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Abstract

R.M. Green described structural properties that “doubly infinite” colored posets
should possess so that they can be used to construct representations of most affine
Kac–Moody algebras. These representations are analogs of the minuscule represen-
tations of the semisimple Lie algebras, and his posets (“full heaps”) are analogs of
the finite minuscule posets. Here only simply laced Kac–Moody algebras are con-
sidered. Working with their derived subalgebras, we provide a converse to Green’s
theorem. Smaller collections of colored structural properties are also shown to
be necessary and sufficient for such poset-built representations to be produced for
smaller subalgebras, especially the “Borel derived” subalgebra. These developments
lead to the formulation of unified definitions of finite and infinite colored minuscule
and d-complete posets. This paper launches a program that seeks to extend the
notion of “minuscule representation” to Kac–Moody algebras, and to classify such
representations.

Mathematics Subject Classifications: 05E10, 17B10, 17B67, 05E15, 06A11

1 Introduction

For most affine Kac–Moody algebras, R.M. Green constructed [Gr1] a small number of
beautiful representations whose weight diagrams were unbounded above and below; we
refer to such structures as being “doubly infinite.” In contrast, the familiar Category O
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representations have weight diagrams that are bounded above. Green’s representations
and the doubly infinite posets from which they were built formed a central topic in his
2013 Cambridge tract [Gr3]. He noted that these representations (with no highest weights)
are analogous in many ways to the minuscule representations of semisimple Lie algebras
(which are finite dimensional with highest weights). For infinite dimensional Kac–Moody
algebras, there are no highest weight representations that are analogous to the minuscule
representations of semisimple Lie algebras. This paper is the first in a series of papers
in which one goal will be defining an abstract notion of “minuscule” representation for
arbitrary Kac–Moody algebras and then classifying them; see Section 9.3 of [Str].

The principal antecedents to this paper are [Gr1] and [Gr3], and important antecedents
to those works were [Ste] and [Ha2]. Those references were concerned with minuscule
posets, d-complete posets, and full heaps. In the next three paragraphs we indicate where
these kinds of posets first appeared. From our perspective these posets are used to build
three out of the four kinds of representations appearing below in Table 1. The unified
definitions that we develop for finite and infinite “Γ-colored minuscule” and “Γ-colored
d-complete” posets may be of more interest than any one of our stated results by itself.
These new overarching definitions do not depend on knowing the cardinality of the poset
a priori ; in addition they fill in the lower right slot of Table 1. These definitions are
presented in Section 12, wherein our main results are also summarized. That section has
been written for immediate accessibility.

It has been known that the minuscule representations of the semisimple Lie algebras
can be constructed combinatorially. Consider one of the irreducible minuscule posets P
introduced by Proctor that were colored by him in Theorem 11 of [Pr1] with the nodes
of an associated Dynkin diagram Γ. Form the set FI(P ) of all of the “splits” F/I of P ,
where F is an upwardly closed subset (filter) of P and I is its complementary downwardly
closed subset (ideal) of P . These splits are the elements of a distributive lattice, called
an irreducible minuscule lattice in [Pr1], whose covering edges are colored by the Dynkin
nodes. These edges can be used to define colored raising and lowering actions of the
Chevalley generators of the Lie algebra g associated to Γ. It can be seen that these actions
specify a representation of g “carried by” FI(P ) with highest weight corresponding to
the split ∅/P . Wildberger used [Wil] this picture to specify the actions of a Chevalley
basis for the Lie algebra in a minuscule representation; see Section 7.2 of [Gr3]. R.G.
Donnelly constructed many representations of semisimple Lie algebras using lattices of
splits; see [Do1] and subsequent papers. Proctor showed [Pr1] that minuscule posets
have the combinatorial Sperner property and (with R. Stanley’s help) the combinatorial
Gaussian property; see Section 11.3 of [Gr3]. Minuscule posets are the structures on
which the Littlewood–Richardson and cohomology calculations for minuscule varieties
performed in [BuSa] and its references are based. Donnelly has recently given [Do2] a
new combinatorial characterization of the minuscule lattices of [Pr1] while developing a
new version of crystal graphs.

A generalization of minuscule posets appeared after D. Peterson introduced [Car] a
special kind of element in the Kac–Moody Weyl group specified by a Dynkin diagram Γ.
For an integral weight λ, he defined “λ-minuscule” elements w. When Γ is simply laced,

the electronic journal of combinatorics 27(2) (2020), #P2.42 2



Proctor showed [Pr3] that the Bruhat intervals [e, w] are distributive lattices. When λ
is dominant, he then characterized the finite Γ-colored poset P of join irreducibles of
the lattice with some structural “d-complete” conditions. The reduced decompositions
of w corresponded to the linear extensions of P . Working in the context of Viennot’s
heap for w, Stembridge extended [Ste] Proctor’s work to include non-simply laced Γ. He
reformulated Proctor’s notion of colored d-complete with some elegant coloring axioms,
and referred to these posets as “dominant minuscule heaps.” More generally, Stembridge
characterized the heaps for all λ-minuscule elements. M. Hagiwara described [Ha1, Ha2]
the minuscule heaps for elements of the Kac–Moody Weyl groups specified by star shaped
Dynkin diagrams and for the affine Weyl group of type Ãn. Stembridge’s coloring axioms
for the d-complete posets are not all self-dual. Proctor showed that d-complete posets have
unique jeu de taquin rectifications [Pr4] and (with D. Peterson’s help) the hook length
property [Pr5]. These posets have been receiving increasing attention, as in [KlRa], and
there is a bibliography for them in [PrSc]. When that study of the axioms for finite
uncolored d-complete posets was written, it became apparent that the definition of “d-
complete” could likely be extended to infinite locally finite posets. However, it was unclear
precisely what the most appropriate definition should be for such posets. For further
historical details, see Section 13 of [Pr5].

Adopting some of Stembridge’s axioms, Green axiomatically defined [Gr1] “full heaps”
colored by Dynkin diagrams Γ. These are doubly infinite locally finite colored posets P in
which the appearances of each color from Γ are unbounded above and below. He regarded
these posets as being close companions to the finite minuscule posets. All of his coloring
axioms for full heaps were self-dual. The “extended slant lattices” used by Hagiwara to
describe the minuscule heaps for type Ãn were early appearances of full heaps.

Let g′ be the derived Kac–Moody algebra for a Dynkin diagram Γ. In our language
Green essentially showed that if P is a full heap colored by Γ, then the lattice of splits
FI(P ) carries a representation of g′. This result first appeared in Theorem 3.1 of [Gr1]
and was restated as Theorem 4.1.6(i) of [Gr3]. We compare Green’s result to the “suf-
ficient” direction of our main result Theorem 38(b) in Remark 40. For reference, there
we state Green’s result as Theorem 41. Throughout this paper we restrict our attention
to simply laced Γ. For such diagrams Γ, our foremost new main result (the “necessary”
direction of Theorem 38(b)) provides a converse to Theorem 41 that includes finite di-
mensional representations as well as infinite dimensional representations. To state this
converse, we formulate a notion of “P -minuscule” representation (Definition 4), which is
a representation of g′ carried by FI(P ) that “looks like” a minuscule representation of a
semisimple Lie algebra. At the same time, for simply laced Γ, the “sufficient” direction
of Theorem 38(b) is a version of Theorem 41 that now includes posets of unknown (finite
or “mixed”) cardinality. Theorem 38(b) summarizes Theorem 35.

Leading up to Theorem 35 are several intermediate results; as more and more coloring
properties are assumed for the poset P , the representations constructed have stronger and
stronger algebraic properties. Most often these algebraic properties are the satisfaction
of some of the defining relations for g′. Each of these collections of coloring properties
is necessary as well as sufficient for the collection of algebraic properties at hand. This
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development clarifies which collections of the coloring properties assumed for full heaps in
Theorem 41 correspond to which algebraic aspects of the representations. It also facilitates
comparison with the collections of coloring properties considered by Stembridge in his
parallel study of the reduced decompositions of a λ-minuscule Kac–Moody Weyl group
element w.

By omitting a “down-only” coloring property required in Theorem 35, earlier in The-
orem 30 we obtain a similar characterization of colored poset constructions of represen-
tations of just the “Borel derived” (Section 3) subalgebra b′+. When P is finite, these
representations arise as the restrictions to b′+ of the Demazure b+-modules for the dom-
inant λ-minuscule w. (Even when P is finite, the Kac–Moody algebra g at hand can
be infinite dimensional.) For this “up only” analog to Theorem 35, we introduce two
new definitions. We formulate the notion of “upper P -minuscule” representation of b′+
(Definition 4). For the lower right corner of Table 1, we formulate a notion of colored
d-complete that works for infinite locally finite colored posets. So this desire to obtain
a theorem for b′+ analogous to Theorem 35 led to a precise definition for infinite colored
d-complete posets. Theorem 38(a) summarizes Theorem 30.

After introducing full heaps, Green defined [Gr3] the notion of “principal subheap” for
full heaps colored by affine Γ. These are finite colored posets. He showed that the principal
subheaps of such a full heap are isomorphic to each other. Then he proved that the possible
principal subheaps are exactly the pre-existing finite colored minuscule posets. In [Str,
§8.4] we showed that Green’s full heaps are exactly our infinite Γ-colored minuscule posets
and that Green’s principal subheaps (the pre-existing finite colored minuscule posets) are
exactly our finite Γ-colored minuscule posets. The relationship between the finite Γ-
colored minuscule posets and the infinite Γ-colored minuscule posets is entirely different
here than in [Gr3].

Representation Finite dimensional Infinite dimensional

P -minuscule
Finite Γ-colored Infinite Γ-colored
minuscule posets minuscule posets

Upper P -minuscule
Finite Γ-colored Infinite Γ-colored
d-complete posets d-complete posets

Table 1: The characterizations of P -minuscule and upper P -minuscule representations

To give an overview of this paper, for each simply laced Γ we regard Table 1 as a table
of representation characterization problems. (Extensions of our results that also handle
the non-simply laced case are presented in [Str].) The rows of the table respectively pose
existence problems for “P -minuscule” representations of g′ and “upper P -minuscule” rep-
resentations of b′+. The posets P that are shown to solve these problems are respectively
the Γ-colored minuscule posets and the Γ-colored d-complete posets. The two columns
of the table pertain to the cardinality of the poset P . Earlier work [Pr3, Ste] has either
been restricted to finite posets P or has handled [Gr3] finite and infinite posets separately.
Using a posteriori knowledge of the cardinality of P , the columns of the table indicate
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finite P or infinite P ; in this paper we do not assume a priori (not even in the proofs) that
the poset P at hand is known to be finite or infinite. Our answers to these four existence
problems are summarized in Theorem 38. Stembridge’s dominant minuscule heaps (i.e.
Proctor’s colored d-complete posets) inhabit the lower left corner of Table 1 and Green’s
full heaps inhabit the upper right corner. The infinite Γ-colored d-complete posets that
inhabit the lower right corner are new. The original colored minuscule posets inhabit the
upper left corner.

It is the introduction of “frontier census” coloring properties (Section 9) for the poset P
that enables us to provide definitions of “Γ-colored minuscule” and “Γ-colored d-complete”
that are uniform across Table 1. Given an element y ∈ P that is an extreme element of
P of color b ∈ Γ, these properties limit the number of elements that lie beyond y in P
that have colors that are adjacent to b in Γ.

As is true for the finite minuscule case, when P is a full heap colored by Γ of untwisted
affine type the structure FI(P ) can be viewed as a crystal. Then FI(P ) can be used
to give a representation of the corresponding quantum affine algebra, as is described in
Section 8 of Green’s paper [Gr1]. Green also used FI(P ) to construct representations of
most of the affine Weyl groups in [Gr2].

Proctor classified [Pr2, Pr3] the finite colored d-complete posets for simply laced Γ.
Stembridge extended [Ste] this classification to non-simply laced Γ. Green [Gr3] and
McGregor-Dorsey [McG] classified the full heaps. In [Str, Ch. 8] we classified the infinite
colored d-complete posets and listed all of the posets that are organized by Table 1 above.
Having the new “necessary” direction of Theorem 38(b) available will enable us to also
classify the P -minuscule representations. This will be done by using that direction to
combine two of the main results of [Gr3] and [McG], namely Theorem 41 and their clas-
sification of full heaps. This classification of P -minuscule representations will be a step
in a minuscule Kac–Moody program aimed at defining an “abstract minuscule” represen-
tation for a Kac–Moody algebra. See Section 9.3 of [Str] for one possible definition. This
definition would not refer to a poset that has been supplied a priori. Given such a rep-
resentation, it should be possible to construct a poset P so that the given representation
can be viewed as a P -minuscule representation.

After definitions are given in Sections 2–4, this paper has three parts. The first part,
Sections 5 and 6, concerns representations of the Borel derived subalgebra b′+ that are
carried by the lattice of splits FI(P ). Theorem 9 states that the possession of three
of our earliest coloring properties by the poset P is equivalent to the existence of a
representation of the smaller subalgebra n+ ⊂ b′+ that is carried by FI(P ). Section 6
studies the extension of this representation from n+ to the Borel derived subalgebra b′+
by specifying the actions of the simple coroots (which form a basis of the Cartan derived
subalgebra h′). There is some freedom available for such an extension; the weight functions
we introduce are accounting tools to keep track of the coroot actions. In the second part,
Sections 7–9, we introduce a particular nice weight function. The prototypical minuscule
representations of semisimple Lie algebras have weights along their “sl2 strings” that are
composed of eigenvalues from {−1, 0,+1} for the simple coroot actions. Our preferred
weight function is defined in Definition 25. In Proposition 27 we begin to obtain simple
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coroot actions with {−1, 0,+1} values when three coloring properties for P are present.
We introduce the frontier census coloring properties in Section 9. Sections 10–12 form our
third part. After obtaining our main results in Sections 10 and 11, we summarize them
in Section 12 after presenting our new definitions of Γ-colored d-complete and Γ-colored
minuscule posets in Definition 37. We briefly describe their classifications in Remark 39.

2 Combinatorial definitions

Fix a partially ordered set P throughout. Letters such as z, y, x, . . . are used to denote
elements of P . We follow Stanley [Sta] for the following terminology: comparable ele-
ments, covering relations and the Hasse diagram, closed and open intervals, connected
posets, and direct sums of posets. We assume each P is locally finite; this means that all
of its closed intervals are finite. We write x → y to indicate that x is covered by y. We
say x and y are neighbors in P if x → y or y → x. A subset F ⊆ P is a filter of P if
whenever x ∈ F and y > x, we also have y ∈ F . Dually, a subset I ⊆ P is an ideal of
P if whenever x ∈ I and y 6 x, we also have y ∈ I. For each filter F of P there is a
corresponding ideal I := P − F . Let FI(P ) be the set of all ordered pairs (F, I) such
that F is a filter of P and I is its corresponding ideal; these are the splits of P . The set
FI(P ) becomes a distributive lattice when it is ordered by inclusion of the ideals within
the splits. Figures 1 and 2 display posets P and their lattices FI(P ) of splits. We write
(F +x+ . . . , I−x− . . . ) instead of (F ∪{x, . . . }, I−{x, . . . }) and (F −x− . . . , I+x+ . . . )
instead of (F − {x, . . . }, I ∪ {x, . . . }). Each edge in the Hasse diagram of FI(P ) can be
viewed as transferring a minimal element of some split’s filter to its ideal, where it be-
comes a maximal element: In FI(P ) one has (F, I)→ (F −x, I+x) when x is a minimal
element of F . Dually, one has (F + y, I − y)→ (F, I) when y is a maximal element of I.

Fix a finite simple graph Γ throughout, meaning that no loops or multiple edges are
allowed. We will use the symbol Γ to also denote its set of vertices. Letters such as
a, b, c, . . . are used to denote vertices of Γ, which we call colors. A Γ-set is any set whose
elements are indexed by the colors in Γ. Let a, b ∈ Γ. If {a, b} is an edge of Γ, we write
a ∼ b and say a and b are adjacent. If a 6= b and {a, b} is not an edge of Γ, we write a 6' b
and say a and b are distant. Let δab be the Kronecker delta. Define θab := 2δab−

∑
c∼b δac.

We have θab = 2 if a = b and θab = −1 if a ∼ b and θab = 0 if a 6' b.
We equip P with a surjective coloring function κ : P → Γ, and we say that P is a

Γ-colored poset. See Figures 1 and 2. For each a ∈ Γ, let Pa := κ−1(a) be the subset
of all elements in P of color a. The coloring of P induces an edge coloring of the Hasse
diagram of FI(P ): The color of an edge is given by the color of the element transferred
along that edge.

Various poset coloring properties will be precisely defined as needed; Table 2 indexes
these forthcoming definitions. The poset displayed in Figure 1 satisfies all of these prop-
erties, and the poset displayed in Figure 2 satisfies all of them except Mn1LA.
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Figure 1: Clockwise from bottom left: Simple graph Γ of affine type Ẽ6, full heap poset
P colored by Γ, and edge-colored lattice of filter-ideal splits FI(P ). Subscripts in P
indicate element colors. Splits (F, I) are described by the maximal elements of the ideal
I. Opposite diamond edges in FI(P ) have the same color.
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Property: Abbreviated definition: Location:

EC elements with Equal colors are Comparable Prop. 5
ND Neighbors have Different colors Prop. 5
NA Neighbors have Adjacent colors Lem. 7
I3ND Interval of 3 Neighbors has 3 Different colors Lem. 8
AC elements with Adjacent colors are Comparable Prop. 26
I2A consecutive color Intervals contain 2 Adjacent colors Prop. 26
MxkGA color Max has 6 k elts Greater than it w/ Adjacent colors Sect. 9
MnkLA color Min has 6 k elts Less than it w/ Adjacent colors Sect. 9

Table 2: Coloring property abbreviations and locations of definitions

3 Algebraic definitions

We regard the graph Γ as being a simply laced Dynkin diagram. Once Γ has been given
a total ordering, the associated generalized Cartan matrix is [θab]a,b∈Γ. The entries θab of
this matrix are the integers defined in the previous section; they agree with the entries
of the generalized Cartan matrix for Γ in [Kac]. The Kac–Moody algebra g with Cartan
subalgebra h and subalgebras n+ and n− are defined in [Kac] for a given Dynkin diagram
Γ. The positive and negative Borel subalgebras are respectively b± := h + n±. We refer
to the subalgebras of the derived subalgebra g′ := [g, g] formed by intersections of h and
b± with g′ as the Cartan derived subalgebra h′ and the Borel derived subalgebras b′±. The
algebras n± and the derived algebras are generated [Kac, §9.11] by subsets of the symbols
{xa, ya, ha}a∈Γ subject to some defining relations. When Γ is simply laced, the relations
are certain unions (specified below) of the following sets:

(XX): (i) [xb, xa] = 0 if a, b ∈ Γ with a 6' b,
(ii) [xa, [xa, xb]] = 0 for all a, b ∈ Γ,

(YY): (i) [yb, ya] = 0 if a, b ∈ Γ with a 6' b,
(ii) [ya, [ya, yb]] = 0 for all a, b ∈ Γ,

(HH): (i) [hb, ha] = 0 for all a, b ∈ Γ,

(HX): (i) [ha, xa] = 2xa for all a ∈ Γ,
(ii) [hb, xa] = −xa if a, b ∈ Γ with a ∼ b,

(iii) [hb, xa] = 0 if a, b ∈ Γ with a 6' b,

(HY): (i) [ha, ya] = −2ya for all a ∈ Γ,
(ii) [hb, ya] = ya if a, b ∈ Γ with a ∼ b,
(iii) [hb, ya] = 0 if a, b ∈ Γ with a 6' b,

(XY): (i) [xa, ya] = ha for all a ∈ Γ,
(ii) [xb, ya] = 0 if a, b ∈ Γ with a 6= b.

The relations HX and HY can be condensed to [hb, xa] = θabxa and [hb, ya] = −θabya for
a, b ∈ Γ. The algebra h′ is the Lie algebra generated by {ha}a∈Γ subject to the relation
HH, and so it is abelian. The algebra n+ (respectively n−) is the Lie algebra generated
by {xa}a∈Γ (respectively {ya}a∈Γ) subject to the relations XX (respectively YY). The
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algebra b′+ (respectively b′−) is the Lie algebra generated by {xa, ha}a∈Γ (respectively
{ya, ha}a∈Γ) subject to the relations XX, HH, and HX (respectively YY, HH, and HY).
We note that b′+ = h′+ n+ and b′− = h′+ n−. The algebra g′ is the Lie algebra generated
by {xa, ya, ha}a∈Γ subject to all of the relations above. When g is finite dimensional (and
hence semisimple), the algebras h, b±, and g are respectively equal to h′, b′±, and g′.

Let V be any vector space. We say an operator T : V → V is square nilpotent if
T 2 = 0. Consider actions on V of the generators xa, ya, and ha that are respectively given
by operators Xa, Ya, and Ha in End(V) for all a ∈ Γ. If the Xa (respectively Ya) are square
nilpotent for all a ∈ Γ, we say their actions are collectively X-square (respectively Y -
square) nilpotent. An h′-weight basis of V is a basis B of V that simultaneously diagonalizes
the operators {Ha}a∈Γ. A weight function on B is a Γ-set of C-valued functions on B.
Here the h′-weight of {Ha}a∈Γ is the weight function {ξa}a∈Γ satisfying Ha.v = ξa(v).v for
every a ∈ Γ and every v ∈ B. The eigenvalue set for B is Eh′ := {ξa(v) | a ∈ Γ, v ∈ B}.

4 Representations of Lie algebras built from colored posets

Our standard context consists of the fixed locally finite poset P that is colored by κ with
the fixed finite simple graph Γ, and that has a lattice of splits FI(P ). All of the results in
this paper are stated in this context. Let V := 〈FI(P )〉 be the free complex vector space
on FI(P ). For each split (F, I), denote the corresponding vector in V by 〈F, I〉. We now
define our raising and lowering operators on V . Whenever we create these operators, we
will be assuming the property EC which is defined below in Proposition 5. This property
implies that the defining sums for these operators will be either a single term or zero (and
hence finite; see Remark 6).

Definition 1. Let a ∈ Γ. For every (F, I) ∈ FI(P ), define Xa.〈F, I〉 :=
∑
〈F −x, I+x〉;

here the sum is taken over all elements x of color a that are minimal in F . Dually, define
Ya.〈F, I〉 :=

∑
〈F + y, I− y〉; here the sum is taken over all elements y of color a maximal

in I. Linearly extending Xa and Ya to all of V respectively gives the color raising operator
and color lowering operator for the color a.

For a ∈ Γ, the action of Xa (respectively Ya) on a basis vector 〈F, I〉 can be viewed as
summing over all ways to move up (respectively down) in FI(P ) from (F, I) by an edge
colored a. We now include V (usually implicitly) and the operators {Xa, Ya}a∈Γ in our
standard context. We use these operators to build representations from colored posets.

Definition 2. Let L be one of the algebras n+, n−, b′+, b′−, or g′. We say that FI(P )
carries a representation of L if there is a linear operator on V for each generator of L
specified in Section 3 such that:

(i) For all a ∈ Γ: Whenever xa (respectively ya) is in L, its operator is Xa (respectively
Ya).

(ii) For all a ∈ Γ: Whenever ha is in L, its operator Ha is diagonal with respect to the
basis {〈F, I〉}(F,I)∈FI(P ).

(iii) This collection of operators satisfies the defining relations for L given in Section 3
with respect to the commutator [A,B] := AB −BA on End(V ).
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Figure 2: Clockwise from bottom left: Simple graph Γ of finite type D5, poset P colored
by Γ, and its edge-colored lattice FI(P ) of filter-ideal splits. Subscripts in P indicate
element colors. Splits (F, I) with boxes are described by the maximal elements of the
ideal I. Parallel edges in FI(P ) have the same color.

Let L be one of the algebras n+, n−, b′+, b′−, or g′. The relations from Section 3 required
by (iii) above make V into a module for L with the required operators giving the actions
of the generators of L. This module structure induces a Lie algebra homomorphism from
L to gl(V ), and so V is a representation of L.

The lattice of splits in Figure 2 carries a representation of b′+, where g is the algebra
of finite type D5; this illustrates Theorem 21. The lattice of splits in Figure 1 carries a
representation of g′, where g is the algebra of affine type Ẽ6; this illustrates Theorem 35.
See Remark 36. The minuscule representations built from colored minuscule posets and
the representations built from full heaps mentioned in Section 1 are representations of g′

carried by FI(P ).

Remark 3.
(a) The operators {Xa}a∈Γ and {Ya}a∈Γ are determined uniquely by the colored struc-

ture of P , so any representation of n+ or n− carried by FI(P ) is necessarily unique.
(b) As we work in the context of Definition 2, we will leave the actions of xa, ya, and ha

implicit and will refer only to the operators Xa, Ya, and Ha. We will also routinely
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leave (i) and (ii) implicit when showing FI(P ) carries a representation of some
algebra. Our focus will be (iii); that is, showing the operators satisfy the relations
for the algebra.

(c) Any diagonal operators {Ha}a∈Γ satisfying (ii) automatically satisfy the relation
HH. Additionally, these operators make {〈F, I〉}(F,I)∈FI(P ) an h′-weight basis of V .

We now present the central representation definitions of this paper.

Definition 4. We define the “minuscule” representations of b′± and g′ built from colored
posets:

(a) We say a representation of b′+ (respectively b′−) carried by FI(P ) is upper (lower)
P -minuscule if it is X-square (Y -square) nilpotent and the actions of the diagonal
operators {Ha}a∈Γ satisfy:

(i) The set Eh′ of eigenvalues of the {Ha}a∈Γ is contained in {−1, 0, 1, 2, . . . } (re-
spectively contained in {. . . ,−2,−1, 0, 1}),

(ii) For any split (F, I) ∈ FI(P ) and any a ∈ Γ we have Ha.〈F, I〉 = −〈F, I〉 (re-
spectively Ha.〈F, I〉 = +〈F, I〉) if and only if F (respectively I) has a minimal
(maximal) element of color a.

(b) We say a representation of g′ carried by FI(P ) is P -minuscule if the set Eh′ of
eigenvalues of the {Ha}a∈Γ is contained in {−1, 0, 1}.

The lattice of splits in Figure 2 carries an upper P -minuscule representation of b′+; this
illustrates Theorem 30. See Remark 31. For this representation, we have Ha.〈P,∅〉 =
−〈P,∅〉, Hg.〈P,∅〉 = −〈P,∅〉, Hb.〈P,∅〉 = 0, Hc.〈P,∅〉 = 0, and Hd.〈P,∅〉 = +2〈P,∅〉.
The actions of the {He}e∈Γ at other splits can be computed by working up through FI(P )
using the relations HX, so one can calculate that Eh′ = {−1, 0, 1, 2}.

The P -minuscule representations of g′ are X- and Y -square nilpotent, as is implied
by Lemma 32. The lattice FI(P ) of splits displayed in Figure 1 carries a P -minuscule
representation of g′; this illustrates Theorem 35.

5 Square nilpotent representations of n+ and n−

We establish our earliest equivalences between sets of coloring properties and sets of alge-
braic conditions. Theorem 9 summarizes this section by listing three coloring properties
for P that are necessary and sufficient for the operators {Xa}a∈Γ to generate an X-square
nilpotent representation of n+ carried by FI(P ).

Proposition 5. The following are equivalent:
(i) The color raising operators {Xa}a∈Γ are X-square nilpotent.

(ii) The following two properties are satisfied by P :
(EC): Elements with equal colors are comparable, and
(ND): Neighbors have different colors.

(iii) The color lowering operators {Ya}a∈Γ are Y -square nilpotent.
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Remark 6. For all a ∈ Γ and every split (F, I), the property EC implies that the sum
defining Xa.〈F, I〉 (or Ya.〈F, I〉) is either a single term or is zero since there may be at
most one minimal (or maximal) element of F (or I) of a given color. This remark will
often be used implicitly. From now on when we are creating the color raising and lowering
operators we will be assuming the property EC holds. The properties EC and ND together
ensure that no two edges of the same color are incident in the Hasse diagram of FI(P ).

Proof of Proposition 5. We show that (i) and (ii) are equivalent; the equivalence of (ii)
and (iii) follows from a dualized argument. To prove (i) implies (ii), first suppose that
EC fails. Then there is a color a ∈ Γ and incomparable elements x, y ∈ Pa = κ−1(a).
Let F be the filter generated by x and y. Since 2〈F − x − y, I + x + y〉 is a term in the
expansion of X2

a .〈F, I〉, we have X2
a .〈F, I〉 6= 0. Now suppose ND fails. Then there is a

color a ∈ Γ and neighbors x → y, with x, y ∈ Pa. Let F be the filter generated by x.
Since 〈F −x−y, I+x+y〉 is a term in the expansion of X2

a .〈F, I〉, we have X2
a .〈F, I〉 6= 0.

Thus (ii) holds.
Now suppose (ii) holds and fix a ∈ Γ. Let (F, I) ∈ FI(P ). Suppose Xa.〈F, I〉 =

〈F − x, I + x〉 for some element x ∈ Pa. Let y ∈ Pa; here y is comparable to x by EC.
However, note y cannot cover x by ND. Hence y is not minimal in F − x. Since y ∈ Pa
was arbitrary, we have Xa.〈F −x, I+x〉 = 0. So for every color a ∈ Γ and (F, I) ∈ FI(P )
we have X2

a .〈F, I〉 = 0. Thus (i) holds.

We get the relations XX(i) and YY(i) by strengthening ND.

Lemma 7. Suppose P satisfies EC and ND. Then the following are equivalent:
(i) The relation [Xb, Xa] = 0 holds if a, b ∈ Γ are distant.

(ii) The following additional property is satisfied by P :
(NA): Neighbors have adjacent colors.

(iii) The relation [Yb, Ya] = 0 holds if a, b ∈ Γ are distant.

Proof. We show (i) and (ii) are equivalent; the equivalence of (ii) and (iii) follows from
a dualized argument. To prove (i) implies (ii), first suppose (ii) fails. Then there exist
neighbors x → y such that either κ(x) = κ(y) or κ(x) 6' κ(y). By ND we know κ(x) 6=
κ(y), and so κ(x) 6' κ(y). Let a := κ(x) and b := κ(y), and let F be the filter generated
by x. Since 〈F − x − y, I + x + y〉 is a term in the expansion of XbXa.〈F, I〉, we have
XbXa.〈F, I〉 6= 0. However, we get XaXb.〈F, I〉 = 0 since the only minimal element in F
has color a. Hence [Xb, Xa].〈F, I〉 6= 0, and so (i) fails.

To prove (ii) implies (i), suppose (ii) holds and let a and b be distant colors. Let (F, I)
be any split. Note that if XaXb.〈F, I〉 = 0 and XbXa.〈F, I〉 = 0, then we are done. Next,
without loss of generality assume XbXa.〈F, I〉 6= 0. Then there are elements x and y such
that κ(x) = a and κ(y) = b and XbXa.〈F, I〉 = 〈F − x − y, I + x + y〉. By NA we see
x and y are not neighbors. Thus they are incomparable minimal elements of F . Hence
XaXb.〈F, I〉 = 〈F − y − x, I + y + x〉 = XbXa.〈F, I〉, so [Xb, Xa].〈F, I〉 = 0. Thus (i)
holds.

We get the relations XX(ii) and YY(ii) by introducing a special case of the future key
property I2A.
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Lemma 8. Suppose P satisfies EC and ND. Then the following are equivalent:
(i) The relation [Xa, [Xa, Xb]] = 0 holds for all a, b ∈ Γ.

(ii) The following additional property is satisfied by P :
(I3ND): If three successive neighbors x → y → z form an interval in P , then
x and z have different colors.

(iii) The relation [Ya, [Ya, Yb]] = 0 holds for all a, b ∈ Γ.

Proof. We show (i) and (ii) are equivalent; the equivalence of (ii) and (iii) follows from a
dualized argument. For all a, b ∈ Γ, note [Xa, [Xa, Xb]] = X2

aXb − 2XaXbXa +XbX
2
a . By

Proposition 5 the first and last terms vanish when acting on any split. Thus the relation
[Xa, [Xa, Xb]] = 0 holds if and only if XaXbXa = 0 holds.

Suppose (i) holds, so that for all a, b ∈ Γ we have XaXbXa = 0. Suppose three
successive neighbors x → y → z form an interval in P . Define a := κ(x) and b := κ(y)
and c := κ(z). Let F be the filter generated by x. Note that XcXbXa.〈F, I〉 = 〈F − x−
y − z, I + x+ y + z〉 6= 0. Hence we have c 6= a, so I3ND holds.

Now suppose (ii) holds and let a, b ∈ Γ. Assume for a contradiction that XaXbXa 6= 0.
Then there is a split (F, I) and elements x, y, z with κ(x) = κ(z) = a and κ(y) = b such
that XaXbXa.〈F, I〉 = 〈F − x− y− z, I + x+ y+ z〉. By EC we know that x 6 z, and by
ND we know that z cannot cover x. Hence the open interval (x, z) is nonempty. Since z
is minimal in F − x− y, we see that (x, z) = {y}. Thus x→ y → z is an interval of three
successive neighbors in P . This violates I3ND. Hence XaXbXa = 0, and so (i) holds.

Since NA implies ND, we can combine the three results above to produce

Theorem 9. The following are equivalent:
(i) The lattice FI(P ) carries an X-square nilpotent representation of n+.

(ii) The properties EC, NA, and I3ND are satisfied by P .
(iii) The lattice FI(P ) carries a Y -square nilpotent representation of n−.

We remark that if a, b ∈ Γ are adjacent, then [Xb, Xa] 6= 0 if and only if there exist
neighbors in P with those two colors. This will not be used here; see [Str, Prop. 3.1.5]
for details.

6 Square nilpotent representations of b′+ and b′−

Here we define two kinds weight functions on FI(P ) and show that they are equivalent
in Proposition 16. In Proposition 19, we show that the diagonal operators on 〈FI(P )〉
corresponding to the first kind satisfy the relations HX and HY. We use these operators
in Theorem 21 to extend the representations of Theorem 9 from n+ (respectively n−) to
b′+ (respectively b′−).

Our first kind of weight function is defined with a local h′-weight comparison along
each edge of FI(P ).
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Definition 10. Let {ηa}a∈Γ be a weight function on FI(P ). We call {ηa}a∈Γ an edge
weight function if for every b ∈ Γ, split (F, I) ∈ FI(P ), and minimal element x ∈ F , we
have

ηb(F − x, I + x)− ηb(F, I) = θκ(x),b. (1)

Our second kind of weight function compares the h′-weights of two splits at a distance.
For this definition, first partition FI(P ) into components as follows: Two splits (F, I)
and (F ′, I ′) are in the same component if there is a path from (F, I) to (F ′, I ′) in the
Hasse diagram of FI(P ) consisting of finitely many edges. Such a path can progress both
upward and downward along edges. An example of a poset P for which FI(P ) has more
than one component is P = Z. Here there will be three components: The component
{(∅,Z)}, the component {(Z,∅)}, and the component containing every other split. The
finiteness of Γ can be used [Str, Prop. 3.2.2] to show that FI(P ) has finitely many
components when P satisfies EC. We also have

Lemma 11. When P is finite, there is only one component of FI(P ).

Proof. Let (F, I) and (F ′, I ′) be splits. Since P is finite, so are the sets I − I ′ and I ′ − I.
A finite path from (F, I) to (F ′, I ′) can always be constructed by first transferring all
of the elements of I − I ′ to filters and then transferring all of the elements of I ′ − I to
ideals.

Suppose (F, I) and (F ′, I ′) are in the same component of FI(P ). The edges in any
path from (F, I) to (F ′, I ′) have the net effect of transferring every element of I ′ − I to
ideals and transferring every element of I − I ′ to filters. Fix b ∈ Γ and note that both
Pb ∩ (I ′ − I) and Pb ∩ (I − I ′) are finite. So in any path from (F, I) to (F ′, I ′), the
cardinality |Pb ∩ (I ′− I)| counts the net number of edges of color b traversed upward and
|Pb ∩ (I − I ′)| counts the net number of edges of color b traversed downward.

Definition 12. Let b ∈ Γ. For any splits (F, I) and (F ′, I ′) that are in the same compo-
nent of FI(P ), set ∆b[(F

′, I ′), (F, I)] := |Pb ∩ (I ′ − I)| − |Pb ∩ (I − I ′)|.

This is the signed net number of edges of color b traversed in any finite path from (F, I)
to (F ′, I ′). Note that ∆b[(F

′, I ′), (F, I)] = −∆b[(F, I), (F ′, I ′)].
We now define our second kind of weight function; Remark 14 motivates the right

hand side of (2).

Definition 13. Let {ηa}a∈Γ be a weight function on FI(P ). We call {ηa}a∈Γ a component
weight function if for every b ∈ Γ, whenever (F, I) and (F ′, I ′) are in the same component
of FI(P ) we have

ηb(F
′, I ′)− ηb(F, I) = 2∆b[(F

′, I ′), (F, I)]−
∑
c∼b

∆c[(F
′, I ′), (F, I)]. (2)

Remark 14. (a) Let (F, I) be a split and suppose that x is minimal in F . Note that
∆d[(F − x, I + x), (F, I)] = δκ(x),d for all d ∈ Γ. Thus 2∆b[(F − x, I + x), (F, I)] −∑

c∼b ∆c[(F −x, I+x), (F, I)] = θκ(x),b for every b ∈ Γ, since 2δκ(x),b−
∑

c∼b δκ(x),c =
θκ(x),b.
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(b) We see from (a) that Equation (2) specializes to Equation (1) when (F, I)→ (F ′, I ′)
in FI(P ), since then (F ′, I ′) = (F − x, I + x) for some minimal x ∈ F .

The following lemma is used in Proposition 16 to show Definitions 10 and 13 are
equivalent.

Lemma 15. Let b ∈ Γ and let (F, I), (F ′, I ′), and (F ′′, I ′′) be splits in the same component
of FI(P ).

(a) We have ∆b[(F
′′, I ′′), (F, I)] = ∆b[(F

′′, I ′′), (F ′, I ′)] + ∆b[(F
′, I ′), (F, I)].

(b) Let {ηa}a∈Γ be a weight function on FI(P ). If Equation (2) holds for the pairs of
splits (F, I), (F ′, I ′) and (F ′, I ′), (F ′′, I ′′), then it holds for the pair (F, I), (F ′′, I ′′).

Proof. Let P1 be a finite path in FI(P ) from (F, I) to (F ′, I ′), and let P2 be a finite path
in FI(P ) from (F ′, I ′) to (F ′′, I ′′). Let P be the concatenation of P1 followed by P2.
The quantities ∆b[(F

′, I ′), (F, I)] and ∆b[(F
′′, I ′′), (F ′, I ′)] are the respective signed net

number of edges of color b traversed along P1 and P2. Thus their sum is the signed net
number of edges of color b traversed along P . But this quantity is also ∆b[(F

′′, I ′′), (F, I)],
so we get (a). Then (b) follows from (a) by noting that ηb(F

′′, I ′′)−ηb(F, I) = ηb(F
′′, I ′′)−

ηb(F
′, I ′) + ηb(F

′, I ′)− ηb(F, I).

Proposition 16. Let {ηa}a∈Γ be a weight function on FI(P ). Then {ηa}a∈Γ is an edge
weight function if and only if it is a component weight function.

Proof. First suppose {ηa}a∈Γ is a component weight function. Let b ∈ Γ and (F, I) ∈
FI(P ) and suppose x is minimal in F . Using Equation (2) with (F ′, I ′) = (F − x, I + x)
and then applying Remark 14(a) produces Equation (1). Hence {ηa}a∈Γ is an edge weight
function.

Now suppose {ηa}a∈Γ is an edge weight function. Let b ∈ Γ and suppose (F, I) and
(F ′, I ′) are in the same component of FI(P ). If (F, I) = (F ′, I ′), then both sides of
Equation (2) vanish. Now suppose (F, I) 6= (F ′, I ′). Fix a finite path of length ` > 1 from
(F, I) to (F ′, I ′); we induct on `. Suppose that (F, I) and (F ′, I ′) are neighbors in FI(P ).
If (F, I) → (F ′, I ′), then (F ′, I ′) = (F − x, I + x) for some x minimal in F . Applying
Equation (1) followed by Remark 14(a) produces Equation (2). If (F ′, I ′)→ (F, I), then
a similar argument gives a variant of (2) with the roles of (F, I) and (F ′, I ′) reversed.
Multiplying by −1 then produces (2) since −∆d[(F, I), (F ′, I ′)] = ∆d[(F

′, I ′), (F, I)] for
all d ∈ Γ. Thus (2) holds for all pairs of neighbors in FI(P ); that is, when ` = 1. Now
suppose ` > 1. Since Equation (2) holds for all pairs of neighbors in FI(P ), we may
apply Lemma 15(b) a total of ` − 1 times along this path to produce Equation (2) for
(F, I) and (F ′, I ′). Thus {ηa}a∈Γ is a component weight function.

Now we show a component weight function {ηa}a∈Γ always exists. Fix b ∈ Γ, a
component C, and any split (F0, I0) ∈ C. Let ηb(F0, I0) be any complex number. Then for
(F, I) ∈ C, define

ηb(F, I) := ηb(F0, I0) + 2∆b[(F, I), (F0, I0)]−
∑
c∼b

∆c[(F, I), (F0, I0)]. (3)

For each b ∈ Γ, make such choices for all components and then perform this construction.
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Lemma 17.
(a) The {ηa}a∈Γ defined by (3) is a component weight function.
(b) Each ηa in some component weight function {ηa}a∈Γ is uniquely determined by its

value on one split for each component.

Proof. Fix b ∈ Γ, a component C, and the split (F0, I0) chosen for C. Let (F, I), (F ′, I ′) ∈
C. Using (3) we know Equation (2) holds for the pairs (F, I), (F0, I0) and (F ′, I ′), (F0, I0).
Since (2) holds also for the pair (F0, I0), (F ′, I ′), it holds for (F, I), (F ′, I ′) by Lemma
15(b). Thus we get (a). We get (b) since each ηa in a given {ηa}a∈Γ must satisfy (3) once
its values are specified on one split from each component.

We name the diagonal operators whose h′-weights are component (or edge) weight
functions.

Definition 18. We say that a Γ-set of diagonal operators {Ha}a∈Γ on 〈FI(P )〉 are
component (respectively edge) diagonal operators if their h′-weight {ηa}a∈Γ is a component
(respectively edge) weight function.

These are the diagonal operators needed to satisfy HX (or HY) when P satisfies the
property EC. We will typically use edge weight functions and edge diagonal operators
and apply Proposition 16 as needed.

Proposition 19. Suppose P satisfies EC. Let {Ha}a∈Γ be diagonal operators with h′-
weight {ηa}a∈Γ. Then the following are equivalent:

(i) The operators {Xa, Ha}a∈Γ satisfy HX.
(ii) The operators {Ha}a∈Γ are edge diagonal operators.

(iii) The operators {Ya, Ha}a∈Γ satisfy HY.

Proof. Suppose (i) holds. Let b ∈ Γ and (F, I) ∈ FI(P ), and suppose x is a minimal
element of F . Set a := κ(x). By EC we have Xa.〈F, I〉 = 〈F − x, I + x〉. Then HX gives

θabXa.〈F, I〉 = (HbXa −XaHb).〈F, I〉 = (ηb(F − x, I + x)− ηb(F, I))Xa.〈F, I〉,

so ηb(F − x, I + x)− ηb(F, I) = θab. Thus {ηa}a∈Γ is an edge weight function, and so (ii)
holds.

Now suppose (ii) holds and let a, b ∈ Γ and (F, I) ∈ FI(P ). Note that (HbXa −
XaHb).〈F, I〉 = θabXa.〈F, I〉 is trivial if F does not have a minimal element of color a, so
suppose x is minimal in F of color a. By EC we have Xa.〈F, I〉 = 〈F − x, I + x〉. Then

(HbXa −XaHb).〈F, I〉 = (ηb(F − x, I + x)− ηb(F, I))Xa.〈F, I〉 = θabXa.〈F, I〉,

where the last equality follows from Equation (1). Thus (i) holds.
The equivalence of (ii) and (iii) follows from a dualized argument.

We conclude this section by applying our results to representations.
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Proposition 20. Suppose P satisfies EC.
(a) If FI(P ) carries a representation of b′+ or of b′−, then the diagonal operators
{Ha}a∈Γ giving the actions of {ha}a∈Γ are edge diagonal operators.

(b) Suppose P additionally satisfies NA and I3ND. If {ηa}a∈Γ is an edge weight func-
tion, then the corresponding edge diagonal operators {Ha}a∈Γ can be used to extend
the representations of Theorem 9 from n+ and n− to X- and Y -square nilpotent
representations of b′+ and b′−.

Proof. For (a), the relations HX (or HY) are satisfied by assumption. Thus (a) holds
by Proposition 19. Part (b) is also a consequence of Proposition 19 since that result
guarantees HX and HY hold.

Using the existence obtained in Lemma 17(a), we can extend Theorem 9.

Theorem 21. The following are equivalent:
(i) The lattice FI(P ) carries an X-square nilpotent representation of n+.

(ii) The lattice FI(P ) carries an X-square nilpotent representation of b′+.
(iii) The properties EC, NA, and I3ND are satisfied by P .
(iv) The lattice FI(P ) carries a Y -square nilpotent representation of b′−.
(v) The lattice FI(P ) carries a Y -square nilpotent representation of n−.

Any operators {Ha}a∈Γ used to satisfy Part (ii) or Part (iv) are edge diagonal operators.

Proof. Using Lemma 17(a), let {ηa}a∈Γ be any component weight function. Then {ηa}a∈Γ

is an edge weight function by Proposition 16. Hence (iii) implies (ii) by Proposition
20(b) using {ηa}a∈Γ. Also (ii) implies (i) by restricting to the operators {Xa}a∈Γ, and (i)
implies (iii) by Theorem 9. The equivalence of (iii), (iv), and (v) follows from a dualized
argument. The last statement follows from Proposition 20(a).

Remark 22. If one does not care about the relationship between combinatorial properties
and weights, Theorem 21 says that a representation of n+ carried by FI(P ) can be
extended to b′+ without requiring coloring properties for P beyond EC, NA, and I3ND.
One first creates a component weight function {ηa}a∈Γ by choosing for each component of
FI(P ) any Γ-set of complex numbers and any split. Then {ηa}a∈Γ is also an edge weight
function. The corresponding edge diagonal operators {Ha}a∈Γ are then used to extend
the action of n+.

7 A combinatorially constructed edge weight function

We continue to assume P satisfies EC. Here we construct a particular weight function
{µa}a∈Γ on FI(P ) whose values are determined by the local structure of P . When
P has two new additional properties beyond EC, in Proposition 26(b) we show that
{µa}a∈Γ is an edge weight function. As we work toward obtaining the (upper) P -minuscule
representations of g′ (and b′+), in the next two sections we will obtain relationships between
further coloring properties and this h′-weight.

We prepare to define our new Z-valued weight function {µa}a∈Γ. To construct this
weight function, we first introduce N-valued auxiliary functions {υa}a∈Γ and {ψa}a∈Γ.
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Definition 23. Fix b ∈ Γ. We define υb : FI(P )→ N in stages. Let (F, I) be a split. If
Pb ∩ I does not have a maximal element, then set υb(F, I) := 1. Now suppose that Pb ∩ I
has a maximal element y. By EC the element y is unique. We build up a set Υb(F, I) ⊆ I
from the empty set ∅. Let z ∈ I. We place z into Υb(F, I) if it meets the following three
requirements:

(i) The element z is greater than y,
(ii) Its color c := κ(z) is adjacent to b, and

(iii) The number of elements greater than y that are in Pc ∩ I is finite.
If there is some color a ∼ b such that there are infinitely many elements greater than y
in Pa ∩ I, then set υb(F, I) := |Υb(F, I)|+ 1. Otherwise set υb(F, I) := |Υb(F, I)|.

Figure 3 illustrates the three possible scenarios for computing {υi}i∈Γ on a Γ-colored
poset P at a split (F, I). Since there is no maximal element of color d in I, we have
υd(F, I) = 1. Because g ∼ d, we get υg(F, I) = |Υg(F, I)| + 1 = 2. Lastly, we have
υa(F, I) = |Υa(F, I)| = 0.

Definition 24. Fix b ∈ Γ. We define ψb : FI(P ) → N in dually analogous stages. Let
(F, I) be a split. If Pb ∩ F does not have a minimal element, then set ψb(F, I) := 1. Now
suppose that Pb ∩ F has a minimal element y. By EC the element y is unique. We build
up another set Ψb(F, I) ⊆ F from the empty set ∅. Let z ∈ F . We place z into Ψb(F, I)
if it meets the following three requirements:

(i) The element z is less than y,
(ii) Its color c := κ(z) is adjacent to b, and

(iii) The number of elements less than y that are in Pc ∩ F is finite.
If there is some color a ∼ b such that there are infinitely many elements less than y in
Pa ∩ F , then set ψb(F, I) := |Ψb(F, I)|+ 1. Otherwise set ψb(F, I) := |Ψb(F, I)|.

Since Γ is finite, Condition (iii) implies the sets Υb(F, I) and Ψb(F, I) in the above defi-
nitions are finite.

We now define the Z-valued weight function {µa}a∈Γ and its corresponding set of
diagonal operators.

Definition 25. Let (F, I) be a split and let b ∈ Γ. If Pb ∩ I 6= ∅, then define µb(F, I) :=
1−υb(F, I). If Pb∩ I = ∅, then define µb(F, I) := −1 +ψb(F, I). Finally, define the Γ-set
of operators {Ma}a∈Γ to be the diagonal operators with h′-weight {µa}a∈Γ. These are the
µ-diagonal operators.

Foreshadowing Proposition 27(c), we see that Mb.〈F, I〉 = +〈F, I〉 if I has a maximal
element of color b since then υb(F, I) = 0. The definition of {µa}a∈Γ is not symmetric with
respect to F and I; an alternate construction can be made for the µ-diagonal operators
that emphasizes filters instead of ideals. Let b ∈ Γ and (F, I) ∈ FI(P ). If Pb ∩ F = ∅,
then set µ′b(F, I) := 1−υb(F, I). If Pb∩F 6= ∅, then set µ′b(F, I) := −1 +ψb(F, I). When
P satisfies EC, AC, and I2A (defined next), it can be shown that µ′b = µb; see [Str, Prop.
4.1.1].
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Figure 3: Simple graph Γ and poset P colored by Γ. Split (F, I) is used to illustrate
computation of {υi}i∈Γ.

Proposition 26. Suppose P satisfies EC and the following additional properties:
(AC): Elements with adjacent colors are comparable, and
(I2A): For every a ∈ Γ: The open interval between any two consecutive elements of
color a contains exactly two elements whose colors are adjacent to a.

Then we have the following:
(a) The property I2A implies both ND and I3ND.
(b) The weight function {µa}a∈Γ is an edge weight function.
(c) If P also satisfies NA, then the µ-diagonal operators {Ma}a∈Γ can be used to extend

the representations of Theorem 9 from n+ and n− to X- and Y -square nilpotent
representations of b′+ and b′−.

Proof. Suppose P fails either ND or I3ND. Then P contains an interval that is a chain
consisting of two or three elements in which the minimal and maximal elements are
consecutive elements of the same color. The open interval between these two elements
violates I2A. Thus (a) holds.

To prove (b), fix b ∈ Γ. Let (F, I) ∈ FI(P ) and suppose x is minimal in F . Set
a := κ(x). We must show that µb(F − x, I + x)− µb(F, I) = θab.

First suppose a = b. We start with the case Pa ∩ I = ∅. Since x is minimal in F , we
have ψa(F, I) = |Ψa(F, I)| = 0 and µa(F, I) = −1. Here Pa ∩ (I + x) 6= ∅. Since x is
maximal in I+x, we have υa(F−x, I+x) = |Υa(F−x, I+x)| = 0 and µa(F−x, I+x) = 1.
We get µa(F − x, I + x) − µa(F, I) = 2 = θaa. Otherwise we have the case Pa ∩ I 6= ∅.
Let z ∈ Pa ∩ I. Note that z < x by EC and that Pa ∩ [z, x] is finite by local finiteness
for [z, x]. So Pa ∩ I has a maximal element y. Here y < x are consecutive occurrences of
the color a. By I2A there are exactly two elements u, v ∈ (y, x) with colors adjacent to a.
By AC all elements greater than y in I with colors adjacent to a are in (y, x). Hence u
and v are the only such elements. This shows both u and v are in Υa(F, I), and no other
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elements can be in Υa(F, I). Thus υa(F, I) = |Υb(F, I)| = 2 and µa(F, I) = −1. We still
have µa(F − x, I + x) = 1, and so again µa(F − x, I + x)− µa(F, I) = 2 = θaa.

Now suppose a ∼ b. We again start with the case Pb∩I = ∅. Here Pb∩ (I+x) = ∅ as
well. We know Pb ∩ F 6= ∅ since κ is surjective. Let z ∈ Pb ∩ F . Note that x < z by AC
and that [x, z] and Pb∩[x, z] are finite. So Pb∩F has a minimal element y. Then x satisfies
all three criteria to be in Ψb(F, I), but x /∈ Ψb(F −x, I+x) since x /∈ F −x. Observe that
y is also minimal in Pb ∩ (F − x). So we have Ψb(F − x, I + x) = Ψb(F, I) − {x}. Thus
|Ψb(F −x, I+x)| = |Ψb(F, I)|−1. Note that there is some color c ∼ b such that there are
infinitely many elements less than y in Pc∩F if and only if the same statement is true for
F − x. Thus whether or not such a color c exists we have ψb(F − x, I + x) = ψb(F, I)− 1.
Here µb(F − x, I + x) = −1 + ψb(F − x, I + x) and µb(F, I) = −1 + ψb(F, I). Thus
µb(F − x, I + x)− µb(F, I) = −1 = θab.

Otherwise for a ∼ b we have the case Pb ∩ I 6= ∅. Here Pb ∩ (I + x) 6= ∅ as well. Let
z ∈ Pb ∩ I. Note z < x by AC and that [z, x] and Pb ∩ [z, x] are finite. So Pb ∩ I has a
maximal element y. Note that x satisfies all three criteria to be in Υb(F − x, I + x), but
x /∈ Υb(F, I) since x /∈ I. Observe that y is also maximal in Pb ∩ (I + x). So we have
Υb(F − x, I + x) = Υb(F, I) ∪ {x}. Thus |Υb(F − x, I + x)| = |Υb(F, I)| + 1. Note that
there is some color c ∼ b such that there are infinitely many elements greater than y in
Pc∩I if and only if the same statement is true for I+x. Thus whether or not such a color
c exists we have υb(F −x, I+x) = υb(F, I)+1. Here µb(F −x, I+x) = 1−υb(F −x, I+x)
and µb(F, I) = 1− υb(F, I). Thus µb(F − x, I + x)− µb(F, I) = −1 = θab.

Finally suppose a 6' b. We again start with the case Pb∩I = ∅. Here Pb∩ (I+x) = ∅
as well. An element y is minimal in Pb ∩ F if and only if it is minimal in Pb ∩ (F − x). If
no such minimal element exists, then ψb(F, I) = 1 = ψb(F − x, I + x). Otherwise there
is an element y minimal in both Pb ∩ F and Pb ∩ (F − x). Note that there is a color
c ∼ b such that there are infinitely many elements less than y in Pc ∩ F if and only if the
same statement is true for Pc ∩ (F − x). Thus whether or not such a color c exists, since
a 6' b we have ψb(F − x, I + x) = ψb(F, I). Hence µb(F − x, I + x)− µb(F, I) = 0 = θab.
Otherwise for a 6' b we have the case Pb ∩ I 6= ∅. In this case, we replace ψb with υb and
dualize to again get µb(F − x, I + x)− µb(F, I) = 0 = θab.

Thus {µa}a∈Γ is an edge weight function, and so (b) holds. Since I2A implies I3ND,
we can apply Proposition 20(b) to get (c).

8 Existence and uniqueness for sl2 weights along color strings

The actions of the {ha}a∈Γ in a minuscule representation of a semisimple Lie algebra have
certain values along their “sl2 strings.” To obtain upper P -minuscule representations
of b′+ and P -minuscule representations of g′, we need edge weight functions that have
these values along the “color strings” of FI(P ). The next result is the first step toward
obtaining these values. This existence result motivates the properties AC and I2A from
a Lie representation viewpoint.
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Proposition 27.
(a) The following are equivalent:

(i) There exists an edge weight function {ηa}a∈Γ such that for every b ∈ Γ and
every split (F, I), we have ηb(F, I) = −1 if b is the color of a minimal element
of F .

(ii) The properties EC, AC, and I2A are satisfied by P .
(iii) There exists an edge weight function {ηa}a∈Γ such that for every b ∈ Γ and

every split (F, I), we have ηb(F, I) = +1 if b is the color of a maximal element
of I.

(b) Any choice of edge weight function satisfying Condition (i) will work for (iii) (and
vice versa).

(c) If Condition (ii) is satisfied, then the edge weight function {µa}a∈Γ of Definition 25
satisfies Conditions (i) and (iii).

Remark 28. For each a ∈ Γ, Condition (i) (or (iii)) above requires certain values for the
function ηa along the edges of color a in FI(P ). But when FI(P ) has a component that
does not contain an edge of some color b ∈ Γ, those parts do not pertain to ηb on that
component. For example, the component containing (F, I) in Figure 3 does not contain
an edge colored g. So there ηg(F, I) can be any complex number.

Proof of Proposition 27. For Part (a), we first show (iii) implies (i). Create an edge
weight function {ηa}a∈Γ that satisfies (iii). Let b ∈ Γ and (F, I) ∈ FI(P ). Suppose b
is the color of a minimal element y of F . Then ηb(F − y, I + y) = 1 by (iii) since y is
maximal in I + y. Thus Equation (1) gives ηb(F − y, I + y)− ηb(F, I) = 2. Hence we get
ηb(F, I) = ηb(F − y, I + y)− 2 = −1, yielding (i). A dual argument shows that (i) implies
(iii). This also shows that one choice will work for both Parts (i) and (iii), so (b) holds.

We next show (iii) implies (ii). Continue to consider the edge weight function {ηa}a∈Γ

above. Let x and y be incomparable elements in P . Define a := κ(x) and b := κ(y). Let
F be the filter generated by x and y and set I := P − F . Note that b is the color of a
maximal element of both I+y and I+y+x. Thus by (iii) we have ηb(F −y, I+y) = 1 =
ηb(F−y−x, I+y+x), so ηb(F−y−x, I+y+x)−ηb(F−y, I+y) = 0. Since x is minimal in
F−y, we can apply Equation (1) to also obtain ηb(F−y−x, I+y+x)−ηb(F−y, I+y) = θab.
Thus θab = 0, and so a 6' b. Thus we get both EC and AC. Now let b ∈ Γ and suppose
that x < y are consecutive occurrences of the color b. Define I ′ to be the principal ideal
generated by y. Define the ideal I to be I ′ − (x, y], where (x, y] := {z ∈ P | x < z 6 y};
also note that x is maximal in I and that I ′ − I = (x, y] and I − I ′ = ∅. Define
F ′ := P − I ′ and F := P − I. Since (x, y] is finite, the splits (F ′, I ′) and (F, I) are in
the same component of FI(P ). Since y is maximal in I ′ and x is maximal in I, we have
ηb(F

′, I ′) = 1 = ηb(F, I). From Equation (2), which we may use by Proposition 16, we
get

0 = ηb(F
′, I ′)− ηb(F, I) = 2∆b[(F

′, I ′), (F, I)]−
∑
c∼b

∆c[(F
′, I ′), (F, I)]

= 2|Pb ∩ (x, y]| −
∑
c∼b

|Pc ∩ (x, y]|.

the electronic journal of combinatorics 27(2) (2020), #P2.42 21



Since κ(y) = b, this equation can be rewritten 2 =
∑

c∼b |Pc ∩ (x, y)|. Thus I2A holds.
Now assume (ii) holds and consider the weight function {µa}a∈Γ of Definition 25. By

Proposition 26(b) we know that {µa}a∈Γ is an edge weight function. Fix a color b ∈ Γ and
a split (F, I) ∈ FI(P ), and suppose b is the color of a maximal element of I. Then we
have υb(F, I) = 0 and µb(F, I) = +1, so (iii) holds. Then by (b) we see that (c) holds.

We do get uniqueness for {µa}a∈Γ on a component when this component has edges of
all colors:

Corollary 29. Suppose P satisfies EC, AC, and I2A. Fix a component C and suppose
there is an edge in C of every color. Then {µa}a∈Γ is the unique restriction to C of an
edge weight function that satisfies Conditions (i) or (iii) of Proposition 27(a). So if P
is finite, then {µa}a∈Γ is the unique edge weight function on FI(P ) that satisfies these
conditions.

Proof. Let {ηa}a∈Γ be an edge weight function that satisfies Condition (i) of Proposition
27(a), and let b ∈ Γ. Since there is an edge in C of color b, let (F0, I0) ∈ C be such that
F0 has a minimal element y of color b. We know ηb(F0, I0) = −1. Then Proposition 27(c)
says µb(F0, I0) = −1 as well. Now {ηa}a∈Γ and {µa}a∈Γ are component weight functions
by Proposition 16, so Lemma 17(b) says that ηb and µb agree on all of C. A similar
argument holds when {ηa}a∈Γ satisfies Condition (iii) of Proposition 27(a). When P is
finite, the lattice FI(P ) has one component by Lemma 11.

9 Frontier census properties

Here we introduce our last coloring properties. For each k > 1 we define two frontier
census properties :

(MxkGA): For every color a ∈ Γ: If x is maximal in Pa, then there are at most k
elements greater than x that have their colors adjacent to a,
(MnkLA): For every color a ∈ Γ: If x is minimal in Pa, then there are at most k
elements less than x that have their colors adjacent to a.

The properties Mx1GA and Mn1LA are the most important of these properties; in [Str,
Ch. 8] the property Mn2LA was also used. In [Str, §7.4] we indicated how Mx1GA and
Mn1LA revamp, generalize, and unify axioms considered by Stembridge and Green. The
property Mx1GA was retrospectively found to be implicitly present in Proposition 2.5 of
[Ste]. That early statement in [Ste] was formulated in terms of decompositions of Weyl
group elements w, before the heap finite colored posets were introduced.

The frontier census properties limit the eigenvalues of the coroot actions; see [Str,
§4.3] for interactions between these properties and the edge weight function {µa}a∈Γ of
Definition 25.

10 Upper P -minuscule representations of b′+

Our first main result gives necessary and sufficient conditions on coloring properties for
P so that FI(P ) carries an upper P -minuscule representation of b′+; see Definition 4(a).
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Theorem 30. Let P be a poset whose elements are colored by the nodes of a finite simple
graph Γ. Let FI(P ) be the lattice of filter-ideal splits of P .

(a) The following are equivalent:
(i) The lattice FI(P ) carries an upper (respectively lower) P -minuscule represen-

tation of b′+ (respectively b′−).
(ii) The poset P satisfies EC, NA, AC, I2A, and Mx1GA (respectively Mn1LA).

(b) If Condition (ii) is satisfied, then the µ-diagonal operators {Ma}a∈Γ of Definition
25 can be used to give the actions of the {ha}a∈Γ for the upper (respectively lower)
P -minuscule representation of b′+ (respectively b′−) of (i).

Remark 31. It can be confirmed that the poset displayed in Figure 2 satisfies the Mx1GA
version of Condition (ii); the poset displayed in Figure 1 satisfies both versions. If P is
connected and satisfies Condition (ii), then FI(P ) has only one nontrivial component.
Then the µ-diagonal operators are the unique operators satisfying Condition (i) on this
component. This is Corollary 8.3.9 of [Str], which followed from the classification of posets
satisfying Condition (ii) presented there in Section 8.3.

Proof of Theorem 30. To show (a), assume (i) holds for the terms upper and b′+ and
Mx1GA. Since this representation is X-square nilpotent, by Theorem 21 we know P sat-
isfies EC and NA. Let {Ha}a∈Γ be the diagonal operators for this representation with
h′-weight {ηa}a∈Γ and eigenvalue set Eη := {ηa(F, I) | a ∈ Γ, (F, I) ∈ FI(P )}. By Propo-
sition 20(a) we know that {ηa}a∈Γ is an edge weight function. Since the representation is
upper P -minuscule, for all a ∈ Γ and (F, I) ∈ FI(P ) we have

ηa(F, I) ∈ Eη ⊆ {−1, 0, 1, 2, . . . }, (4)

ηa(F, I) = −1 if and only if a is the color of a minimal element of F . (5)

By (5) and Proposition 27(a) we see P satisfies AC and I2A. For the sake of contradiction,
suppose Mx1GA fails. Then there is a color b ∈ Γ and an element y maximal in Pb such
that there are two or more elements greater than y with colors adjacent to b. Let u
and v be two such elements. Define I ′ to be the ideal generated by u and v. Define
I := I ′ − ((y, u] ∪ (y, v]). Note I is an ideal of P and that y is maximal in I. Define
F ′ := P − I ′ and F := P − I, and further note that I ′− I = (y, u]∪ (y, v] and I − I ′ = ∅.
By local finiteness, the splits (F ′, I ′) and (F, I) are in the same component of FI(P ). By
Proposition 16 we know that {ηa}a∈Γ is a component weight function, so using Equation
(2) we get

ηb(F
′, I ′)− ηb(F, I) = 2∆b[(F

′, I ′), (F, I)]−
∑
c∼b

∆c[(F
′, I ′), (F, I)]

= 2|Pb ∩ ((y, u] ∪ (y, v])| −
∑
c∼b

|Pc ∩ ((y, u] ∪ (y, v])|.

Since y is maximal in Pb, we have |Pb ∩ ((y, u] ∪ (y, v])| = 0. Since u and v have colors
adjacent to b, we have

∑
c∼b |Pc ∩ ((y, u] ∪ (y, v])| > 2. Thus we get the inequality

ηb(F
′, I ′) − ηb(F, I) 6 −2. Since y is maximal in I and κ(y) = b, by Proposition 27(b)
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we get ηb(F, I) = 1. Thus the inequality becomes ηb(F
′, I ′) 6 −1. By (4) we have

ηb(F
′, I ′) > −1, and so ηb(F

′, I ′) = −1. Then (5) shows F ′ has a minimal element z of
color b. Since y ∈ I ′, by EC we have y < z. But y is maximal in Pb. This contradiction
shows Mx1GA holds, and so (ii) holds.

Now assume that (ii) holds. Since P satisfies EC, AC, and I2A, we know by Propo-
sition 26(b) that {µa}a∈Γ is an edge weight function. We use the operators {Ma}a∈Γ

specified by {µa}a∈Γ to get the desired actions of the {ha}a∈Γ. Since P also satisfies NA,
Proposition 26(c) says FI(P ) carries an X-square nilpotent representation of b′+ when
using the operators {Ma}a∈Γ. The eigenvalue set Eµ of these operators is contained in Z
by construction. Let b ∈ Γ and (F, I) ∈ FI(P ), and for the sake of contradiction, suppose
µb(F, I) < −1. Then necessarily we have Pb ∩ I 6= ∅, and so µb(F, I) = 1− υb(F, I) and
υb(F, I) > 3. Thus Pb ∩ I must have a maximal element y of color b, and there must be
three or more elements greater than y in I with colors adjacent to b. Then by AC and
I2A we see Pb ∩ F = ∅, so y is maximal in Pb. But this would violate Mx1GA. Thus
we see that µb(F, I) > −1, and so Eµ ⊆ {−1, 0, 1, 2, . . . }. Then Proposition 27(c) says
µb(F, I) = −1 if b is the color of a minimal element of F .

We now need to show that if µb(F, I) = −1, then b is the color of a minimal element
of F . Hence suppose that µb(F, I) = −1. We start with the case Pb ∩ I 6= ∅. Then
−1 = µb(F, I) = 1 − υb(F, I), so υb(F, I) = 2. This shows Pb ∩ I has a maximal element
y since υb(F, I) = 1 otherwise. Let c ∈ Γ be such that c ∼ b. If there are infinitely many
elements greater than y in Pc ∩ I, then Pb ∩ F is empty by AC and local finiteness. But
then y would be maximal in Pb, which would violate Mx1GA. Thus no such c exists, and
so |Υb(F, I)| = υb(F, I) = 2. So there are two distinct elements u and v in I greater than
y with colors adjacent to b. By Mx1GA we know that y cannot be maximal in Pb. Let
z ∈ Pb be such that y < z are consecutive occurrences of the color b. Since y is maximal
in Pb ∩ I, we have z ∈ F . By AC we know u, v ∈ (y, z). Suppose w ∈ P satisfies w → z.
Then NA implies that κ(w) ∼ b. Thus by AC we have w ∈ (y, z). By I2A we know that
w = u or w = v, so w ∈ I. Thus z is minimal in F and has color b.

Otherwise we have the case Pb ∩ I = ∅. Then −1 = µb(F, I) = −1 + ψb(F, I), so
ψb(F, I) = 0. This shows Pb ∩ F has a minimal element y since ψb(F, I) = 1 otherwise.
Suppose w ∈ P satisfies w → y. By NA we know that κ(w) ∼ b. We also know there are
finitely many elements less than y in Pκ(w) ∩ F since otherwise ψb(F, I) > 1. If w ∈ F ,
this shows that w ∈ Ψb(F, I). But since 0 = ψb(F, I) > |Ψb(F, I)|, we have w /∈ F . Hence
y is minimal in F and has color b. Thus µb(F, I) = −1 if and only if b is the color of a
minimal element of F . Hence the representation of b′+ carried by FI(P ) with the actions
of {ha}a∈Γ given by {Ma}a∈Γ is upper P -minuscule, so (i) holds.

The equivalence of (i) and (ii) for lower and b′− and Mn1LA follows from a dualized
argument, again using the µ-diagonal operators {Ma}a∈Γ for the proof that (ii) implies
(i). Thus (a) holds. In both cases of (ii) implies (i), the µ-diagonal operators were used
to build the required representation. Thus (b) holds.

The following lemma is used for Proposition 33 and Theorem 35.
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Lemma 32. Let {Ha}a∈Γ be diagonal operators on 〈FI(P )〉. Suppose the operators
{Xa, Ha}a∈Γ (respectively {Ya, Ha}a∈Γ) satisfy HX (respectively HY). If the eigenvalue
set of {Ha}a∈Γ is contained in {−1, 0, 1}, then the actions of the color raising (lowering)
operators {Xa}a∈Γ (respectively {Ya}a∈Γ) are X-square (Y -square) nilpotent.

Proof. Suppose for a contradiction that there is some a ∈ Γ and (F, I) ∈ FI(P ) such
that X2

a .〈F, I〉 6= 0. Using the relation HaXa = XaHa + [Ha, Xa] = XaHa + 2Xa obtained
from HX twice, we get

HaX
2
a .〈F, I〉 = (XaHaXa + 2X2

a).〈F, I〉 = (X2
aHa + 2X2

a + 2X2
a).〈F, I〉.

Since the eigenvalue of Ha.〈F, I〉 is either −1, 0, or 1, the right hand side is ξX2
a .〈F, I〉

for some ξ ∈ {3, 4, 5}. But since all basis vectors in the expansion of X2
a .〈F, I〉 are h′-

weight vectors with eigenvalues in {−1, 0, 1}, this is impossible. Thus this representation
is X-square nilpotent. The proof for {Ya, Ha}a∈Γ follows from a dualized argument.

The following result will be expanded in Theorem 35, which is our foremost main result.

Proposition 33.
(a) The following are equivalent:

(i) The lattice FI(P ) carries upper and lower P -minuscule representations of b′+
and b′−, respectively, using the same diagonal operators {Ha}a∈Γ.

(ii) The lattice FI(P ) carries representations of b′+ and b′− with diagonal operators
{Ha}a∈Γ that satisfy for every b ∈ Γ and every split (F, I):

Hb.〈F, I〉 = −〈F, I〉 if b is the color of a minimal element of F ,
Hb.〈F, I〉 = +〈F, I〉 if b is the color of a maximal element of I, and
Hb.〈F, I〉 = 0 otherwise.

(iii) The poset P satisfies the properties EC, NA, AC, I2A, Mx1GA, and Mn1LA.
(b) When any of these conditions are satisfied, the µ-diagonal operators {Ma}a∈Γ are

the unique operators satisfying (i) or (ii).

Proof. We first prove (a). Suppose (ii) holds with diagonal operators {Ha}a∈Γ. The
eigenvalue set of each representation is contained in {−1, 0, 1}. By Lemma 32 these rep-
resentations of b′+ and b′− are respectively X- and Y -square nilpotent. The eigenvalue
condition in (ii) shows for all b ∈ Γ and (F, I) ∈ FI(P ) that Hb.〈F, I〉 = −〈F, I〉 (respec-
tively Hb.〈F, I〉 = +〈F, I〉) if and only if b is the color of a minimal (maximal) element
of F (respectively I). Thus the representation of b′+ (respectively b′−) is upper (lower)
P -minuscule, so (i) holds.

Now suppose (i) holds with diagonal operators {Ha}a∈Γ. Theorem 30(a) shows (iii)
holds. Since the representations of b′+ and b′− produced by (i) are respectively upper
and lower P -minuscule, the eigenvalue set of {Ha}a∈Γ is contained in {−1, 0, 1, 2, . . . } ∩
{. . . ,−2,−1, 0, 1} = {−1, 0, 1}. Also, for b ∈ Γ and (F, I) ∈ FI(P ) we have Hb.〈F, I〉 =
−〈F, I〉 (respectively Hb.〈F, I〉 = +〈F, I〉) if and only if F (respectively I) has a minimal
(maximal) element of color b. Hence Hb.〈F, I〉 = 0 otherwise, so (ii) holds.

Now suppose (iii) holds. Then Theorem 30(b) shows (i) holds using the µ-diagonal
operators {Ma}a∈Γ.
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We have shown (ii) implies (i), (i) implies (iii) and (ii), and (iii) implies (i). This
proves (a).

The conditions in (ii) completely specify the operators, so they are unique. The µ-
diagonal operators satisfy (i) when these conditions hold, and this proof showed that any
diagonal operators satisfying (i) also satisfy (ii). This proves (b).

11 P -minuscule representations of g′

We obtain our foremost main result, Theorem 35. It provides necessary as well as suffi-
cient conditions on coloring properties for P needed for FI(P ) to carry a P -minuscule
representation of g′. Both its statement and its proof simultaneously handle finite and
infinite posets.

Lemma 34. Suppose P satisfies EC. The relation [Xb, Ya] = 0 holds when a, b ∈ Γ are
distinct.

Proof. Fix distinct a, b ∈ Γ and let (F, I) ∈ FI(P ). Suppose that XbYa.〈F, I〉 6= 0. Then
with EC in mind, there exist unique elements x, y ∈ P such that κ(y) = a and κ(x) = b
satisfying XbYa.〈F, I〉 = 〈(F + y)−x, (I− y) +x〉. Note that both x and y are minimal in
the filter F+y. Since x 6= y, this shows that x and y are incomparable. Since x is minimal
in F+y, it is also minimal in F . Since x and y are incomparable and y is maximal in I, it is
also maximal in I+x. Hence YaXb.〈F, I〉 = 〈(F−x)+y, (I+x)−y〉 = XbYa.〈F, I〉. Hence
[Xb, Ya].〈F, I〉 = 0. The case where YaXb.〈F, I〉 6= 0 follows from a dualized argument.

Here we characterize the P -minuscule representations of g′ in several ways; see Section
3 for the definitions of X- and Y -square nilpotent actions and Definition 4(b) for the
definition of P -minuscule representations of g′.

Theorem 35. Let P be a poset whose elements are colored by the nodes of a finite simple
graph Γ. Let FI(P ) be the lattice of filter-ideal splits of P .

(a) Conditions (i) and (ii) from Proposition 33(a) are each equivalent to:
(iii) The poset P satisfies the properties EC, NA, AC, I2A, Mx1GA, and Mn1LA.
(iv) The lattice FI(P ) carries X- and Y -square nilpotent representations of b′+ and

b′− respectively, using diagonal operators {Ha}a∈Γ that satisfy [Xa, Ya] = Ha for
every color a ∈ Γ.

(v) The lattice FI(P ) carries a P -minuscule representation of g′.
(b) When any of the conditions from Part (a) are satisfied, the µ-diagonal operators
{Ma}a∈Γ of Definition 25 are the unique diagonal operators satisfying (i), (ii), (iv),
or (v).

Remark 36. It can be confirmed that the poset displayed in Figure 1 satisfies Condition
(iii).

Proof. We first prove (a). Suppose that (v) holds. Then diagonal operators {Ha}a∈Γ

exist so that XX, YY, HX, HY, and XY hold. The eigenvalue set of {Ha}a∈Γ is contained
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in {−1, 0, 1}. By restricting to {Xa, Ha}a∈Γ, we know FI(P ) carries a representation of
b′+. By Lemma 32 we know this representation is X-square nilpotent. By Proposition
5, we know the representation of b′− obtained by restricting to {Ya, Ha}a∈Γ is Y -square
nilpotent. Since XY(i) is the relation [Xa, Ya] = Ha for all a ∈ Γ, we see that (iv) holds.

Now suppose (iv) holds for some such diagonal operators {Ha}a∈Γ. The relations XX,
YY, HX, and HY are satisfied. Since the representations of b′+ and b′− are respectively
X- and Y -square nilpotent, Proposition 5 shows P satisfies EC and ND. Lemma 34 and
the assumed relation [Xa, Ya] = Ha for all a ∈ Γ show XY holds. Thus FI(P ) carries
a representation of g′. Let b ∈ Γ and (F, I) ∈ FI(P ). By (iv) we have Hb.〈F, I〉 =
XbYb.〈F, I〉 − YbXb.〈F, I〉. First suppose b is the color of a minimal element y of F . With
EC in mind, we have YbXb.〈F, I〉 = Yb.〈F − y, I + y〉 = 〈F, I〉. By EC and ND we see I
has no maximal element of color b, so XbYb.〈F, I〉 = 0. Thus Hb.〈F, I〉 = −〈F, I〉. A dual
argument shows that Hb.〈F, I〉 = +〈F, I〉 if b is the color of a maximal element of I. If b
is neither the color of a maximal element of I nor of a minimal element of F , then both
XbYb.〈F, I〉 and YbXb.〈F, I〉 vanish. Thus Hb.〈F, I〉 = 0, so (ii) holds. This also shows
that the eigenvalue set of the operators {Ha}a∈Γ is contained in {−1, 0, 1}, so (v) also
holds.

Now suppose (ii) holds for some such diagonal operators {Ha}a∈Γ. By Lemma 32 we
know the representations of b′+ and b′− are X- and Y -square nilpotent, respectively. By
Proposition 5 we know P satisfies EC and ND. Let b ∈ Γ and (F, I) ∈ FI(P ). To show
[Xb, Yb] = Hb, first suppose YbXb.〈F, I〉 6= 0. Then b is the color of a minimal element of F .
With EC in mind we have YbXb.〈F, I〉 = 〈F, I〉. By EC and ND we see I has no maximal
element of color b, so XbYb.〈F, I〉 = 0. Thus [Xb, Yb].〈F, I〉 = −〈F, I〉 = Hb.〈F, I〉, the
last equality following from (ii). Next suppose XbYb.〈F, I〉 6= 0. A dual argument obtains
[Xb, Yb].〈F, I〉 = +〈F, I〉 = Hb.〈F, I〉. Finally suppose YbXb.〈F, I〉 = 0 and XbYb.〈F, I〉 =
0. Then b is neither the color of a minimal element of F nor of a maximal element of
I. Hence [Xb, Yb].〈F, I〉 = 0 = Hb.〈F, I〉, again using (ii) for the last equality. Thus (iv)
holds.

We have now show that (v) implies (iv), (iv) implies (ii) and (v), and (ii) implies (iv).
Hence (ii), (iv), and (v) are equivalent. Proposition 33(a) established the equivalence of
(i), (ii), and (iii). This proves (a).

This proof showed that the diagonal operators {Ha}a∈Γ satisfying (v) also satisfy (iv),
and that diagonal operators {Ha}a∈Γ satisfying (iv) also satisfy (ii). Proposition 33(b)
showed that the µ-diagonal operators are the unique operators satisfying the conditions
of (i) or (ii). This proves (b).

12 Main results; Γ-colored d-complete and Γ-colored minuscule
posets

We give our main definitions in Definition 37 and summarize our main results in Theorem
38. Table 2 explains the abbreviations we use and indexes the locations of their definitions.
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Definition 37. Let P be a poset (of any cardinality) whose elements are colored by the
nodes of a finite simple graph Γ.

(a) We say P is a Γ-colored d-complete poset if it satisfies EC, NA, AC, I2A, and Mx1GA
with respect to Γ.

(b) We say P is a Γ-colored minuscule poset if it is Γ-colored d-complete and additionally
satisfies Mn1LA with respect to Γ.

Figure 2 displays a Γ-colored d-complete poset. Figure 1 displays a Γ-colored minuscule
poset. Any nonempty filter of the poset displayed in Figure 1 is Γ-colored d-complete.

The following theorem summarizes our two main results, Theorems 30 and 35. Defini-
tion 4 provides the definitions of upper P -minuscule representations of b′+ and P -minuscule
representations of g′.

Theorem 38. Let P be a poset whose elements are colored by the nodes of a finite simple
graph Γ. Let FI(P ) be the lattice of filter-ideal splits of P .

(a) The lattice FI(P ) carries an upper P -minuscule representation of b′+ if and only if
P is a Γ-colored d-complete poset.

(b) The lattice FI(P ) carries a P -minuscule representation of g′ if and only if P is a
Γ-colored minuscule poset.

We provide two closing remarks for context.

Remark 39. In [Str, Ch. 8] we classified the Γ-colored d-complete and Γ-colored minuscule
posets. By Theorem 38, this enables us to classify all upper P -minuscule and P -minuscule
representations. The finite and infinite connected Γ-colored minuscule posets are respec-
tively the connected colored minuscule posets of Proctor [Pr1] and the connected full
heaps of Green [Gr3]. The finite connected Γ-colored d-complete posets are the connected
dominant minuscule heaps of Stembridge [Ste] (the colored d-complete posets of Proctor
[Pr3] in the simply laced case). The infinite connected Γ-colored d-complete posets are fil-
ters of the connected full heaps. Arbitrary Γ-colored d-complete and Γ-colored minuscule
posets are direct sums of connected ones, with their Dynkin diagrams being the disjoint
unions of the respective connected Dynkin diagrams coloring the posets making up these
direct sums.

Remark 40. Let g′ be a derived Kac–Moody algebra with Dynkin diagram Γ. Let P be a
full heap colored by Γ. Green defined an ideal I of P to be proper if for every color a ∈ Γ
it satisfies Pa ∩ I 6= ∅ and Pa ∩ I 6= Pa. Let B be the set of splits whose ideals are proper
and let VB be the free complex vector space on B. Green has the following notable result:

Theorem 41 (Theorem 4.1.6(i) of [Gr3]). Let P be a full heap colored by Γ. Then VB has
the structure of a g′-module such that for every a ∈ Γ, the action of xa is given by Xa,
the action of ya is given by Ya, and the action of ha is given by the operator Ha satisfying
Condition (ii) of Proposition 33(a).

We compare this result to Theorem 38(b). Suppose P is a full heap over a simply laced
Dynkin diagram Γ. As noted above, the heap P is also a Γ-colored minuscule poset. Both
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Theorem 41 and the sufficient direction of Theorem 38(b) provide a representation of g′.
These two representations differ only slightly when P is connected. In this case, the ideals
∅ and P are the non-proper ideals of P , and so 〈FI(P )〉 = VB⊕C〈P,∅〉⊕C〈∅, P 〉. Here
C〈P,∅〉 and C〈∅, P 〉 are trivial representations corresponding to the trivial components
{(P,∅)} and {(∅, P )} of FI(P ).
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[PrSc] Proctor, R.A., Scoppetta, L. M., d-Complete posets: Local structural axioms,
properties, and equivalent definitions, Order 36, 399–422 (2019).

[Sta] Stanley, R.P., Enumerative Combinatorics, Vol. 1, Cambridge University Press
(2012).

[Ste] Stembridge, J.R., Minuscule elements of Weyl groups, J. Algebra 235, 722–743
(2001).

[Str] Strayer, M.C., Characterization and classification of minuscule Kac–Moody rep-
resentations built from colored posets, Ph.D. Thesis, University of North Carolina
at Chapel Hill (2019).

[Wil] Wildberger, N.J., A combinatorial construction for simply-laced Lie algebras, Adv.
Appl. Math. 30, 385–396 (2003).

the electronic journal of combinatorics 27(2) (2020), #P2.42 30

https://arxiv.org/abs/0905.3716

	Introduction
	Combinatorial definitions
	Algebraic definitions
	Representations of Lie algebras built from colored posets
	Square nilpotent representations of n+ and n-
	Square nilpotent representations of b'+ and b'-
	A combinatorially constructed edge weight function
	Existence and uniqueness for sl2 weights along color strings
	Frontier census properties
	Upper P-minuscule representations of b'+
	P-minuscule representations of g'
	Main results; Gamma-colored d-complete and Gamma-colored minuscule posets

