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Abstract

Given a graph G, a hypergraph H is a Berge copy of F if V (G) ⊂ V (H) and
there is a bijection f : E(G)→ E(H) such that for any edge e of G we have e ⊂ f(e).
We study Ramsey problems for Berge copies of graphs, i.e. the smallest number of
vertices of a complete r-uniform hypergraph, such that if we color the hyperedges
with c colors, there is a monochromatic Berge copy of G.

We obtain a couple results regarding these problems. In particular, we determine
for which r and c the Ramsey number can be super-linear. We also show a new way
to obtain lower bounds, and improve the general lower bounds by a large margin.
In the specific case G = Kn and r = 2c−1, we obtain an upper bound that is sharp
besides a constant term, improving earlier results.

Mathematics Subject Classifications: 05D10

1 Introduction

Gerbner and Palmer, [7], extending the definition of hypergraph cycles due to Berge,
introduced the so-called Berge hypergraphs. Given a graph G and a hypergraph H, we
say that H is a Berge copy of F (in short: Berge-F ) if V (G) ⊂ V (H) and there is a
bijection f : E(G) → E(H) such that for any edge e of G we have e ⊂ f(e). In other
words, we can extend edges of G to obtain H, or we can shrink hyperedges of H to obtain
a copy of G. Observe that a graph G may have several non-isomorphic Berge copies, and
a hypergraph H may be the Berge copy of several different graphs.

For a graph G, we denote by BrG the family of r-uniform Berge copies of G. As we
will often talk about graphs and hypergraphs in the same proofs, we will always refer to
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graph edges as edges and hypergraph edges as hyperedges or r-edges (if they have size r),
to help distinguish them.

Turán-type problems for Berge hypergraphs have attracted a lot of researchers, see
e.g. [3, 5, 6, 8, 9, 11, 12]. Recently, the study or Ramsey problems for Berge hypergraphs
has been initiated independently by three groups of researchers [1, 4, 16] (for Berge cycles
there have been earlier results, see e.g. [10, 14]).

For graphs G1, G2, . . . , Gc, the Ramsey number R(BrG1, B
rG2, . . . , B

rGc) is the small-
est integer N such that if the hyperedges of the complete r-uniform hypergraph on N
vertices are colored using colors 1, 2, . . . , c, then there is an i ≤ c, such that there is a
Berge copy of Gi with each of its hyperedges colored i. In case G1 = G2 = · · · = Gc, we
denote the Ramsey number by Rc(BrG1).

Most of the earlier results [4, 16] focused on the case c and r are fixed and the order of
the graphs G1, G2, . . . , Gc is large enough compared to c and r. This is our approach here
as well. In particular [4] determined R(BrG1, B

rG2, . . . , B
rGc) exactly in case r ≥ 2c and

at least one of the graphs Gi has at least 12c
(
r
2

)
vertices. In case r = 2c− 1, they proved

1 + cbn−2
c−1 c ≤ Rc(BrKn) ≤ (2c − 1) n

c−3 , provided n is large enough. Note that for c = 2
(thus r = 3), the exact result R2(B3Kn) = 2n− 3 if n ≥ 5 is proved in [16]. As our first
result, we close the gap for larger c, apart from a constant additive term, by showing the
following.

Theorem 1. For any r and c, if n is large enough, then we have

Rc(B2c−1Kn) ≤ cn

c− 1
+ c(2c− 1)(c− 2)

(
2c− 1

2

)
.

We remark that it is not hard to see that the Ramsey number is monotone decreasing
in r. It follows from the well-known fact that there is an injection from the 2-element
subsets of a finite set X to the r-element subsets of X (provided |X|≥ r + 2), such that
each 2-set is contained in its image. Also, by definition, the Ramsey number is monotone
increasing in c. What happens if both r and c increase? We show that if both r and c
increase by 1, then the order of magnitude cannot increase.

Theorem 2. For any graph G, Rc(BrG) ≤ r
(
r
2

)
Rc−1(Br−1G) + |V (G)|.

It was shown in [4] that if r > c, then the Ramsey number is linear in the number of
vertices n. However, for r = c = 3, [16] showed a super-linear lower bound Ω(n2/log n).
Moreover, they showed for every r a super-linear lower bound, in case c is large enough.
Note that their bounds are sub-quadratic. For the case r = 3, a polynomial lower bound
with degree increasing with c was given in [4]. Here we give a similar bound for any
r. We remark that after the first version of this paper appeared on arXiv.org, Pálvölgyi
[15] improved the bounds of the next theorem. In particular, he showed a lower bound
exponential in n. As his proof was motivated and inspired by ours, we decided to leave
this now outdated result in the final version of this paper.

Theorem 3. (i) Let c >
(
r
2

)
and n be large enough. Then Rc(BrKn) ≥ (n− 1)2 + 1.

(ii) Let c > (d− 1)
(
r
2

)
. Then Rc(BrKn) = Ω(nd).
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The above results leave open the cases r ≤ c ≤
(
r
2

)
. Here we show that the Ramsey

number of the Berge clique is super-linear in these cases.

Theorem 4. Rr(BrKn) = Ω(n1+1/(r−2)/log n).

We present the proofs of the above theorems in Section 2 and finish the paper with
some concluding remarks in Section 3.

2 Proofs

Given a colored complete r-uniform hypergraph F on N vertices, we will consider the
complete graph on the same vertex set and call it the (colored) shadow graph. We will
say that an edge is light in color i if it is contained in less than

(
r
2

)
hyperedges of color

i, and heavy in color i otherwise. Let Ei denote the set of edges that are light in color i.
We will use the following simple lemma from [4].

Lemma 1. If there is a copy of G in the shadow graph such that all of its edges are heavy
in color i, then there is a Berge-G of color i in F .

Let Vi denote the set of vertices incident to at least one edge of Ei. Now we are ready
to prove Theorem 1. Recall that it claims that Rc(B2c−1Kn) ≤ cn

c−1 +c(2c−1)(c−2)
(
2c−1
2

)
if n is large enough.

Proof of Theorem 1. We let r = 2c − 1, and we will refer to it as r whenever we talk
about uniformity, or about a constant arising from the uniformity. For constants arising
from the uniformity, we use c. We hope it helps follow the argument.

Let us consider a c-coloring of the complete r-uniform hypergraph on N vertices with-
out a monochromatic Berge-Kn, and assume indirectly that N > cn

c−1 + cr(c−2)
(
r
2

)
. First

we show |Vi|> N
c

+(c−1)r(c−2)
(
r
2

)
for every i ≤ c. Indeed, otherwise we can consider the

other N −|Vi|≥ n vertices. Every edge inside that set is heavy in color i, thus we can find
a monochromatic Berge-Kn there, using Lemma 1. Note that it also implies |Ei|> N/2c.

Next we will show that |Vc ∩ Vc−1|≤ r(c − 2)
(
r
2

)
. Assume otherwise and pick x =

r(c−2)
(
r
2

)
+1 vertices v1, . . . , vx from the intersection, and for each vi let uivi ∈ Ec−1 and

wivi ∈ Ec arbitrary. Let us consider the following colored hypergraph H. Its hyperedges
are the r-sets that contain ui, vi, wi for some i ≤ x, and also contain an edge from every
Ej. Note that the union of ui, vi, wi and an edge from every Ej has size at most r, thus
there is a hyperedge in H containing them.

Let us pick an arbitrary edge ej ∈ Ej for every j ≤ c− 2. Consider the hyperedges of
H containing each of them. At most (c− 2)

(
r
2

)
of them has color 1, 2, . . . , c− 2. Each of

those hyperedges contains ui, vi, wi for at most r different indices i ≤ x (as the vertices
vi are pairwise distinct, each hyperedge contains vi for at most r different i ≤ x). As
x > r(c− 2)

(
r
2

)
, there is a hyperedge of H of color c− 1 or c that contains e1 and ui, vi, wi

for some i.
Let us consider now the subhypergraph H′ of H consisting of hyperedges of color c−1

or c that contain ui, vi, wi for some i. By the above, for every e1 ∈ E1 there is a hyperedge
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in H′ containing it. As a hyperedge contains at most
(
r
2

)
edges of E1, it means H′ contains

at least |E1|/
(
r
2

)
hyperedges. On the other hand, there are at most 2

(
r
2

)
hyperedges of

color c − 1 or c for every i ≤ x, showing |E1|/
(
r
2

)
≤ 2x

(
r
2

)
, a contradiction with n (thus

N) being large enough.
We obtained that |Vi ∩ Vj|≤ r(c − 2)

(
r
2

)
for any i < j ≤ c, by symmetry. Now we

have N ≥
∑c

i=1|Vi|−
∑

i<j≤c|Vi ∩ Vj|. This implies
∑c

i=1|Vi|≤ N +
(
c
2

)
r(c − 2)

(
r
2

)
, hence

there is an i ≤ c with |Vi|≤ N
c

+ (c− 1)r(c− 2)
(
r
2

)
. This is a contradiction, finishing the

proof.

We continue with the proof of Theorem 2, which states Rc(BrG) ≤ r
(
r
2

)
Rc−1(Br−1G)+

|V (G)|.

Proof of Theorem 2. Let us consider a c-coloring of the complete r-uniform hypergraph
on N = Rc(BrG)− 1 vertices without a monochromatic Berge-Kn.

Let us consider an edge u1v1 ∈ E1 and let U1 be the set of vertices contained in
hyperedges of color 1 together with u1 and v1. Thus we have |U1|≤

((
r
2

)
− 1
)

(r− 2). Let
us delete u1, v1 and U1, and pick u2v2 ∈ E1 from the remaining set of vertices. In general,
after deleting u1, . . . , ui, v1, . . . , vi, U1, . . . , Ui, we pick ui+1vi+1 ∈ E1 and let Ui+1 be the
set of at most (

(
r
2

)
− 1)(r − 2) vertices contained in hyperedges of color 1 together with

ui+1 and vi+1. As each time we delete at most (
(
r
2

)
− 1)(r − 2) + 2 vertices, we can pick

vm with m = Rc−1(Br−1G).
Let us consider the (r−1)-uniform complete hypergraph with vertex setV ={v1, . . . , vm}.

We will give a (c − 1)-coloring of it. Let R = {vi1 , . . . , vir−1} be a hyperedge of it with
i1 < i2 < · · · < ir−1. Then the color of this hyperedge should be the color of the r-
edge R ∪ {ui1} in the original hyperedge. As we deleted Ui1 before picking the other
vertices, this color is not 1. Hence we colored our (r − 1)-uniform complete hypergraph
on m = Rc−1(Br−1G) vertices with c− 1 colors.

By definition, there is a monochromatic Berge-G in this hypergraph. Each hyperedge
of it inherited its color from an r-edge of the original hypergraph containing it, and those
r-edges are pairwise distinct. This implies those r-sets form a monochromatic Berge-G in
the original complete r-uniform hypergraph, a contradiction.

Before our next proof, we need to define k-nets. A k-net of order n is an incidence
structure with n2 vertices and nk sets of size n, called lines, such that two lines share
at most one vertex and there are k ways to partition the vertex set into n parallel (i.e.
disjoint) lines. It is well-known that there exists a k-net of order n if n > n0. The best
known upper bound on n0 is roughly k14.3 [13] (note that a k-net is equivalent to a set of
l − 2 mutually orthogonal latin squares).

Now we are ready to prove Theorem 3, that we restate here for convenience.

Theorem. (i) Let c >
(
r
2

)
and n be large enough. Then Rc(BrKn) ≥ (n− 1)2 + 1.

(ii) Let c > (d− 1)
(
r
2

)
. Then Rc(BrKn) = Ω(nd).

Proof of Theorem 3. To prove (i), consider a c-net of order n − 1. For each color, we
assign a class of parallel lines. Then for each r-set R, the

(
r
2

)
pairs of vertices contained
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in R define at most
(
r
2

)
lines, thus there are at most

(
r
2

)
classes of parallel lines such that

two vertices in R belong to one of the lines. Thus there is at least one color, say blue,
such that each blue line contains only one vertex from R. We color R blue (in case there
are more available colors, we pick arbitrarily).

That means every blue hyperedge contains at most one vertex from a blue line, thus
every monoblue Berge-clique contains at most one vertex from each blue line. Hence the
largest monoblue clique has size at most n − 1, and this holds for every color, finishing
the proof.

To prove (ii), assume first that n − 1 is a prime power and consider an affine space
of order n− 1 and dimension d. For each color, we assign a class of parallel hyperplanes.
Two points of an r-set R define a line, thus they are shared by d− 1 hyperplanes. Hence
there are at most (d − 1)

(
r
2

)
classes of parallel hyperplanes such that two vertices in R

belong to one of those hyperplanes. Similarly to (i), we can pick an (arbitrary) color
not assigned to those classes, and obtain that a monochromatic clique shares at most one
vertex with each hyperplanes in the corresponding class, hence the monochromatic clique
has at most n− 1 vertices.

This gives the lower bound (n− 1)d + 1 if a d-dimensional affine space of order n− 1
exists, in particular if n − 1 is a prime power. It is well-known that there is a prime p
with (n− 1)/2 ≤ p ≤ n− 1, using p as the order of the affine space we obtain the lower
bound (n−1

2
)d = Ω(nd).

Instead of proving Theorem 4, we will prove the following more general theorem.

Theorem 5. For every r, if n is large enough, there exists a constant cr such that we
have the following. Let X be a set of size b2n/2c if r = 2 and bcr n

1+1/(r−2)

logn
c if r ≥ 3.

For non-empty subsets T of size at most r, we can assign a subset of r colors S(T ) the
following way.
•1 If T ⊂ T ′, then S(T ′) ⊂ S(T ).
•2 If T ⊂ X is of size t ≤ r, then S(T ) has size r− t+ 1, and for every color s ∈ S(T )

there are at least
(
r
2

)
sets T ′ of size t + 1 with S(T ′) = S(T ) \ {s}.

•3 For every color i, the graph Gi consisting of the 2-subsets T with i ∈ S(T ) is
Kn-free.

The above theorem implies Theorem 4, as the r-sets all have exactly one color, and
every subedge of a hyperedge of color i has i among its colors, thus there is no Kn among
them by •3. This implies there is no Berge-Kn in color i. The other properties are needed
only for the induction on r.

Proof. We prove the theorem by induction on r. For the base case r = 2 Erdős [2] showed
that there is a blue-red coloring of a graph on b2n/2c vertices without a monochromatic Kn.
We assign both colors to the singletons, and we only need that every vertex is contained
in at least one edge in both colors. It is easy to see that the well-known construction of
Erdős satisfies this property.

Let us continue with the induction step, and apply the induction hypothesis with r−1

in place of r and n′ = bc′r(n)n
r−3
r−2 log nc in place of n, for some c′r(n) chosen later. Assume

the electronic journal of combinatorics 27(2) (2020), #P2.39 5



first r > 3. Then we have a set X ′ of size⌊
cr−1

n′1+1/(r−3)

log n′

⌋
=

cr−1c
′
r(n)

r−2
r−3n r−3

r−2 log n
r−3
r−2 log n + log c′r + log log n

= n− 1,

for a properly chosen c′r(n), and an assignments of subsets of r − 1 colors satisfying •1,
•2 and •3. Note that 1/

√
cr−1 ≤ c′r(n) ≤ 2/cr−1, thus in further calculations we consider

c′r(n) as a constant.
In case r = 3, a similar calculation shows that we can again find X ′ of size n− 1 and

assignments S ′ of subsets of two colors satisfying •1, •2 and •3. We leave the details to
the interested Reader.

We take bn1/(r−2)√cr−1/log nc − 1 ≤ bn1/(r−2)/c′r(n) log nc − 1 copies of X ′. This is
going to be the vertex set X (and this defines cr). Now we describe the assignment of the
colors. Each set T of size at most r inside a copy of X ′ will keep the r−|T | colors already
assigned to it (i.e. S ′(T )), hence we need to assign one more color to each of them. We
add color r to S ′(T ) for every set inside a copy to obtain S(T ).

Let us consider a set T of size t ≤ r, and assume it intersects k copies of Hr−1, in
t1 ≥ t2 ≥ . . . ≥ tk vertices (thus

∑k
i=1 ri = t). Let Ti be the intersection of T with the ith

copy of Hr−1. Then |S ′(Ti)|= r − ti. If we add these numbers up for all i ≤ k, we obtain
kr−

∑k
i=1 ti = kr− t. This means that there are at least k− 1 + r− t colors appearing k

times (as only r − 1 colors are used there). We call these the available colors for T . Let
S(T ) be the set of the first r − t + 1 available colors.

Let us go through the required properties, starting with •1. We assigned a set of
r − t + 1 colors to every subset of size t ≤ r. Let us consider T ⊂ T ′. We can assume
|T ′|= |T |+1, as it will imply the other cases. If T and T ′ are inside a copy of X ′,
then S(T ′) = S ′(T ′) ∪ {r} ⊂ S ′(T ) ∪ {r} = S(T ). If T is inside a copy of X ′ and
T ′ = T ∪ {v} with v from another copy, then S ′(T ) is the set of available colors, thus
S(T ′) ⊆ S ′(T ) ⊂ S(T ). If T is not inside a copy of X ′, let T ′i be the intersection of T ′

with the ith copy of Hr−1, thus Ti ⊂ T ′i . This implies that the set of available colors for
T ′ is a subset of the set of available colors for T . There is only one extra color available
for T , thus the set of the first r − t + 1 available colors for T contains the set of the first
r − t available colors for T ′.

Let us continue with •2. Assume first that T is inside a copy of X ′. If s is not the
new color r, then there are at least

(
r
2

)
sets T ′ of size t + 1 with S ′(T ′) = S ′(T ) \ {s}

for each of the
(
r
2

)
sets T ′. This implies S(T ′) = S(T ) \ {s} for these

(
r
2

)
sets. If s = r,

consider an arbitrary v from another copy, and let T ′ = T ∪{v}. Then S ′(T ) is the set of
available colors for T ′, thus S(T ′) = S ′(T ) = S(T ) \ {r}. Obviously there are more than(
r
2

)
sets T ′ that can be obtained this way. Finally, assume that T is not inside a copy of

X ′. Any s ∈ S(T ) is in S ′(Ti) for every i. There are at least
(
r
2

)
vertices v in the ith copy

of Hr−1 such that S ′(Ti ∪ {v}) = S ′(Ti)− {s} by the induction hypothesis. Then s is not
an available color for T ∪{v}, thus it is not in S(T ∪{v}). But we have already seen that
S(T ∪ {v}) ⊂ S(T ) and has size r − t, thus S(T ∪ {v}) has to be S(T ) \ {s}.

To see •3, observe that the graph consisting of the 2-subsets T with r ∈ S(T ) does
not have any edges between two copies of X ′. As every copy has n − 1 vertices, we are

the electronic journal of combinatorics 27(2) (2020), #P2.39 6



done. For the other colors, observe that an edge inside a copy of X ′ got only r as a new

color. Thus, inside a copy, the largest clique of Gi has size at most bc′r(n)n
r−3
r−2 log nc.

As there are less than n/bc′r(n)n
r−3
r−2 log nc copies, the largest clique in Gi has less than n

vertices.

Note that the log n in the denominator of the cardinality of X in the above theorem
could be improved to be log nq for some q < 1, but the improvement does not seem to
worth the additional calculations.

3 Concluding remarks

As we have mentioned, Pálvölgyi [15] showed that Rc(BrKn) is exponential if c >
(
r
2

)
.

However, for r ≤ c ≤
(
r
2

)
, we do not have a polynomial upper bound, but also the existing

lower bounds are barely superlinear, thus in this case we still have an enormous gap.
As we are interested in the order of magnitude, we did not make attempt to optimize

the constant factors in Theorems 2, 3 and 4. Moreover, as we have mentioned, even the
log factor could be improved in Theorem 5, thus also in Theorem 4. As we have no reason
to believe that the exponent of n is close to being sharp in those statements, it seemed
better to avoid lengthening the proof for a small improvement.
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[9] D. Grósz, A. Methuku, C. Tompkins. Uniformity thresholds for the asymptotic size
of extremal Berge-F-free hypergraphs. European Journal of Combinatorics, 103109,
2020.

the electronic journal of combinatorics 27(2) (2020), #P2.39 7
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