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Abstract

Many problems in extremal graph theory correspond to questions involving ho-
momorphisms into a fixed image graph. Recently, there has been interest in maxi-
mizing the number of homomorphisms from graphs with a fixed number of vertices
and edges into small image graphs. For the image graph Hind, the graph on two
adjacent vertices, one of which is looped, each homomorphism from G to Hind cor-
responds to an independent set in G. It follows from the Kruskal-Katona theorem
that the number of homomorphisms to Hind is maximized by the lex graph, whose
edges form an initial segment of the lex order.

A loop-threshold graph is a graph built recursively from a single vertex, which
may be looped or unlooped, by successively adding either a looped dominating
vertex or an unlooped isolated vertex at each stage. Thus, the graph Hind is a
loop-threshold graph. We survey known results for maximizing the number of ho-
momorphisms into small loop-threshold image graphs. The only extremal homo-
morphism problem with a loop-threshold image graph on at most three vertices not
yet solved is Hind ∪ E1, where extremal graphs are the union of a lex graph and
an empty graph. The only question that remains is the size of the lex component
of the extremal graph. While we cannot give an exact answer for every number of
vertices and edges, we establish the significance of and give bounds on `(m), the
number of vertices in the lex component of the extremal graph with m edges and
at least m + 1 vertices.
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1 Introduction

Many problems in classical extremal graph theory can be stated in terms of graph ho-
momorphisms. A homomorphism from a graph G to a graph H is a function φ :
V (G) → V (H) such that φ(x)φ(y) ∈ E(H) whenever xy ∈ E(G), i.e., φ is an edge-
preserving map. We let Hom(G,H) be the set of homomorphisms from G to H and
hom(G,H) = |Hom(G,H)|. If we take the image graph to be Hind, a path on two ver-
tices with one vertex looped (see Figure 1), then elements of hom(G,Hind) correspond
to independent sets in G. This is because vertices mapped to the unlooped vertex of
Hind form an independent set and there are no other restrictions on the map. Another

Figure 1: The graph Hind.

natural example arises from taking the image graph to be Kq, in which case elements of
Hom(G,Kq) correspond to proper q-colorings of G.

An interesting class of problems arises by fixing an image graph H and a class of
graphs G and trying to determine which graphs G ∈ G maximize hom(G,H). A lot
of recent research has focused on this problem for the image graph Hind, which we saw
above corresponds to independent sets, and so we let i(G) = hom(G,Hind). Kahn [14]
gave a bound for i(G) when G is an r-regular bipartite graph on n vertices and Zhao [19]
extended this to general regular graphs.

Theorem 1 (Kahn, Zhao). If G is an r-regular graph on n vertices, then

i(G) 6 i(Kr,r)
n/2r.

Galvin and Tetali [12] extended the bipartite case of Theorem 1 to general homomor-
phisms to any image graph. Interestingly, the extension to nonbipartite graphs in the
general case is not true. (See [11] for more details.) Also, the problem of maximizing the
number of independent sets in graphs with given minimum degree has been well-studied
(see, e.g., [1, 2, 7, 8, 9, 10, 13, 20]).

In this paper, we will be interested in maximizing the number of homomorphisms over
graphs of fixed order (number of vertices) and size (number of edges). We let G(n,m) be
the set of loopless graphs with n vertices and m edges. The solution to the problem of
maximizing the number of independent sets over G(n,m) follows from the Kruskal-Katona
[16, 15] theorem. This is because independent sets in a graph G correspond exactly to
those sets that are not in the upper shadow of G, where G is thought of as a set system on
the vertex set. Recall that the lexicographic order on subsets of [n] is defined by A < B if
min(A4B) ∈ A. Define the lex graph of order n and size m, denoted L(n,m), to be the
graph with vertex set [n] = {1, 2, . . . , n} and edges consisting of the initial m elements of(
[n]
2

)
= {e ⊂ [n] : |e| = 2} according to the lexicographic order. We have the following,

as was noted in [4].
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Theorem 2. If G ∈ G(n,m), then

i(G) 6 i(L(n,m)),

with equality if and only if G ∼= L(n,m).

Theorem 2 was also proved independently by Wood [18]. In fact, since the Kruskal-
Katona theorem implies that the lex graph is extremal for independent sets of any fixed
size and, as was noted in [5], we have the following, where it(G) is the number of inde-
pendent sets of size t in G.

Theorem 3. If G ∈ G(n,m), then

it(G) 6 it(L(n,m)),

with equality if and only if G ∼= L(n,m).

This paper will begin with a survey of results about maximizing hom(G,H) where
G ∈ G(n,m) and H is a small fixed image graph. Throughout the paper, we assume G
is a simple graph, but H may contain loops. In Section 2, we introduce threshold graphs
which will turn out to be extremal graphs for a set of image graphs consisting of what we
call loop-threshold graphs. In Section 3, we begin our investigation into the one remaining
open extremal problem for loop-threshold image graphs on at most three vertices. Finally,
in Section 4, we give bounds on a function related to this extremal problem.

2 Threshold and loop-threshold graphs

Threshold graphs play a key role in the investigation of extremal problems related to
graph homomorphisms. There are many characterizations of threshold graphs (see, e.g.,
[17]), but the most useful one for our purposes is as follows.

Definition 4. A graph G is a threshold graph if it can be constructed recursively from
K1 by successively adding either a dominating vertex or an isolated vertex.

With this recursive definition in hand, we can observe that threshold graphs on n
vertices can by represented by binary sequences of length n− 1, which we call the code of
the threshold graph. We write 1 for a dominating vertex and a 0 for an isolated vertex.
As the first vertex is irrelevant in this construction, we omit it from the code. Following
convention, we write the code from right to left. Note that for a given code, 1s are adjacent
to all vertices to their right in the code and 1s to their left. 0s are adjacent only to 1s to
their left. Note that threshold graphs have at most one nontrivial component.

We often use superscripts to denote a string of the same symbol in the code of a
threshold graphs so, 0p1q is the code with q 1s followed by p 0s (from right to left). We
note that any lex graph is a threshold graph. In general, the code of a lex graph is of the
form 1p0q1a0r, where p, q, and r are all nonnegative integers and a may be either 0 or 1
(where we write x0 for the empty string).
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We say that a graph G is H-extremal for a graph H (which may have loops) if

hom(G,H) = max {hom(G′, H) : n(G′) = n(G) and e(G′) = e(G)} .

It turns out that for many image graphs H, one is able to prove that there is always an H-
extremal graph that is threshold. One such class of image graphs are called loop-threshold
graphs.

Definition 5. A graph with (perhaps) loops is loop-threshold if it can be obtained from
K1, or K1 with a loop, by successively adding an unlooped isolated vertex, or a looped
dominating vertex.

Once again, loop-threshold graphs on n vertices can be associated with a binary code,
except now the length of the code is n (rather than n−1). This is due to the fact that the
code of the first vertex is now relevant since it determines whether that vertex is looped
or not. We note that Hind is a loop-threshold graph with code 10. The following was
proved in [6].

Theorem 6. If H is any loop-threshold graph and n and m are any non-negative integers
with 0 6 m 6

(
n
2

)
, then there is a threshold graph T ∈ G(n,m) such that T is H-extremal.

The aim of the remainder of this section is to survey extremal results for hom(G,H)
where H is a loop-threshold graph on at most three vertices. We begin by making a
couple of trivial observations. The first involves the situation when the image graph is
the empty graph.

Observation 7. If q > 1 is an integer and H is the loop-threshold graph with code 0q,
i.e., H = Eq, then hom(G,H) = 0 for any graph G with at least one edge.

Another simple result holds for any image loop-threshold graph which is complete with
loops on all vertices.

Observation 8. If p > 1 is an integer and H is a loop-threshold graph with code 1p and
G is a graph with n vertices, then hom(G,H) = pn.

There is one more simple case, namely when H is a loop-threshold graph with code of
the form 0q1p. In this case, H is the disjoint union of a fully-looped Kp and Eq.

Proposition 9. If p > 1 and q > 0 are integers and H is a loop-threshold graph with code
0q1p and G is a graph on n vertices with c isolated vertices, then hom(G,H) = (p+q)cpn−c.

Proof. Any of the c isolates in G can be mapped to any vertex of H, while the other n− c
non-isolates in G can only be mapped to any of the p non-isolates in H.

If H is a loop-threshold graph with code 0q1p, then Proposition 9 implies hom(G,H)
is a simple function of the number of isolates when G ∈ G(n,m). To maximize hom(G,H)
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a b

Figure 2: A labeled Hind

over G ∈ G(n,m), one simply has to maximize the number of isolates in G. This can be
done by a variety of graphs, including the colex1 graph C(n,m).

The final general case we would like to present in this section is that of image loop-
threshold graphs with code 1p0q. We note that if H is a loop-threshold graph with code
1p0q and we consider a homomorphism φ ∈ Hom(G,H) for some graphG, then the vertices
of G mapped to the vertices with code 0 in H form an independent set in G. Thus, as
one might expect, we can deduce the extremal question for maximizing homomorphisms
into H from earlier results about independent sets.

As one does often in statistical physics, we can weight homomorphisms to a graph
H with respect to a weighting function β : V (H) → [0,∞). Then, we “count” weighted
homomorphisms from a graph G to H via the partition function:

homβ(G,H) =
∑

φ∈Hom(G,H)

∏
v∈G

β (φ(v)) .

Note that this reduces to counting homomorphisms if β ≡ 1, that is, homβ(G,H) =
hom(G,H). We are interested in the case of weighted independent sets and so, if we label
the vertices of Hind as in Figure 2, we define the weight function βλ to be the weight
function on Hind defined by

βλ(x) =

{
λ if x = a

1 if x = b.

We see that, with this weighting of Hind, an independent set I is assigned weight λ|I|.
But then the weighted homomorphism model introduced above yields the independence
polynomial of the graph, i.e., PG(λ) = homβλ(G,H). Since PG(λ) depends only on the
number of independent sets of various sizes and the lex graph maximizes the number of
independent sets of all sizes simultaneously, by Theorem 3, we have the following.

Corollary 10. If G is a graph on n vertices and m edges and λ > 0, then

PG(λ) 6 PL(n,m)(λ).

Finally, we can return to our original question regarding image loop-threshold graphs
with codes of the form 1p0q. We let S◦(p, q) be the clique-looped split graph K◦p ∨ Eq,
in which each vertex of Kp is looped.2 In other words, S◦(p, q) is a loop-threshold graph
with code 1p0q. We have the following.

1The colexicographic order on subsets of [n] sets A < B if max(A4 B) ∈ B. The colex graph with n
vertices and m edges, denoted C(n,m), has vertex set [n] and edge set consisting of the initial m elements

of
(
[n]
2

)
in the colexicographic order.

2The join of graphs G and H, denoted G ∨ H, has vertex set V (G) ∪ V (H) and edge set E(G) ∪
E(H) ∪ {xy : x ∈ V (G), y ∈ V (H)}.
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Corollary 11. Let p, q > 1 and G be a graph with n vertices and m edges. Then

hom(G,S◦(p, q)) 6 hom(L(n,m), S◦(p, q)).

Proof. Set λ = p/q. Then, we have hom(G,S◦(p, q)) = qnPG(λ) and so the result follows
from Corollary 10.

Armed with the above results, we present in Table 1 all loop-threshold graphs on three
or fewer vertices. All cases except for the last two are covered by one of the preceding
results in this section. The penultimate image graph F (with code 101) is known as “the
fox” (or “the wrench” by Brightwell and Winkler [3]) and the extremal question for this
graph was studied by Cutler and Radcliffe [6]. They were able to determine a class of five
threshold graphs which formed a minimal class of F -extremal graphs.

The final image graph (with code 010), which we denote J , will be the main focus of
this paper. While it is relatively easy to determine the form of all J-extremal graphs,
we will determine the size of the non-trivial component asymptotically up to a constant
factor.

3 The remaining case

As mentioned in the previous section, the only case remaining in finding a minimal set of
H-extremal graphs, where H is a loop-threshold graph on at most three vertices, is that
of H = J . (See Figure 3.) The code of J is 010.

Figure 3: The loop-threshold graph J .

Given the fact that J = E1 ∪Hind, it is not surprising that the threshold J-extremal
graphs are comprised of a lex component with some number of added isolated vertices.
Note that, by Theorem 6, for any n and m, there is at least one threshold J-extremal
graph. For a graph G, we let j(G) = hom(G, J).

Theorem 12. Every J-extremal threshold graph is the union of a lex graph and an empty
graph.

Proof. The result is trivial if m = 0. If m > 0 and T is a threshold graph on n vertices and
m edges then it contains a single nontrivial component, C. Let q = |V (C)|. Since each
vertex outside of that component can map to any vertex of J under a homomorphism in
Hom(T, J), and every vertex contained in that component must map to the Hind subgraph
of J , the number of homomorphisms from T to J is

j(T ) = 3n−q i(C),
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Code of H H H-extremal graph

0 Any

1 Any
00 Any

11 Any

01 C(n,m)

10 L(n,m)
000 Any

111 Any

001 C(n,m)

011 C(n,m)

100 L(n,m)

110 L(n,m)

101 See [6]

010 See Section 3

Table 1: H-extremal graphs for all loop-threshold graphs H on at most three vertices

where i(C) is the number of independent sets in C. As Theorem 2 establishes that
i(C) 6 i(L(q,m)), with equality if and only if C ∼= L(q,m), we have that

j(T ) = 3n−q i(C)

6 3n−q i(L(q,m))

= j(En−q ∪ L(q,m)),

where equality holds in the second step if and only if T ∼= En−q ∪ L(q,m).

As this construction of lex graphs with added isolated vertices occurs so frequently it
is natural to define it as a function of the total number of vertices, the number of vertices
in the lex component, and the number of edges.

Definition 13. For n, q,m ∈ N where q 6 min {n,m+ 1} and 0 6 m 6
(
q
2

)
, let R(n, q;m)

be the graph on n vertices and m edges defined by the union

R(n, q;m) = L(q,m) ∪ En−q.
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The restriction q 6 m+ 1 assures that L(q,m) contained no isolated vertices. We also
note that

j (R(n, q;m)) = 3n−qi (L(q,m)) . (1)

4 An extremal question

In light of Theorem 12, finding a J-extremal threshold graph on n vertices and m edges
is thus reducible to finding q within the bounds of m 6

(
q
2

)
and q 6 m + 1 such that

R(n, q;m) is J-extremal. That is to say that the question of determining J-extremality
is solely a matter of finding an appropriate number of vertices on which to form a lex
component while leaving the rest as isolated vertices. This is the problem with which the
remainder of this paper will be concerned.

Ideally, one would be able to find the size of the lex component in the J-extremal
graph for any n and m. In general however, this does not appear to be an amenable
question. For example, if one fixes n and asks how the size of the lex component changes
as m increases, one might hope that this change is at least monotonic even if not easy
to precisely quantify. This, unfortunately, is not the case. Figure 4 illustrates this when
n = 50 which appears to typify the behavior throughout all values of n based on computer
testing.
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Figure 4: Computer testing showing non-monotone behavior of the lex component size in
J-extremal graphs in the case where n = 50.

Conversely, if one fixes the number of edges, m, the size of the lex component should
remain fixed (at least in the limit) as n increases to accord with equation (1) above
since the size of the lex component cannot exceed m + 1 vertices. In light of this non-
monotonicity in terms of increasing values of m and in order to capitalize on the relative
stability of the problem in terms of increasing values of n, we instead consider the size
of the lex component when m is fixed. We define a function related to this behavior as
follows.
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Definition 14. For m ∈ N, let `(m) be the maximum number of vertices in the non-trivial
component of a J-extremal threshold graph on m+ 1 vertices and m edges. Equivalently,

`(m) = max {q : R(m+ 1, q;m) is J-extremal}

Here any uniqueness issues involving the extremal graphs are eliminated by the use of
the maximum in our definition. The choice of defining the composition of the extremal
graph on exactly m+ 1 vertices relative to m edges is not arbitrary; it corresponds to the
largest possible size of the lex component in an extremal graph. The following theorem
proves the stronger claim that there is a single size of the lex component in a J-extremal
graph on m edges once n is large enough.

Theorem 15. The graph R(n, `(m);m) on n vertices and m edges is J-extremal for
n > `(m).

Proof. Since we have required n > `(m) we may always add or remove c = m + 1 − n
isolated vertices to the graph R(n, `(m);m) to produce the graph R(m + 1, `(m);m), in
accordance with the sign of c. A simple counting argument on these isolates yields

j (R(n, `(m);m)) = 3−cj (R(m+ 1, `(m);m)) ,

whereby the J-extremality of R(n, `(m);m) is now seen to be a consequence of the J-
extremality of R(m+ 1, `(m);m) which holds by the definition of `(m).

Having established the significance of `(m) in the construction of J-extremal graphs,
we will concentrate on establishing an upper bound on `(m). As the number of homomor-
phisms to J is so closely related to the number of independent sets in the lex component,
the matter of bounding `(m) from above can be approached only once reasonable bounds
are found for i(L(n,m)). Before embarking on these calculations, we pause to investigate
some of the properties of the lex graph. The lex graph L(n,m) is related to (and some-
times isomorphic to) the split graph. We define the split graph S(n, k) is the graph with
n vertices defined as the join of Kk and En−k. Thus, the number of edges in S(n, k) is

e(S(n, k)) =

(
k

2

)
+ k(n− k).

If in the split graph S(n, k) = Kk∨En−k, we label the vertices of the Kk with {1, 2, . . . , k}
and those of the En−k with {k + 1, k + 2, . . . , n}, then we can use this to describe the
structure of the lex graph. If m =

(
k
2

)
+ k(n− k) +w, we note that the lex graph with n

vertices and m edges is

L(n, k, w) := L(n,m) = S(n, k) + {(k + 1)x : k + 2 6 x 6 k + w + 2} .

Given n and m, we would like to determine k and w so that L(n,m) = L(n, k, w).
Throughout this paper, we assume that 0 6 w 6 n− k − 2 so that there is no ambiguity
about the value of k and w for a given n and m. Essentially, the lex graph L(n, k, w)
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Kk En−k

S(n, k)

Kk En−k−1

k w

L(n, k, w)

Figure 5: Schematics of the split graph and the lex graph

consists of the split graph S(n, k) along with a star with w edges inside the En−k. (See
Figure 5.) We note that in the threshold code of the lex graph, the center of the star of
size w in L(n, k, w) corresponds to the lone 1 inside of the string of initial 0s. From this
point forward, we refer to the two types of vertices in the lex graph as those from the
complete part and those from the empty part (even though the empty part may contain a
star). Given the lex graph L(n, k, w), it is easy to determine the number of independent
sets in it, as we do in the following lemma.

Lemma 16. For the lex graph L(n, k, w), we have

i(L(n, k, w)) = 2n−k−1 + 2n−k−w−1 + k.

Proof. Note first that if any of the vertices in the complete part of the lex graph L(n, k, w)
are included in an independent set, then no other vertices can be in the independent set
since these vertices are dominating. There are k such independent sets. If, on the other
hand, none of the vertices in the complete side are in an independent set I and the
center of the star of size w in the empty part is also not in I, then there are 2n−k−1

such independent sets (including the empty set) since the rest of the vertices form an
independent set. If the center of the star of size w in the empty set is in I, then none
of the other vertices of the star can be in I, and so there are 2n−k−w−1 such I. These
account for all independent sets in L(n, k, w), proving the lemma.

By extension we may also determine j(R(n, n′;m)) in a general form. Noting that
isolates can be mapped to any vertex of J by an element of Hom(R(n, n′;m)), we have
by Lemma 16,

j(R(n, n′;m)) = 3n−n
′
[
k + 2n

′−k−1 + 2n
′−k−w−1

]
where k = k(n′,m) and w = w(n′,m).

Now, we are finally ready to state and prove the main theorem of the paper, which
gives asymptotically sharp bounds on `(m).

Theorem 17. For every positive integer m >
(
10
2

)
, there are explicit constants c and d

such that
β
√
m− d 4

√
m 6 `(m) 6 β

√
m+ c 4

√
m,

where β = 1√
α+1/2

(α + 1) and α = 1/ log2(3/2), so that β ≈ 1.8228.

the electronic journal of combinatorics 27(2) (2020), #P2.38 10



Proof. We first prove the upper bound on `(m). The idea is compare j(L(n,m)) to
j(R(n, n − r;m)) = 3rj(L(n − r,m)). When the latter of these two is larger, we can
remove r vertices from the lex component of a potentially extremal graph (i.e., the disjoint
union of a lex graph and an empty graph) and increase the number of homomorphisms
into J . Since we need to compare the number of homomorphisms into J , we let k and
w be the integers so that L(n,m) = L(n, k, w). Likewise, we suppose that kr and wr are
the integers so that L(n − r,m) = L(n − r, kr, wr). Note that kr > k as the removal of
vertices from a lex graph forces the new lex component to be denser. We will show that
the number of homomorphisms into J goes up provided that kr is not too much larger
than k. Let dr be defined by

dr = r log2

(
3

2

)
.

Now, suppose that kr 6 k + dr − 1. (We will determine when this happens in just a bit.)
In this case, we have

i(L(n, k, w)) = 2n−k−1 + 2n−k−w−1 + k

6 2n−k + k

= 2n−k · 3r · 2−(r+dr−1)−1 + k

< 3r(2n−r−(k+dr−1)−1 + kr)

6 3r(2n−r−(k+dr−1)−1 + 2(n−r)−(k+dr−1)−wr+1 + kr)

6 3ri(L(n− r, kr, wr)).

(2)

The strict inequality holds provided that r > 1. The question remains as to when kr 6
k + dr − 1. Suppose, to the contrary, that kr > k + dr. Then we know that, since
w 6 n− k − 2,

e(L(n, k, n− k − 2)) > e(L(n, k, w))

= e(L(n− r, kr, wr))
> e(L(n− r, kr, 0))

> e(L(n− r, k + dr, 0)).

Thus, writing out the first and last expressions in the above, we have(
k

2

)
+ k(n− k) + n− k − 2 >

(
k + dr

2

)
+ (k + dr)(n− r − k − dr).

This reduces to

n− k − 2 >
dr(2k + dr − 1)

2
+ k(−r − dr) + dr(n− r − k − dr).

Rearranging, we get

n(1− dr) > k(1− dr − r)−
(
dr + 1

2

)
− rdr + 2.

the electronic journal of combinatorics 27(2) (2020), #P2.38 11



Note that if dr > 1, which happens provided that r > 2, then 1−dr < 0. So, if kr > k+dr
and r > 2, we know that

n 6
(1− dr − r

1− dr

)
k +

1

1− dr

(
2−

(
dr + 1

2

)
− rdr

)
=
(r + dr − 1

dr − 1

)
k +

1

1− dr

(
2−

(
dr + 1

2

)
− rdr

)
.

Thus, provided r > 2, we know that if

n >
(r + dr − 1

dr − 1

)
k +

1

1− dr

(
2−

(
dr + 1

2

)
− rdr

)
, (3)

then kr 6 k + dr − 1 and so (2) holds.
So, we have a lower bound on n in terms of r and k (which depends on n and m)

that implies that (2) holds. We would like to show that we can find an r so that we can
remove r vertices from L(n,m) and increase the number of homomorphisms into J . We
will show that such an r exists provided n > (1 +α)k+ c

√
k for some explicit constant c.

In fact, we claim that if n > (1 + α)k + c
√
k, then

r :=

n− (1 + α)k +
√

(n− (1 + α)k)2 − 96α2(3 + 1
α

)k

8(3 + 1
α

)

 > 2,

and we can remove r vertices from L(n,m) and increase the number of homomorphisms
into J .

After a bit of work and using the fact that dr = r/α, we have that (3) is equivalent to

n− (1 + α)k >
2α2k + (2 + 1

α
)r2 + r

2(r − α)
.

We will find a stronger inequality that implies this (and is cleaner) provided r > 2. In
what follows, we will use the fact that if r > 2, then r − α > r/8 several times. Thus,

2α2k + (2 + 1
α

)r2 + r

2(r − α)
<

α2k

r − α
+

(3 + 1/α)r2

2(r − α)

<
8α2k

r
+

4(3 + 1/α)r2

r

=
8α2k

r
+ 4(3 + 1/α).

And so, we know that (3) is implied by r > 2 and

n− (1 + α)k > 4

(
3 +

1

α

)
r +

8α2k

r
.
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Multiplying through by r yields a quadratic inequality in r and so the above is equivalent
to r > 2 being between its two roots

n− (1 + α)k ±
√

(n− (1 + α)k)2 − 96α2(3 + 1
α

)k

8(3 + 1
α

)
. (4)

We are left to show that there is an r > 2 between these two roots. We show that this
occurs when n > (1 + α)k + c

√
k where c =

√
384(3 + 1/α)α2. If n > (1 + α)k + c

√
k,

then (n− (1 + α)k)2 > c2k which in turn implies that

96(3 + 1/α)α2k <
1

4
(n− (1 + α)k)2. (5)

Also, note that the smaller root in (4) is positive. Thus, if we can show that the gap
between the two roots is at least two, then there is an r > 2 that does the job for us, i.e.,√

(n− (1 + α)k)2 − 96(3 + 1/α)α2k

4(3 + 1/α)
> 2.

Using (5), the above is implied if
√
3
2

[n− (1 + α)k]

4(3 + 1
α

)
> 2, or n− (1 + α)k >

16(3 + 1
α

)
√

3
.

But we know that n − (1 + α)k > c
√
k > c and one can check that c > 16(3+1/α)√

3
.

So, there is an r > 2 between the two roots in (4) and thus, we have shown that if
n > (1 + α)k + c

√
k, we can remove r (as defined above) vertices from L(n,m) and

increase the number of homomorphisms into J .
We are left to show what bound on `(m) this yields. Let n = (1 + α)k + c

√
k so that

we may not be able to remove r vertices and so `(m) 6 n. Then

m =

(
k

2

)
+ k(n− k) + w ⇐⇒ f(k) :=

(
1

2
+ α

)
k2 + ck3/2 − k

2
−m+ w = 0.

It is easy to check that f is continuous and increasing on [0,∞) and that f(0) < 0.

Further, if x =
√

m
1
2
+α

, then f(x) > 0, so, since k is the root of f , we know k < x. Thus,

we have

`(m) 6 n

= (1 + α)k + c
√
k

6 (1 + α)

√
m

1
2

+ α
+ c

(
m

1
2

+ α

)1/4

,

where the last step follows from the fact that (1 + α)x + c
√
x is increasing for all x > 0.

Thus, we have proved the upper bound.
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The proof of the lower bound, while similar to that of the upper bound, is a bit
different and so we include it for completeness. In this case, we add add r vertices to
L(n,m). Let L(n,m) = L(n, r, w) and define k′r and w′r to be the integers for which
L(n+ r,m) = L(n+ r, k′r, w

′
r). In this case, note that k > k′r. Again, let dr = r log2(3/2).

We compare j(L(n,m) ∪ Er) to j(L(n+ r,m)).

3ri(L(n, k, w)) = 3r(2n−k−1 + 2n−k−w−1 + k)

6 3r(2n−k + k)

= 3r · 2n−k · 3−r2r2r log2(3/2) + 3r · k
= 2n+r−(k−dr−2)−2 + 3r · k
6 2n+r−k

′
r−2 + 3r · k

< 2n+r−k
′
r−2 + 2n+r−k

′
r−2

6 2n+r−k
′
r−1 + 2n+r−k

′
r−w′

r−1 + k′r
= i(L(n+ r, k′r, w

′
r)).

(6)

Note that the fifth step holds if k′r > k − dr − 2 and the sixth step holds provided
3r · k < 2n+r−k

′
r−2. We first discuss the former as it is similar to the upper bound and

then deal with the latter.
We would like to figure out when k′r > k− dr − 2. So we assume the contrary, so that

k′r 6 k − dr − 3. Then, as above, we have

e(L(n, k, 0)) 6 e(L(n, k, w))

= e(L(n+ r, k′r, w
′
r))

6 e(L(n+ r, k − dr − 3, w′r))

6 e(L(n+ r, k − dr − 3, n+ r − k + dr + 2)).

This yields that(
k

2

)
+ k(n− k) 6

(
k − dr − 3

2

)
+ (k − dr − 3)(n+ r − k + dr + 3) + n+ r − k + dr + 2,

which can be rearranged to give

(dr + 2)n 6 (r + dr + 2)k − d2r
2
− 3dr

2
− 1,

and so

n 6

(
r + dr + 2

dr + 2

)
k − d2r + 3dr + 2

2(dr + 2)

=

(
r + dr + 2

dr + 2

)
k − dr + 1

2
.
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Thus, we know that k′r > k − dr − 2, and so we can add r vertices, provided

n >

(
r + dr + 2

dr + 2

)
k − dr + 1

2
= (1 + α)k −

(
2α2

r + 2α

)
k − r + α

2α
,

or

(1 + α)k − n >
(

2α2

r + 2α

)
k +

r + α

2α
.

If r > 2, then we have that r + α 6 2r, and so the above is implied by

(1 + α)k − n >
(

2α2

r + 2α

)
k +

r

α
⇐⇒ (r + 2α)((1 + α)k − n) > 2α2k +

r

α
(r + 2α).

Since r + 2α 6 3r if r > 2, the above is implied by (provided r > 2)

r[(1 + α)k − n] > 2α2k +
3

α
r2.

Thus, we can add r vertices provided there is an integer r > 2 between the two roots

(1 + α)k − n±
√

((1 + α)k − n)2 − 24αk

6/α
. (7)

We claim this is true provided that n < (1 +α)k−d
√
k where d =

√
92α. As in the proof

of the upper bound, we first note that the smaller root is positive and show that the gap
between the two roots is greater than two, i.e.,√

((1 + α)k − n)2 − 24αk

3/α
> 2.

Using the fact that n < (1 + α)k − d
√
k, we know that 24αk < 1

4
((1 + α)k − n)2, and so

the above is implied by

(1 + α)k − n > 12

α
√

3
.

But (1 + α)k − n > d
√
k > d and one can check that d > 12/(α

√
3). Thus, an r > 2

between the roots in (7) exists provided n < (1 + α)k − d
√
k.

Now we must return to our earlier question of whether 3r · k < 2n+r−k
′
r−2. This

inequality is equivalent to r log2(3) + log2(k) + 2 < n+ r− k′r which, in turn, is equivalent
to r log2(3)− r < n− k′r − log2(k)− 2. Thus, the desired inequality holds provided

r <
n− k′r − log2(k)− 2

log2(3)− 1
.

Noting that k′r 6 k and log2(k) 6 k, it is sufficient to prove that

r <
n− 2k − 2

log2(3)− 1
.
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Thus, we are once again faced with proving the existence of a r obeying an inequality. In
this case, we once again show that the gap between this upper bound on r and the smaller
root in (7) is greater than 2. Since the smaller root in (7) is positive, this guarantees the
existence of an r > 2 satisfying all of the requisite inequalities. So, we want to show that

n− 2k − 2

log2(3)− 1
−

(1 + α)k − n−
√

((1 + α)k − n)2 − 24αk

6/α
> 2.

Since 24αk 6 1
4
((1 + α)k − n)2, this is implied by

n− 2k − 2

log2(3)− 1
− (2−

√
3)((1 + α)k − n)

2(3/α)
> 2.

Rearranging, we see that this is equivalent to(
1

log2(3)− 1
+
α(2−

√
3)

6

)
n >

(
α(2−

√
3)(1 + α)

6
+

2

log2(3)

)
k +

2

log2(3)
+ 2.

Roughly speaking, this is 1.786n > 1.469k+3.262 or n > .822k+1.828, which is certainly
true for n > 10 since n > k. The smallest m for which we can guarantee that n > 10 is
m =

(
10
2

)
. Thus, the existence of a suitable r is guaranteed provided n 6 (1 + α)k− d

√
k

and m >
(
10
2

)
.

We need to show what bound on `(m) this gives and so let n = (1 + α)k − d
√
k so

that we may not be able to add r vertices. Thus, `(m) > n. So

m =

(
k

2

)
+ k(n− k) + w ⇐⇒ g(k) :=

(
1

2
+ α

)
k2 − ck3/2 − k

2
−m+ w = 0.

In this case, g(0) < 0 and there is one critical point xc > 0 with g(x) decreasing before xc
and increasing after it. So, g has a unique root k. If x =

√
m

1+α
, then g(x) < 0 so x < k.

Thus,

`(m) > n

= (1 + α)k − d
√
k

> (1 + α)

√
m

1
2

+ α
− d

(
m

1 + α

)1/4

,

where the last step follows from the fact the (1 + α)x− d
√
x is a increasing function of x

for x > 1/(2d(1 + α))2. Thus, we have proved the lower bound.

5 Future directions

While we have partially solved the question of maximizing the number of homomorphisms
into J from G(n,m), one might hope for a more detailed answer that is able to account
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Code of H H-extremal graph

0000 or 1111 Any
0001, 0011, or 0111 Colex

0010 Lex with isolates
0101 One of the extremal graphs from [6] with isolates
0110 Lex with isolates

1000, 1100, or 1110 Lex
1001 ??
1010 ??
1011 ??
1101 ??

Table 2: H-extremal graphs for all loop-threshold graphs H on four vertices

for the non-monotonicity of the lex component size. In addition to this, many of the
questions regarding maximization of homomorphisms into loop-threshold graphs H of
order four remain open as well. While some are trivial consequences of the observations
in Section 2, others are similar to J and others seem to be completely open. The current
status of these problems is given in Table 2.
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