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Abstract

The r-neighbour bootstrap process is an update rule for the states of vertices
in which ‘uninfected’ vertices with at least r ‘infected’ neighbours become infected
and a set of initially infected vertices is said to percolate if eventually all vertices
are infected. For every r > 3, a sharp condition is given for the minimum degree of
a sufficiently large graph that guarantees the existence of a percolating set of size
r. In the case r = 3, for n large enough, any graph on n vertices with minimum
degree |n/2] + 1 has a percolating set of size 3 and for > 4 and n large enough
(in terms of 7), every graph on n vertices with minimum degree [n/2] + (r — 3) has
a percolating set of size r. A class of examples are given to show the sharpness of
these results.

Mathematics Subject Classifications: 60K35, 05C35

1 Introduction

Bootstrap percolation is a model for the spread of an ‘infection’ in a network that was first
introduced and investigated by Chalupa, Leath, and Reich [7] as a monotone model of the
dynamics of ferromagnetism. Starting from a set of initially infected vertices in a graph,
the infection spreads to new vertices depending on their number of infected neighbours.
The focus in this paper will be on extremal problems related to these processes.

For any integer r > 2, the r-neighbour bootstrap process is an update rule for the states
of vertices in a graph which are in one of two possible states at any given time: ‘infected’
or ‘uninfected’. From an initial configuration of infected and uninfected vertices, the
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following state updates occur simultaneously and at discrete time steps: any uninfected
vertex with at least r infected neighbours becomes infected while infected vertices remain
infected forever. To be precise, given a graph G and a set A C V(@) of ‘initially infected’
vertices, set Ag = A and for every t > 1 define

A=A Uv e V(G) | IN@) N Ary] = 7).

The closure of A is (A), = U;s0Ays; the set of vertices that are eventually infected starting
from A = Ay. The set A; \ A;_; shall often be referred to as the vertices infected at time
step t. The set A is said to span (A),. The set A is called closed iff (A), = A and is said
to percolate iff (A), = V(G).

While the focus of study for such processes is often the behaviour of initially infected
sets that are chosen at random, a number of natural extremal problems arise. In this
paper, the focus is on the size of a smallest percolating set. For other extremal problems,
see [3, 5, 6, 15, 17], for example. For any graph G and r > 2, define the size of the smallest
percolating set to be

m(G,r) = min{|A| | A C V(G), (4), = V(G)}.

One class of graphs that have received a great deal of attention in this area are the
square grids. For any n and d, let [n]? denote the d-dimensional n x n x --- x n grid.
In the case that r = 2, for all n and d, the Balogh, Bollobds and Morris [2] showed
that m([n]?,2) = [d(n — 1)/2] + 1 (see also [1]). Pete (see [4]) gave a number of general
results about the smallest percolating sets in grids with other thresholds and claimed that
m([n]?,d) = n®! (a proof of which was given explicitly by Przykucki and Shelton [18]).
In the case of hypercubes, Q4 = [2]¢, Morrison and Noel [16] confirmed a conjecture of
Balogh and Bollobés [1], showing that for each fixed r, m(Qq, ) = w (Tfl). A simpler
proof of this was given by Hambardzumyan, Hatami, and Qian [13].

The size of minimum percolating sets in regular graphs have been examined by Coja-
Oghlan, Feige, Krivelevich and Reichman [8] who gave bounds on m(G,r) in a number
of different cases in which G is a regular graph satisfying various expansion properties.
Bounds on the size of a minimum percolating set (or ‘contagious set’) in both binomial
random graphs and random regular graphs have been given by Feige, Krivelevich, and
Reichman [10] and Guggiola and Semerjian [12]. Minimum percolating sets in trees were
investigated by Riedl [20].

In this note, we shall focus on the conditions for the minimum degree of a graph that
imply the existence of a percolating set of the smallest possible size. It is clear that for
any graph on at least r vertices, m(G,r) > r. Throughout, §(G) is used to denoted the
minimum degree of a graph G.

Considering the degree sequence of a graph, Reichman [19] showed that for any any
graph GG and threshold 7, then

m(Gr) < Y min{l,m}.

veV(Q)
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For any d > r — 1, this upper bound is achieved by disjoint copies of cliques on d + 1
vertices.

Freund, Poloczek, and Reichman [11] investigated Ore-type degree conditions for a
graph that guarantee that m(G,2) = 2. Defining 05(G) to be the minimum sum of
degrees of non-adjacent vertices in GG, they showed that for a graph on n > 2 vertices, if
09(G) = n, then m(G,2) = 2. Subsequently, Dairyko, Ferrara, Lidicky, Martin, Pfender,
and Uzzell [9] improved this result showing that, except for a list of exceptional graphs
that they completely characterized, if 02(G) > n — 2, then m(G,2) = 2. Their results
show that the only graph with §(G) = [|V(G)|/2] and m(G,2) > 2 is the 5-cycle.

Freund, Poloczek, and Reichman [11] further showed that if G is a graph on n vertices

with 0(G) > {@n-‘, then m(G,r) = r. Though it is not stated in their paper, the
proof idea in [11] can be used, with a small extra check, to show that for n sufficiently

large, and §(G) > |n/2], then m(G,2) = 2. This is best-possible as it is noted that for
any n, a graph consisting of two disjoint cliques on |n/2] vertices and [n/2] vertices has

minimum degree {@nJ —1 and no set of size 2 that percolates in 2-neighbour bootstrap

percolation.

In [11], the following examples are given to show that their conditions on the minimum
degree are tight. For odd r, a clique on n = r + 1 vertices with a perfect matching deleted
has minimum degree n — 2 = L%nj and no set of size r percolates. These examples are
restricted to a small number of vertices, depending on the infection parameter . When
r > 3 and the number of vertices is large relative to r, a different picture emerges and, in
fact, when n is large, any graph on n vertices with a minimum degree that exceeds n/2 by
some constant that depends on r will have a set of size r that percolates in r-neighbour
bootstrap percolation. The main result of this paper is the following.

Theorem 1. For any r > 4 and n sufficiently large, if G is a graph on n vertices with
3G) = [n/2| + (r —3), then m(G,r) =r.

The result for the case r = 3 is slightly different than the rest and is, perhaps, closer
to the behaviour of the case r = 2 examined in [11].

Theorem 2. For any n > 30, any graph G on n vertices with 6(G) > |n/2] + 1 satisfies
m(G,3) = 3.

Theorems 1 and 2, show that for any r > 3, there is a constant ¢, depending only on
r so that if 6(G) > ||V(G)|/2] + ¢, then G has a percolating set of size . When |V (G)|
is large, this is a substantially weaker condition than the results in [11] that required
3G) = [(r—1)|V(G)|/r] for the same conclusion.

In the proofs to come for these theorems, no attempt has been made to optimize the
possible lower bounds on n.

One obvious example of a graph with no set of size r that percolates in r-neighbour
bootstrap percolation is a graph consisting of two disjoint cliques of order |n/2] and
[n/2] (as long as n > r). By adding some edges to such graphs, one can increase the
minimum degree without creating any sets of size r that percolate. In Section 2, examples
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are given of graphs on n vertices with §(G) = |n/2] and m(G, 3) > 3 and for every r > 4,
examples of graphs with §(G) = [n/2]| + (r — 4) and m(G,r) > r. These examples show
that Theorem 1 and Theorem 2 are sharp.

The different behaviour for the cases r < 3 and r > 4 is also characterized by these
types of examples. Suppose that GG is a graph that consists of two cliques of equal size
(on parts A and B) with a k-regular bipartite graph between the two parts. Choose any
2 vertices ay,as € A. If k > 2, then there are vertices by, by € B with a path ay, by, as, by
in the graph. If a1, as and any r — 2 vertices in B\ {by, by} are initially infected, then the
infection spreads to by, by and then all of B. If £ > r — 2, then all of A is subsequently
infected. The condition k& > max{2,r — 2} requires r > 4. Next, consider an initially
infected set with only one vertex, a, in the set A. Aslong as k > r—1, a together with any
r — 1 vertices in B that are not adjacent to a will percolate. If » < 3, then any percolating
set of r vertices will have at most 1 vertex in one of the parts A or B. This forces a
stronger condition on k in these types of examples for the graphs to have a percolating
set of size r. In Theorem 3, it is shown that unless the bipartite graph between A and B
has short cycles, no improvement on k is gained by having at least 3 infected vertices in
each of A and B. As will be seen in the proofs in Section 4, these examples are typical,
though a larger class of graphs are considered for the proofs in which rather than having
cliques on each part, the subgraphs are dense and instead of a regular bipartite graph
between the two parts, on one side, vertices will have some small range of number of
neighbours on the other side.

Throughout, the following notation is used. Given two disjoint sets of vertices A and
B in a graph G, let e¢(A, B) denote the number of edges with one endpoint in A and
the other in B. The subgraph of G induced by the set A is denoted by G[A] and given
two disjoint sets A and B, let G[A, B] denote the bipartite subgraph consisting of all the
edges in G with one endpoint in A and the other in B. Given a set A and a vertex z, let
deg () be the number of neighbours of z in the set A. The neighbourhood of a vertex x
in G is denoted N ().

The remainder of the paper is organized as follows. In Section 2, we give the classes
of graphs that show the sharpness of Theorem 1 and Theorem 2. In Section 3, it is shown
that for all large graphs satisfying the degree conditions of Theorem 1 or Theorem 2,
every closed set is either relatively small, consists of around half the vertices, or is the set
of all vertices. Using the existence of small complete bipartite subgraphs, it is shown that
there is always a set of r vertices whose closure is not too small. In Section 4, it is shown
that graphs with closed sets consisting of nearly half the vertices are highly structured
and that this structure can be exploited to find a percolating set of size r. Finally, in
Section 5, some further open problems are given.

2 Graphs with no small percolating sets

The graphs described in this section showing the sharpness of Theorem 1 and Theorem 2
consist of two disjoint cliques, with a regular (or nearly-regular when the number of
vertices is odd) bipartite graph between them that does not have small girth. Note that
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a bipartite graph H with girth at least 6 as required by Theorem 3 is given with positive
probability by taking a random (r — 3)-regular bipartite graph on two vertex sets of size
n/2 as long as n is sufficiently large (see, for example, results of Wormald [22] and [23]).

Theorem 3. Forr >4, let n > 2(r — 1) be even and suppose that H is a (r — 3)-regular
bipartite graph on parts A and B of size n/2 each such that H has no 4-cycles. The graph
G consisting of H together with a clique on the vertices of A and a clique on the vertices
of B has 0(G) =n/2+ (r —4) and m(G,r) > r.

Proof. As the graph G is (n/2 + (r — 4))-regular, it remains only to show that no set of
r vertices percolates.

Let X be any initially infected set of r vertices in G and set | X N A| = k. Note
that since every vertex in A has r — 3 neighbours in B and every vertex in B has r — 3
neighbours in A, if £ < 2, then no vertex in A\ X is ever infected, even if everything in
B is infected. Similarly, if r — k < 2, no vertex in B\ X is ever infected.

We first use this observation to deal with some of the small values of r. For r € {4,5},
if k> 3, then r — k <r —3 < 2. Thus, in the cases r = 4 or r = 5, it is immediate that
X does not percolate and so m(G,r) > r.

Next, consider the case that » = 6. By the previous observation and relabelling A and
B if necessary, assume that 3 < k <r —k <r — 3, so that we have 3=k =r — k. If
anything further is infected by X, say a € A, then a must be adjacent to all 3 elements
of X N B. Since H contains no copies of Cy4, no other vertices in A can be adjacent to all
elements of X N B and so there is at most one such a € A.

If a is the only vertex infected at time 1, then no vertex in B is adjacent to all elements
of X N A (or else it would have been infected in the first time step) and the only vertices
adjacent to a are those in X N B, which are already infected. Thus, nothing further is
infected.

If two vertices are infected at the first time step, then since H is Cy-free, it can only
be that one a € A and one b € B are infected. That is, a is adjacent to all elements in
X N B and b is adjacent to all elements in X N A. At the second time step, any further
vertex in A is adjacent to 4 infected vertices in A, but not b and at most one from X N B
(since otherwise, it would form a copy of Cy with a). Thus, such a vertex does not become
infected. Similarly, nothing in B that is not already infected has more than 5 infected
neighbours. Thus, X does not percolate and so m(G,6) > 6.

Now we consider the most general case: » > 7. As above, let X be any set of r vertices
in G, set k =|X N A| and assume that 3 < k,r — k <r — 3.

First suppose that only vertices in one partition set, say A, are infected at the first
time step. Since H has no copy of Cy, there can be only one such vertex x adjacent to all
r — k vertices in X N B. At the second time step, any uninfected vertex in A has k + 1
infected neighbours in A and so can only be infected if it has r — k — 1 > 2 neighbours in
X NB. As this would create a Cy with x, no vertex in A can be infected in the second time
step. Any vertex in B that is infected at time 2 is in N(z)NB\ X. Set N, = N(z)NB\ X
and note that |N,| = k—3. If k = 3, then no further vertices are infected and the process
stops. If £ > 4 and y € N, is infected at the second time step, then y has exactly k£ — 1

ot
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Figure 1: Possible structures for the set X when r > 7 if (a) one vertex is infected in
the first time step or (b) two vertices are infected in the first time step. Shaded regions
represent cliques.

neighbours in X N A and there can only be one such vertex y since a second would have
two common neighbours with y in A (z and a vertex in X N A). See Figure 1 (a). At time
step 3, any vertex in A has at most [(X NA)U{z}| = k + 1 infected neighbours in A and
at most 1 infected neighbour in B (since two would create a Cy with x in H). Any vertex
in B has at most (X N B) U {y}| = (r — k) + 1 infected neighbours in B and is either
adjacent to z and at most one vertex from X N A\ N(y) or else at most two vertices from
X N A. Thus, any uninfected vertex is adjacent to at most max{k + 2,7 — k + 3} infected
vertices. Since k > 4, then max{k + 2,7 — k + 3} < r — 1 and so no further vertices are
infected. As long as n > 2(r — 1), then there are still uninfected vertices and so the set
X does not percolate.

Next, suppose that x € A and y € B are both infected at the first time step. Without
loss of generality, assume that 3 < k < r — k < r — 3. As before, there can be only one
vertex in each partition set that is infected in the first time step. Set N, = BN N(z) \ X
and N, = AN N(y) \ X so that |N,| =k —3 and |N,| =r — k — 3. See Figure 1 (b). At
time step 2, any vertex in N, is adjacent to |(X N A)U{z}| = k + 1 infected vertices in A
at most 2 vertices in B (y and at most one from X N B). Since k+14+2=k+3 <r—1,
then such a vertex in NN, is not infected. If & = 3, then there are no vertices in N,
and so any vertex in B has at most r — k + 2 infected neighbours (r — k + 1 neighbours
in (X N B)U{z} and at most one in X N A as two would create a Cy with y). Since
r—k+1<r—1, no further vertex in B is infected. If k > 4, then any vertex in NN, is
adjacent to at most (r — k) + 1 infected neighbours in B and at most 2 in A since it can
have at most one neighbour in X N A. For k <r/2andr > 7, we haver —k+3<r—1
and so such a vertex in N, is not infected.

In all cases, the bootstrap process halts with not all vertices infected since n > 2(r—1).
As the set X was arbitrary, then m(G,r) > r. O

The construction in Theorem 3 can be extended to an odd number of vertices as
follows.

Corollary 4. For every r > 4 and n sufficiently large, there is a graph G on n vertices
with 6(G) = |n/2] + (r —4) with m(G,r) > r.
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Proof. If n is even, let G be given by Theorem 3. If n is odd, let G; be the graph on
n + 1 vertices given by Theorem 3 and define a graph G by deleting one vertex from
G1. The vertices of G are partitioned into a set, A, of size [n/2] that form a clique
and a set, B, of size |n/2] that each form a clique. Vertices in A have degree at least
n/2] =1+ (r—3)—1 = |n/2| + (r — 4) while vertices in B have degree exactly
n/2] =14 (r—3) = [n/2] + (r —4). If G had a percolating set of size r for r-neighbour
bootstrap percolation, then this same set would percolate in G; since the additional vertex
is joined to at least r neighbours in B. As this would contradict the fact that m(Gy,r) > r,
then m(G,r) > r also. O

The case r = 3 has a different behaviour than larger values of r. The proof that the
example has no small percolating sets is closely related to the corresponding proofs for

r € {4,5}.

Theorem 5. For any even n > 4, let A = [1,n/2] and B = [n/2 + 1,n] and let G be
the graph given by a complete graph on A, a complete graph on B and a perfect matching
between A and B. Then, §(G) = n/2 and m(G,3) > 3.

Proof. Let X be any set of 3 vertices in G. Note that either [XNA| < 1orelse [ XNB| < 1.
Suppose, without loss of generality that | X N A| < 1. Even if every vertex in B becomes
infected, any uninfected vertex in A has at most 2 infected neighbours: any vertex in
X N A and the single neighbour in B. Thus, these vertices never become infected and so
X does not percolate. O

The same argument as that given in the proof of Corollary 4 extends Theorem 5 to
all n > 4.

Corollary 6. For any n > 4, there exists a graph G with §(G) = [n/2] and m(G,3) > 3.

Note that the graph described in Theorem 5 was also used [11] where it was called
DC, and it was noted, in relation to 2-neighbour bootstrap percolation, that this graph
has sets of size 2 whose closure is of size n/2, while there are other sets of size two that
percolate.

This concludes the descriptions of constructions and in the subsequent sections, it is
shown that large graphs with minimum degree one larger (for a fixed n and r) than those
in Theorems 3 and 5 do have small percolating sets. No attempt has been made here to
classify all extremal examples.

3 Sets with large closure

Before proceeding to the proofs of the main theorems, we give a number of results about
the size of the closures of sets in r-neighbour bootstrap percolation. In particular, the goal
is to show that the closures of any set in graphs satisfying a minimum degree condition
can only have a small number of different sizes.

The following straightforward lemma uses a minimum degree condition to show that
any large set will percolate. This will be used repeatedly in arguments to come.
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Lemma 7. For anyr >3, k > 1, let G be a graph on n vertices with §(G) = |n/2| + k.
Every set A C V(G) with |[A| = [2] 4+ (r — k — 1) satisfies (A), = V(G).

Proof. For every x € A, since z has at most |A°| —1 = n — |A| — 1 neighbours within A,
then

degA(x) = deg(z) — deg ()
J +k—n+]Al+1

J+k—n+([§]+r—k—1)+1

Thus, as every vertex in A¢ has at least r neighbours in A, if the set A is initially infected,
the remainder of the graph becomes infected in one time step. O

There are two different cases for the choice of k£ in Lemma 7 used here. In the case
r = 3 with k& = 1, this lemma states that if 6(G) > |n/2] +1, then any set of size [n/2]+1
percolates. For all > 4, taking k = r—3, the lemma shows that for 6(G) = |n/2|+r—3,
any set of size [n/2] + 2 percolates.

In the following proposition, we consider large graphs with a given minimum degree
condition. Edge-counting is used to show that any set that is closed is either relatively
small or else contains nearly half of the vertices of the graph. This includes the possibility
that the set percolates.

Proposition 8. Let r > 3, set k = max{1l,r — 3} and let G be a graph on n vertices
with n > 10r and §(G) > |n/2| + k. If A C V(G) is such that (A), = A, then either
|A| < 2(r — 1) orelse |A| > |n/2] — min{l,r — 3}.

Proof. Let A be a set of vertices with (A), = A and set |A| = ¢. The proof proceeds by
counting the edges with one endpoint in A and the other in A€ in two different ways.

Since any vertex in A has at most ¢ — 1 neighbours within the set A, any = € A has
at least 0(G) — ¢ + 1 neighbours in the set A°. Thus,

e(A, A%) = “degye(x) 2 U(5(G) = L+1) 2 (/2] — L+ K +1). (1)

On the other hand, since (A), = A, every vertex in A¢ can have at most r — 1 neighbours
in the set A. Thus,

e(A, A%) =) " degy(z) < (r—1)]A° = (r — 1)(n - 0). (2)

TEAC

Combining the inequalities (1) and (2) and rearranging gives that
0< e—eq | +k+r)+ = 1n (3)
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To conclude the proof, the righthand side of inequality (3) is analyzed to determine
those values of ¢ for which it can be positive and so deduce bounds on |A|. Towards
this end, define D(¢) = ¢ — {(|n/2]| + k+r) + (r — 1)n, which is the righthand side of
inequality (3). Substituting ¢ = 2r — 1 into D({) gives

D(2r —1)=(2r —1)* — (2r—1)Ln/2J 2r—1)(k+7r)+n(r—1)

)
etk ) (o2 [3) [
<@ -V -k=1)+@-1)-|7]

2
_ 715 if r =3
5r—3—|%] ifr>4

0

since for n > 10r — 4, then |n/2] > 5r — 3. Furthermore, substituting ¢ = 2r — 2 gives,
for all n,

A\

D(2r—2)=(2r—2)*=2(r —1)|[n/2] — (2r = 2)(k+7) +n(r — 1)
—2r—)(r—k—2)+(r—1) (n—zg ) > 0.
Similarly, substituting ¢ = |n/2] — 2 gives
D(|n/2| —2) = n/2|* —4|n/2| +4— [n/2]* — (k+r —2)|n/2]
+2(k+r)+n(r—1)
=(r—1)(mn-2n/2])—(k—r+4)|n/2] +2(k+r+2)
<2k+3r+3—1[n/2] <0
for n > 10r. Next consider the result of substituting ¢ = [n/2]| — 1,
D([n/2] —1) = [n/2)> = 2[n/2] + 1= [n/2)* — (k+ 7 — 1)|n/2]
+(k+7r)+n(r—1)
=n(r—1)—(k+r+1)|n/2|+(k+r+1)
~)2n—5[n/2] +5 if r=3
=1 (n—-2|n/2])+2r—2 ifr>4.

Thus, when r = 3, and n > 16, D(|n/2] — 1) < 0 whereas for r > 4 and all n, we have
(Ln/QJ — 1) > 0. Finally, consider D(|n/2]) in the case that r = 3:

D([n/2]) = [n/2)* — [n/2]* — 4|n/2] + 2n
=2(n—2[n/2]) >0

Note that D is a quadratic function in ¢ with a unique minimum and satisfying D(2r —
2) >0, D(2r —1) < 0. When r = 3, since D(|n/2] —1) < 0 and D(|n/2]) > 0, then
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if D(¢) > 0, then either ¢ < 4 or else ¢ > |n/2|. When r > 4, since D(|n/2] —2) <0
and D(|n/2| —1) > 0, then if D(¢) > 0, either £ < 2(r — 1) or else £ > |n/2| — 1. This
completes the proof. O

In summary, Lemma 7 and Proposition 8 together show that if G is a graph on n
vertices with 0(G) > |n/2] + max{1l,r — 3}, then any set of r vertices either percolates,
spans a set of size at most 2(r — 1) or else spans a set of cardinality close to n/2. In
the case that r = 3, any large closed set that does not percolate has cardinality |n/2]
or [n/2]. In the case that r > 4, if A is a large closed set that does not percolate, then
In/2] —1<|Al < [n/2] + 1.

In order to address the existence of small closed sets of vertices in the graph, note
that for r fixed and n large enough, the Kévari-Sés-Turdan theorem [14] implies that a
graph on n vertices with minimum degree §(G) > |[n/2]| + (r — 3) contains complete
bipartite subgraphs of the form K, ,_; which give a subgraph on 2r — 1 vertices with
m (K, ,—1,7) = r. For the sake of completeness, the following pair of lemmas with standard
proofs make this precise.

Lemma 9. Forn > 6, if G is a graph on n vertices with 6(G) > |[n/2] + 1, then any
vertex of G is contained in a copy of Ky 3.

Proof. Let x be any vertex in G. If x is adjacent to all other vertices, then for any y # =z,
the common neighbourhood of = and y has at least |n/2| > 3 vertices and these together
with = and y form a copy of K33. Otherwise, let z be any non-neighbour of . Then the
common neighbourhood of z and z has at least 2(|n/2]+1)—(n—2) = 2|n/2| —n+4 >3
vertices and these together with x and z form a copy of K3 3. O]

Lemma 10. For eachr > 3 andn > (r — 1)2""' + 4, if G is a graph on n vertices with
3G) = [n/2| + (r — 3), then G contains a copy of K, ,_.

Proof. The proof proceeds by counting copies of stars of the form K;,_;. Define the set
S={(z,A) |z e V(Q), |A|=r—1, AC N(z)}.

Then, counting elements of S by the first coordinate, as long as [n/2] + (r —2) > r — 1,

then
EE M

S ; (LH/QJ + (1“ - 3)>
zeV "
o1l

> (o) () () ()
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L _n (n=1n—-2)---(n—r+2)
~ (r=1)! 2r—1

>T;;3<Tf1> ><r—1><rf1>.

As there are (Tfl) possible choices for the second coordinate of elements of S, by the
pigeonhole principle, there is a set A C V(G) of r — 1 vertices with at least r common
neighbours. These r vertices, together with A contain a copy of K, ,_; in the graph. [

-(n = 3)

Thus, when n is sufficiently large, any graph on n vertices with minimum degree
|n/2] + (r — 3) has a set of size r whose span contains at least 2r — 1 vertices and hence
by Proposition 8, contains at least |n/2] —1 vertices. If the span has more than [n/2]+1
vertices, then by Lemma 11, the set percolates.

What remains to show is that if such a graph contains a set A with around half the
vertices in G and (A), = A, then G contains some set of size r that percolates.

4 Structure of large closed sets

In this section, we show that if a graph on n vertices has minimum degree |n/2] +
max{r — 3,1} and A is a set with close to half the vertices of G and (A4), = A, then
enough structural information about G can be deduced to show that there is some set
of size r that percolates, completing the proof of Theorem 1. As the minimum degree
conditions for the case r = 3 are different from all others, these are dealt with separately.

Before proceeding with these results, a few straightforward lemmas are recorded to be
used repeatedly. The first shows that if the minimum degree of a graph is large enough,
not only is there a set of r vertices that percolates in r-neighbour bootstrap percolation,
but, in fact, any set of r vertices will percolate.

Lemma 11. Let k >0, r > 3 and n > k(r + 1) — 1. For any graph G on n vertices with
3(G) = n—k and any set A CV(Q) of r vertices, (A), = V(G).

Proof. As each vertex in GG has at most k— 1 non-neighbours, the vertices in the set A have
at least n —|A| — (k—1)|A| = n— kr common neighbours. Since n—kr > k—1, when the
set A is initially infected at least k — 1 further vertices are infected at the first time step.
At this point, any uninfected vertex is adjacent to at least (r+k—1)—(k—1) = r infected
vertices and so becomes infected in the second time step. Thus, the set A percolates. [

The next lemma gives bounds on the possible distribution of degrees between various
parts of a graph when there is a closed set with around half of the vertices. Two very
similar cases are handled separately in the statement of the lemma because of different
estimates used in the different cases in later proofs.

Lemma 12. Letr > 3 and let G be a graph on n vertices with §(G) > |n/2|+max{1,r—
3}. Let A CV(G) be such that (A), = A and let i € {0,1}.
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Case 1: If |A| = |n/2| —1i, then for x € A, degye(z) = max{2,r — 2} +i and fory € AC,
deg,(y) =>r—3—1, and
dege(y) > (|49 — 1) — (min{2,r — 2} +1).

Case 2: If |A| = [n/2]| +1, then forxz € A

max{2,r — 2} —i if n is even,

deg () >
eg e () {max{l,r—3}—i if nis odd

and for any y € A,

deg,(y) = max{2,r — 2} + i, and
degae(y) = (A% = 1) = (min{l,r — 3} — i)
Proof. Case 1: Suppose that A is closed with |A| = |[n/2] — 4. Then, |A¢| = [n/2] —i.
For any x € A,
degye(z) 2 0(G) — (Al = 1) = |n/2] + max{l,r — 3} — [n/2] +i+1
= max{2,r — 2} + 1.

Similarly, for y € A€,

deg,(y) = 0(G) — (JA°| = 1) = |n/2] + max{1,r =3} — [n/2] —i+1
= |n/2] — [n/2] + max{l,r =3} +1—1

>—-1+r—-3+1—i=r—3—1i.

Since A is closed, then deg,(y) < — 1 and so

degy(y) 2 0(G) — (r—1) > |[n/2| + max{1l,r =3} —r+1

=|A°l—-1—[n/2] =i+ 1+ |n/2] + max{l,r — 3} —r +1
> |A° —1— (max{l,r =3} —r+1—1)
= (|A°] = 1) — (min{2,r — 2} + ).

This completes the proof in the first case.

Case 2: Suppose that A is closed with |A| = [n/2] 4 i. The proof in this case is similar
to that of Case 1. For any x € A,

degye(r) = 0(G) = (|A] = 1) = max{l,r =3} + 1 = ([n/2] = [n/2]) -
_Jmax{2,r —2} —i if nis even,
| max{l,r —3} —i ifnis odd.

For any y € A° degy(y) = 0(G) — (JA°] — 1) > max{2,7 — 2} +i. Since A is closed,
deg,(y) <7 —1and sodegye(y) = 6(G) — (r—1) > (|A°| = 1) — (min{l,r — 3} —d). O
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The following structural fact about graphs with a large closed set is used repeatedly
in the proofs of Proposition 18 and Proposition 19. The proof follows immediately from
Lemma 12 in the case |A| = [n/2] + 1.

Fact 13. For anyr >4, n > 2r and G a graph on n vertices with 6(G) > |n/2| +r — 3,
let A be a set with |A| = [n/2] + 1 and (A), = A. Then G[A®] is a complete graph and
every vertex has exactly r — 1 neighbours in A.

4.1 Threshold »r = 3

In this subsection, it is shown that if any set of size 3 in a graph with minimum degree
|n/2] + 1 spans either |n/2] or [n/2] vertices, then some set of 3 vertices percolates in
3-neighbour bootstrap percolation. The two different cases that arise when n is odd are
handled in separate propositions.

Proposition 14. Let G be a graph on n > 13 wvertices with 6(G) = |n/2| + 1 and let
A CV(G) be such that |A| = |n/2]. If (A)s = A, then m(G,3) = 3.

Proof. By Lemma 12 in Case 1 with |A| = [n/2], for any x € A, deg,.(x) > 2. Further-
more, for any y € A¢, degy(y) = (JA°| — 1) — 1. Then, by Lemma 11 applied to G[A€],
since n > 6, any set of 3 vertices in A€ infects all of A°.

Set Ag = {z € A|degy(x) > 3}. If A3 # 0, then for any three vertices a,b, c € A,

|({a,b,c})s| = |A°| + |As| = [n/2] + 1.

Then, by Lemma 7, ({a,b,c});s = V(G) and this is a percolating set of size 3.

Thus, assume that A3 = () and hence G[A] is a complete graph with every vertex
having exactly 2 neighbours in A°. By Lemma 12, every y € A° has deg,(y) > 1. Set
By = {y € A° | degy(y) = 1}. Since A is closed, every vertex in A° has at most 2
neighbours in A. Then,

2[n/2] = e(A, A%) = [Bi| + 2([n/2] = | Bil) = 2[n/2] — | B

which implies that |B;| = 2([n/2] — [n/2]) < 2.

Pick any y € A°\ By and let a,b be its 2 neighbours in A. Let z € A° be any other
neighbour of a and choose any ¢ € A\ {a,b}. Consider the effect of initially infecting the
set {c,y, z}; see Figure 2. Then, a is adjacent to all 3 and becomes infected in the first
time step. Then, b is adjacent to a, ¢, and y and so becomes infected by the second time
step. Since G[A] is complete and contains three infected vertices, all remaining vertices of
A are infected by the third time step. Finally, any vertex in A¢\ By is adjacent to at least
one of y and z and has two further infected neighbours in A and so becomes infected by
time step 4. Finally, if there is a vertex in By, it is adjacent to all elements of A¢ and has
one infected neighbour in A and so also becomes infected by step 4. Therefore, {c,y, z}
is a percolating set of size 3, completing the proof. O]

Proposition 15. Let n > 13 be odd and let G be a graph on n vertices with 6(G) > ”TH
and let A CV(G) be such that |A| = 2. If (A)s = A, then m(G,3) = 3.
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A A¢

Figure 2: Case for r = 3 and A3 = () in the proof of Proposition 14.

Proof. Applying Lemma 12 with Case 2 shows that every y € A has at least 2 neighbours
in A and at least “ — 2 = |A°| — 1 neighbours in A°. That is, G[A“] is a complete graph
and every vertex has exactly 2 neighbours in A.

Also, by Lemma 12, any vertex in A has at least 1 neighbour in A°. Set Az =
{z € A | degye(x) > 3}. If |A3] > 2, then any three vertices in A° span at least
|A°| +|As| > %5+ +2 = [n/2] +1 vertices and so percolate by Lemma 7. If A3 = 0, then
(A%)3 = A° and so by Proposition 14, G has a percolating set of size 3.

Assume now that |As| = 1. Note that every vertex in A\ A has either 1 or 2 neighbours
in A¢ and at most one non-neighbour in A. Thus, by Lemma 11, any set of size 3 in A\ A3
eventually infects all of A\ Ag. If (A\ A3)3 = A\ As, then again by Proposition 14, G has
a percolating set of size 3. If (A \ A3) D A, then by Lemma 7, everything is eventually
infected and so G has a percolating set of size 3.

Therefore, assume that |As] = 1 and that (A \ As)s = A. Let x be any vertex in
A\ Aj and let a be one its neighbours in A°. Let y,z € A\ A3 be any two neighbours of
x and consider the effect of initially infecting {a,y, z}. Then since z is adjacent to all 3,
it is infected in the first time step. By assumption, ({z,y,2})s = A and so ({a,y, z})s 2
AU {a}, which is a set of size [n/2] + 1. Thus, by Lemma 7, the set {a,y, 2z} percolates.

In all cases, the graph G contains 3 vertices that percolate and so m(G,3) = 3. O

With these two results, the proof of Theorem 2 now follows.

Proof of Theorem 2. Let n > 30 and let G be a graph on n vertices with §(G) > [n/2]|+1.
By Lemma 9, G contains a copy of Ks3. Let A be a set of 3 vertices in one of the
partition classes in any copy of Ks3, since |[(A),| = 5 > 2(3 — 1), by Lemma 7 and
Proposition 8, either A percolates or else |(A)s| € {[n/2],[n/2]}. By Propositions 14
and 15, if [(A)s] € {|n/2],[n/2]}, then G contains some set of size 3 that percolates.
Thus, m(G, 3) = 3, which completes the proof. O
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4.2 Threshold r» > 4

In this subsection, we consider bootstrap processes with infection threshold r > 4 and give
the proof of Theorem 1. The proof uses more steps than that for the corresponding result
for r = 3 because of the weaker result for Proposition 8 in the case r > 4. Throughout the
proofs, the aim will be to either find a set of size r that spans at least [n/2] + 2 vertices
(and hence percolates by Lemma 7) or else to deduce enough structural information about
the graph to reduce the problem to a few special cases.

Proposition 16. Let r > 4, let n be sufficiently large, and let G be a graph on n vertices
with 6(G) = |n/2| + (r — 3). If there is a set A C V(G) with |A| = |n/2] — 1 and
(A), = A, then m(G,r) =r.

Proof. By Lemma 12 in Case 1, any vertex y € A¢ has deg,(y) > r — 4 and y has at
most 3 non-neighbours in the set A°. Thus, by Lemma 11, any set of r vertices in A¢
infects all of A°. Furthermore, by Lemma 12, any vertex in A has at least r — 1 > 1
neighbours in A¢ and so e(A, A°) # 0. Let b € A° be any vertex with a neighbour a € A.

Let vy, v9,...,v,_1 be any neighbours of b in A° and consider initially infecting the set
{a,v1,vq,...,v,1}. Since b is adjacent to all r infected vertices, it is infected at the first
time step. Then, by the previous comment, {b,vy,...,v,_1} internally spans the entire

set A°. Since,
|[({a,v1,v9,...,0,_1})r| 2 |A°U{a}| = [n/2] + 1+ 1= [n/2] +2,
then by Lemma 7, the set {a,vy,vs,...,v,_1} percolates and so m(G,r) =r. ]

Proposition 17. Let r > 4, let n be sufficiently large, and let G be a graph on n vertices
with 6(G) = |n/2] + (r —3). If there is a set A C V(G) with |A| = |n/2]| and (A), = A,
then m(G,r) =r.

Proof. By Lemma 12 in Case 1, for any y € A, deg,(y) = r — 3 and y has at most 2
non-neighbours within A¢. Thus, by Lemma 11, any r vertices in A¢ infect all of A°.

If the graph G[A, A°] contains a copy of Kso with vertices a,b € A and z,y € A°, let
v1,V9,...,U,_2 be any r — 2 common neighbours of x and y in A° and consider initially
infecting the set {a,b,vy,v9,..., 0,2}, as in Figure 3 (a). The vertices x and y are
infected in the first time step and subsequently all vertices in A¢ are infected. Since at
least |A°| + 2 = [n/2] + 2 vertices are infected, the set percolates by Lemma 7.

Now, assume that the graph G[A, A°| contains no copy of Ks». By Lemma 12, every
vertex in A has at least r — 2 neighbours in A€, and so e(A, A°) > (r — 2)|n/2]. Since
every vertex in A° has at most (r— 1) neighbours in A, there are at most 3 ([n/2] +r — 2)
vertices y € A° with deg,(y) = r — 3. Since this is less than the total number of vertices
in A let © € A° be a vertex with deg,(z) =i € {r — 2,7 — 1} and let ay,as,...,a; be
its neighbours in A. Note that 7 > 2. As each a; has at least » — 2 > 2 neighbours in
Ac, for each j < i, let b; € A°\ {z} be a neighbour of a;. Since G[A, A] contains no
copy of Ko all of the vertices {by, bs, ..., b;} are distinct. Since the vertex x has at most
[n/2] —1—(|n/2]+r—3—1i) <i— (r—3) non-neighbours in A°andi— (r—3) <i—1,
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(@ A
Figure 3: (a) G[A, A°] contains a copy of Kso; (b) G[A, A°] is Kjo-free

then x is adjacent to at least one vertex in {by,bs,...,b;}. Without loss of generality,
suppose that x is adjacent to b;. Let vy, vs,...,v,_o be any common neighbours of x and
by in A€ and consider initially infecting the set {ay, as,v1,va,...,v,_2}, as in Figure 3 (b).
The vertex x is infected in the first time step, and b; by the second time step. Then, A€
is internally spanned by {z, by, vy,...,v,_2} and since

[({a1, ag, v1, v, ..., vr2})r| = [A°U{ar, an}| = [n/2] + 2,
then by Lemma 7, all vertices are eventually infected and so m(G,r) = r. ]

The aim in all of the proofs of this section is to use the structural information about
the graphs to find a set of r vertices that internally spans at least [n/2] + 2 vertices (and
hence percolates). In some circumstances, finding many sets whose span is [n/2] +1 can
be quite useful as Fact 13 provides a great deal of information about structure regarding
such sets.

Proposition 18. Let r > 4, let n be sufficiently large and odd, and let G be a graph on
n vertices with 6(G) = 5% + (r — 3). If there is a set A C V(G) with |A| = [2] = =L
and (A), = A, then m(G,r) =r.

Proof. By Lemma 12 in Case 2, any y € A° has deg,(y) > r — 2 and at most 1 non-
neighbour in A¢. As before, by Lemma 11, any set of r vertices in A¢ infects all of A€, at
least.

Furthermore, every vertex in A has at least r — 3 > 1 neighbours in A°. Set A, =
{r € A | degye(x) = r}. Note that since r|A4,| < e(A, A°) < (r — 1)|A¢|, then |4,| <
@ : @ <™ —(2r+1) and so |A\ A, > 2r + 1. Any vertex in A\ A, has at most
2 non-neighbours in A and so any set of size r in A \ A, infects the remainder of A\ A,

by Lemma 11.
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A, }27“

Figure 4: The sets I(a) and I(b) for an edge {a, b}.

If A, =0, then (A°), = A°, but since |A°| = 25+ = |n/2], then by Proposition 17,
there is a set of size r that percolates.

If |A,| > 2, then choose any element a € A\ A,, let b € A° be any neighbour of a and let
U1, Vg, ..., Up_1 be any r — 1 neighbours of b in A¢. Then, letting B = {a,v1,v2,...,0,_1}
be the set of initially infected vertices, B infects b and so with r infected vertices in A€,
(B),| > |A°U A, U{a}| > %51 +2+ 1= [n/2] + 2 and so by Lemma 7, B percolates.

Suppose now that |A,| = 1 and let A, = {z}. If x has fewer than r neighbours in A,
then A\ {z} is a closed set of size 25+ and so by Proposition 17, G contains a set of size r
that percolates. Therefore, assume that = has at least r neighbours in A. The remainder
of the proof involves considering many different sets of size r and showing that if none
percolate, then Fact 13 can be used to deduce sufficient structural information about G
to find a small percolating set.

For every vertex a € V(G) \ {x}, choose a set, denoted I(a) of r — 1 neighbours of a
so that, if a € A\ {z}, then I(a) C A\ {z} and if a € A°, then I(a) C A°. Every vertex
in A has at least one neighbour in A° and since |A,| = 1, then every vertex in A¢ has
r — 2 > 2 neighbours in A, at least one of which is in A\ A,. For any pair {a,b} € E(G)
with a € A\ A, and b € A, then

({bY U I(a)), 2 AU {b}, and
({ayuI(b)), 2 A°U A, U {a}.

See Figure 4. Since each of the sets {b} U I(a) and {a} U I(b) each span a set of size
at least ”T“ +1= ”T_l + 2, either one of them percolates, or else by Fact 13, for every
a € A\ A,, the graph induced by G on A\ {a,z} is a clique with every vertex having
exactly r — 1 neighbours in A°U {a,z} and similarly, for every b € A¢, the set A°\ {b}
induces a clique with every vertex having r — 1 neighbours in A U {b}.

Note that any graph on at least 3 vertices with the property that deleting any vertex
gives a clique is itself a clique. Thus, each of G[A\ {z}] and G[A‘] is a complete graph
where every vertex in A\ {z} has exactly r — 2 neighbours in A°U {x} and every vertex
in A¢ has exactly r — 2 neighbours in A.
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T

Figure 5: Structure of the graph if no set {a} U I(b) or {b} U I(a) percolates.

Set A, = ANN(z), Ay = A\ ({z} UN(x)), B, = AN N(z) and B; = A°\ N(x). By
assumption, |A,|, |B,| = r. Note that every vertex in A; has r — 2 > 2 neighbours in A°
and every vertex in A, has r — 3 > 0 neighbours in A¢; see Figure 5.

If any vertex a € A\ {z} has two neighbours by, by € B,, then let {vy,vs,...,0, o}
be any r — 2 vertices in A, \ {a} and consider initially infecting {by, by, v1, va, ..., v, 2}
Both = and a are adjacent to all infected vertices and so become infected at the first
time step. Thereafter, the remainder of A, is infected and hence all of A. Since at least
|AU{b1,ba}| = [n/2] + 2 vertices are infected, the set percolates, by Lemma 7.

If any vertex a € A\ {z} has two neighbours by, by € A° with b; € By, then since by has
at least 7—2 > 2 neighbours in A\ {z}, let ¢ € A\ {a, x} be any other neighbour of b;. Let
V1, Ve, ..., Vg € A\ {b1,b2} be any r — 2 vertices in A and consider initially infecting
the set {a,c,v1,v9,...,v,_2}. In the first step b; is infected, then by and subsequently
the remainder of A¢ and so also x. As at least |A° U {a,c,x}| = [n/2] + 2 vertices are
infected, the set percolates, by Lemma 7.

By symmetry, the same is true for any vertex in A with two neighbours in A, or else
two neighbours in A \ {z}, one of which is in A;.

For any r > 5, every vertex in A; U A, has at least r — 3 > 2 neighbours in A° and
so either some vertex has 2 neighbours in B, or 2 neighbours one of which is in B;. In
either case, there is some set of size r that percolates.

The only remaining case is when r = 4 and there are no vertices in A \ {z} with
two neighbours in A¢ and similarly, no vertices in A¢ with two neighbours in A \ {z}.
That is, A; = B; = () and G consists of a clique on A,, a clique on B,, all vertices in
A, U B, joined to x and a perfect matching between A, and B,, as in Figure 6. Since
(n—1)/2 >4, choose a,b € A, and ¢,d € B, with ¢,d ¢ N(a) U N(b) and initially infect
the set {a,b,c,d}. The vertex z is infected at the first time step. At the second time
step, the neighbours of @ and b in B, and the neighbours of ¢ and d in A, are infected
and then all remaining vertices are infected in the third time step.

This completes the proof in the case that (A), = A and |A| = [%]. O
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Figure 6: Case where r = 4 and every vertex in A \ {z} has only one neighbour in A°.

The final remaining case to be dealt with is the following.

Proposition 19. Let r > 4, n be sufficiently large, and let G be a graph on n vertices with
3G) = [n/2] + (r —3). If there is a set A C V(G) with |A| = [n/2] +1 and (A), = A,
then m(G,r) =

Proof. By Fact 13, the set A¢ induces a complete graph with every vertex having exactly
r — 1 neighbours in A. By Lemma 12, any vertex x € A has

d (z) > r—3 if nis even,
€ c\ T = .
B4 r—4 if nis odd

As in previous proofs, set A, = {z € A | degy.(z) > r}. Again, if A, = (), then A°is a
closed set of size |n/2] — 1 and so by Proposition 16, there is a percolating set of size .
If |A,| > 4, then any set of size r in A° spans A°U A, which has |[n/2| —1+4 > [n/2]+2
vertices and hence percolates by Lemma 7.

Thus, assume that A, # 0 and |A,| < 3. Every vertex in A\ A, has at most 3 non-
neighbours in A. If A, € (A\ A,),, then there is a closed set that is smaller than A and so
by one of Propositions 16, 17, or 18, G has a percolating set of size r. Therefore, assume
that (A \ A,), = A.

Note that since

(r=1)(In/2] = 1) = e(A, A%) = r[A,],

then |A,| < = 1)(Ln/2j —1)< [n/2] — (r+3) as long as n > 2(r* + 2r + 1).

If there is any vertex a € A\ A, with a neighbour b € A¢, then since a has at most 3
non-neighbours in A, there are at least r — 1 neighbours of a in A\ A,. Let vy, va, ..., v,
be any neighbours of a in A\ A,. Since the set {b, vy, vs,...,v,_1} infects a and hence
all of A\ A, and subsequently A,, the closure of this set has at least |A| +1 = [n/2] + 2
vertices and hence the set percolates by Lemma 7.
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Since |A,| < 3, the only case in which there can be no edges between A\ A, and A€ is
when r = 4, n is odd, every vertex in A° has r — 1 = 3 neighbours in A, and G[A\ 4,] is
a complete graph with all vertices in A \ A, adjacent to every vertex in A,. In this case,
|A.| = 3 and the graph is as in Figure 7. Then any set consisting of two vertices from
A\ A, and two vertices from A¢ will infect all of A, and subsequently the remainder of
the graph.

A\ A,

Figure 7: r = 4 and no edges between A\ A, and A°.

In all cases, there is some set of 7 vertices that percolates and so m(G,r) =r. O
The proof of Theorem 1 can now be completed.

Proof of Theorem 1. Let n be large enough to apply the lemmas and propositions given
previously and let G be a graph on n vertices with §(G) > |n/2]| + (r—3). By Lemma 10,
G contains a copy of K,,_; and the r vertices in one partition set, A, have closure
|(A),| = 2r —1 > 2(r — 1). By Lemma 7 and Proposition 8, either A percolates or else
|(A),| € [[n/2] — 1, [n/2] +1]. If |[(A),] € [|n/2] — 1, [n/2] + 1], then by Proposition 16,
17, 18, or 19, GG contains a percolating set of size r. n

5 Open problems

There are a number of natural questions related to the results in this paper that remain
open. One could ask for the conditions on 0(G) that guarantee m(G,r) < k for a fixed
k > r+1. Following the line of inquiry in [9] and [11], one might consider the lower bounds
on 0y9(G) that guarantee that m(G,r) = r for r > 3. After this paper was submitted,
answers to these questions for k& < 2r — 2 were given by Wesolek [21].

A problem that may be quite technical would be the characterization of those small
graphs for which 6(G) = [n/2] + min{1,r — 3} but m(G,r) > r.
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