Our results are nonlinear analogs of the relevant theorems
in [13], but most of the proofs are different.

4.1 Wedges

Definition 9. The combinatorial k-wedge sum K; Vi K5 of simplicial complexes K; and
K, is defined as the quotient of their disjoint union by the identification F} ~ F, that is

Kl \/k KQ = Kl LJ KQ/{Fl ~ FQ}

where F) and F, are the k-dim simplicial faces in K; and K5 respectively.

This definition could be generalized to the k-wedge sum of arbitrary many simplicial
complexes. For example, the 1-wedge of some tetrahedrons is shown as below.

Theorem 16.
Spec(AYE (K, Vi, Ks)) = Spec(AtR(K,)) USpec(A?(K))

for all v,k with 0 < k < 1.
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Proof. Since K; and K, are identified by a k-face, then by noting that £ < ¢, any ¢-face
of K is non-adjacent to i-faces of Ky in KV K. Consequently, if (u, f!) is an eigenpair

of AY%(Ky), then letting

700, j e Si(Ky),
it is easy to check that (u, f) is an eigenpair of AY;(K; Vi, K3). The same property holds
for AT (K3). Moreover, if (u, f*) and (u, f?) are eigenpairs of A% (K;) and A% (Ks),

respectively, then it can be easily verified that (s, f) is an eigenpair of AY(K) Vi K>),

where f is defined by
f‘ _ j17 ] S Sl(Kl)a
’ ]'27 .] e S’L(KQ)

So, we have proved that
Spec( AR (K Vi K2)) O Spec( AL (K1) USpec(A%(Ky)).

For the converse, let (u, f) be an eigenpair of AY(K Vi K>), and let f1 (resp. f?) be the
restriction of f on S;(K;) (resp. S;(K3)). Since f # 0, at least one of f! and f? is not 0.
Suppose f! # 0. Then, there exist zj,..;,,,; € Sgn(f;, + -+ + fj,,, + f;) such that

> Zjujpj € pdegi? Sgn(f)),
Jis o Jit1

for any j € S;(Ky Vy Ky) = S;(K1)US;(Ks). Therefore, for j € S;(K7), the above relation
holds and thus (s, f') is an eigenpair of A (Ky). If f* # 0, then the same process
deduces that (u, f?) is an eigenpair of A} (K,). Hence,

Spec(AY (K, Vy, K5)) C Spec(AE(K,)) USpec(AlE(K5)).
The proof is completed. n

Remark 17. This is a signless 1-Laplacian counterpart of Theorem 6.1 [13].

Similarly, we have the following

Theorem 18.
SpeC(A‘f’Oiw”(Kl Vi K3)) = Spec(Ail’Oiw"(Kl)) 0 Spec(A‘ff’iw"(Kg))
for all i,k with i > k + 1.

Theorem 19. Let Ky and K5 be simplicial complezes, for which the spectrum of Aifﬁ(Kl)
and Aqff;(Kg) contain the eigenvalue p, and let f*, f? be their corresponding eigenvectors.
If an i-wedge K = K1 V,; Ky is obtained by identifying i-faces i1 and i, for which 111 = f2

then the spectrum of Aqffz(K ) also contains the eigenvalue .

197
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Proof. Note that we have identified i; with iy in K. So, we can assume S;(K; V; Ky) =

(S;(K1) \ {i1}) U S;(K3). It is easy to see that

deg;” (K1), if j € Si(Ky)\ {ir},
deg;”(K) = < deg’(K>), if j € S;(Ks) \ {ial,
deg;”(Ky) + deg;?(Ks), if j = .

Now we are going to prove that

fas 1 7€ Si(E) \ {in},
’ 2 je Si(Ky),

77

is an eigenvector of AY(K) corresponding to the eigenvalue u In fact, since (i, f') is an

eigenpair of A% (K), there exist 2 jian
such that

Z z;lj?”’ji-&-lj = Mdeg?p(Kl)zjl"

JlseensJitl

for any j € S;(K;) \ {i1}, and

Z ]1]2 d Mdegxp(Kl)Z;

J1ye- 7]7,+1

Similarly, there exist 22 € Sgn( +--- 4+

JiJit1d

+ ff) and 232 S Sgn(f]?) such that

.71+1

2 _ up 2

E : Zrjag = M deg; (1) 25,
J1yeesdit1

for any j € S;(K3). Now we take

Z;, lfj € SZ(Kl)\{Zl},
2 =14 4 if j € Si(K2) \ {iz},
deg; " (K1) 1 deg;” (K2) 9 T
deglp(Kl)ereg“p(Kg) T deg“p(Kl)megy;(KQ)Zz'z’ 1) =12,
and
1 . .
Zjijjiv1d — {z];j?“jiﬂj, lfj € SiKn),
Fjijadig1d? if j € Si<K2)-
. o deg;” (K1) deg;”(K2) . 2
Since f then degglp(Kl){kdeg?p(Kg) a T degulp(Kl)ereguP(Kg) 12 € Sgn( ) - Sgn( iz)

Sgn( fi2), which means that z; is well-defined. Finally, it can be easily verified that

Z Zjigzjivi — M deg?p<K)zj:

J1yeesdit1

for any j € S;(K), which completes the proof.
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Remark 20. This is a signless 1-Laplacian counterpart of Theorem 6.3 [13].

Theorem 21. Let c1,...,cn be the min-max eigenvalues of AY (K U Kj), and let ci,
-y Cy be the min-maz eigenvalues of AY(K), where K = Ky V; Ky, then
¢; <

for every 1 <5 <m—1.

Proof. Let 1; and 75 be i -faces which are identified in an i-wedge sum K, which will be
denoted by i in K. Note that

FIJ{ZZUKQ(]C): Z |fj1+"'+fji+2’+ Z |fi1+fj2+"'+fji+2’
J1seensJitaFil iz J2, s Jite
+ Z ’fi2+fj2+"'+fji+2’
J2, 5 Jit2
and
[}L(p(g) = Z ’gjl +"'+gji+2‘ + Z |gi/+gj2+"'+gj¢+2|
J1sesJit2Fl J25eeJit2
where all ji, ..., jit2 under the sum notation are i-faces of a (i + 1)-simplex. It is easy to
see that
]}L(Iiulq(f)_]?(p(g): Z |fi1+fj2+”'+fji+2|+ Z |fi2+fj2+"'+fji+2|
J25esJit2 J2, s Jite
- Z |gi’+fj2+"'+fji+2|
J2, s Jit2

whenever g; = f; for j ¢ {i,41,42}. And I} i (f) — I (g) = 0 if we further assume that

gir = fi = Jip-
Let .
X={feR":> degi”(K, UKy)|fi| = 1}
=1
and .
Y={geR™": > deg/”(K)|g:| = 1},
=1

where m = #5,;(K1) + #S;(K3). Note that

" deg:”(K; U K3), if j € S;(K)\ {/},

deg! () = up( 1 U K) . it ./( )\ A{e'}
deg;” (K1) + deg;) (K3), if j=1".

Let X = XN{feR™: fi, = fi,} and let ¢ : X — Y be defined by

fi, i g € Si(K)\ 'Y,
fony i =1"

Qﬂ(f)y:{
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Then 1 is an odd homeomorphism from X to Y. And I'*(4(f)) = I ok, (f), Vf € X.
Thus,

c; = inf  sup I
T )zjAcx feg ()

< inf Asup]}?iUKQ(f)
7(A)2j,ACX feA

= inf  sup IX(¢(f))

Y(A)2j,ACX feA

= inf  suplF(q)=c.
v¥(B)2j,BCY yeg K (9) I

The proof is completed. O

4.2 Duplication of motifs

Given a simplicial complex K = (V,S), let M be a collection of faces. The closure Cl M
of M is the smallest subcomplex of K that contains each simplex in M and is obtained
by repeatedly adding to M each face of every simplex in M. The star St M of M is the
set of all simplices in K that have a face in M. The link Ik M of M is C1 St M\ St Cl M.

Definition 10 (i-motif). A subcomplex M of a simplicial complex K is an i-motif if:
(1) (VF, Fo e M), if Fi,F, CF € K,then F € M
(2) dim lk M = .
From the definition of link, the vertices in motif M are different from that in 1k M.

Let [y, ...,l,, be vertices of Ik M and py, ..., pr be the vertices of M. Duplication of the
i-motif M is defined as follows.

Definition 11 (duplication of the i-motif M). Let M’ be a simplicial complex on the
vertices pj, ..., p) and let the map h : p, — p; be a simplicial isomorphism between M’
and M. Let KM := KU{{p),,....0} L i YPios - s 0igs ins - - -, 1} € K} We call
KM the duplication of i-motif of M.

Note that K = (K — St M) Vv; (C1 St M). As a consequence of Theorem 16, we have
the following

Spec(AY, (K) = Spec(A} (K — St M)) LOJSpec(Aqfﬁc(Cl St M)) for 0<i<k.
The following proposition can be proved by the similar methods in [13]. For complete-

ness, we give the proof.

Proposition 4. For i-motif M, considering A%(Cl St M)|s¢ pr which is the restriction of
ATS(CLSt M) on St M, if (u, h) is the eigenpair of AY(Cl St M)]s; as, then (i, o) is an
eigenpair of AY"(K™), where

WF), if FeStM;
o(F) =< —h(F), if FeStM,

0, otherwise.
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Proof. According to the definition of St M, for any F € St M, if F C F, then F € St M,
which implies that A (CI St M) and A% (K™) coincide on St M and for any i-face F
in St M, there is deg¥ (Cl St M) = degi? (K™M). Let

WF), if FeStM;

o(F)=< —h(F), if FeStM,
0, otherwise.
Then,
AYL(CLSt M)y mrh(F) € ppdegy’ Sgn(o(F)), for VF' € St M;
ATE(EM)o(F) = ¢ ATE(CLSt M)[se s(—h(F)) € pdegy? Sgn(o(F)), for VF € St M’;
0 € pdeg? Sgn(o(F)), otherwise,
which confirms the claim. O]

Similar to [13], we have the following corollary.

Corollary 2. If the spectrum of the simplicial complex Cl St M contains the eigenvalue
i, with an eigenvector h that is zero on lk M, then p is also the eigenvalue of K.

Using the same methods in the proof of Theorem 21, we have the following

Theorem 22. Let c; be the min-max eigenvalue of AY5(Cl St M)|s; ar and ¢ be the min-
max eigenvalue of AY(Cl St M). Then ¢ < ¢;.

Proof. Let X = {f € St M : 3 g pdeg/”[fil = 1} and Y = {g € CISt M :
Ygecisadeg?lgl = 1} and ¥ = Y 0 {f : fr, = 0,¥f, € CISt M\ St M}. It is
obvious that F: Y — X defined by

F(f); = fi, if f; €St M,
710, if f; € CISt M\ St M,

is an odd homemorphism. Then,

/ . up
I S(A)zhACY jeq S a(f)

< inf  sup I&yg a0 (f)
7(A)25,ACY feA

= inf  sup I, (F(f))
~(A)25,ACY feA

= lnf su IUP
+(B)>j,BCX geg st 1(9)

= Cj. O

Remark 23. Theorem 21 and Theorem 22 are counterparts of Theorem 6.4 and Theorem
6.12 in [13] respectively.
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