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Abstract

For any flag simplicial complex Θ obtained by stellar subdividing the boundary
of the cross polytope in edges, we define a flag simplicial complex ∆(Θ) whose f -
vector is the γ-vector of Θ. This proves that the γ-vector of any such simplicial
complex is the face vector of a flag simplicial complex, partially solving a conjecture
by Nevo and Petersen. As a corollary we obtain that such simplicial complexes
satisfy the Frankl-Füredi-Kalai inequalities.

Mathematics Subject Classifications: 05E45

1 Introduction

This paper relates to the theory of face enumeration of simplicial complexes. It gives
a partial solution to a conjecture by Nevo and Petersen [13] on flag homology spheres,
which are a particular class of simplicial complexes whose definition can be found in [4].
The conjecture is proven for a subclass of flag homology spheres, namely those that can
be obtained by subdividing the boundary of the cross polytope in edges.

Recall that for a (d − 1)-dimensional simplicial complex Θ, the f -polynomial is a
polynomial in Z[t] defined as follows:

f(Θ)(t) := f0 + f1t+ · · ·+ fdt
d,

where fi(Θ) is the number of (i − 1)-dimensional faces of Θ, and f0(Θ) = 1. The h-
polynomial is given by

h(Θ)(t) := (1− t)df(Θ)

(
t

1− t

)
.
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When Θ is a homology sphere h(Θ) is symmetric (this is known as the Dehn-Sommerville
relations) hence it can be written

h(Θ)(t) =

b d
2
c∑

i=0

γit
i(1 + t)d−2i,

for some γi ∈ Z. Then the γ-polynomial is given by

γ(Θ)(t) := γ0 + γ1t+ · · ·+ γb d
2
ct
b d

2
c.

The vectors of coefficients of the f -polynomial, h-polynomial and γ-polynomial are known
respectively as the f -vector, h-vector and γ-vector.

If P is a simple d-dimensional polytope then the dual simplicial complex ΘP of P is
the boundary complex (of dimension d− 1) of the polytope that is polar dual to P . The
dual simplicial complex of a d-dimensional cube is the boundary complex of the cross
polytope and is denoted Σd−1. Shaving a codimension two face of a simple polytope is
equivalent to the stellar subdivision in an edge of the dual simplicial complex. The set
of simplicial complexes that can be obtained from Σd−1 by stellar subdivisions in edges is
denoted sd(Σd−1). By Corollary 5 the simplicial complexes in sd(Σd−1) are flag homology
spheres.

Recall that nestohedra are a broad class of simple polytopes introduced in [15] and
[16]. Volodin [17] has shown that any d-dimensional flag nestohedron can be obtained
from shaving codimension two faces of the d-dimensional cube. Hence, the set sd(Σd−1)
includes the dual simplicial complex to d-dimenisonal flag nestohedra.

Gal conjectured:

Conjecture 1. [10, Conjecture 2.1.7]. If Θ is a flag homology sphere then γ(Θ) is non
negative.

Gal’s conjecture was proved for all Θ in the class sd(Σd−1) by Volodin in [17, Theorem
9]. This work was done with polytopes rather than their dual simplicial complexes.
Further progress on Gal’s conjecture was made in Athanasiadis in [4], where he studies
subdivisions of Σd−1 of a more general kind.

Nevo and Petersen conjectured the following strengthening of Gal’s conjecture:

Conjecture 2. [13, Problem 6.4]. If Θ is a flag homology sphere then γ(Θ) is the f -
polynomial of a flag simplicial complex.

They proved this in [13] for the following classes of flag simplicial spheres:

• Θ is a Coxeter complex,

• Θ is the simplicial complex dual to an associahedron,

• Θ is the simplicial complex dual to a cyclohedron,
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• Θ has γ1(Θ) 6 3,

This Conjecture is also supported by the more recent results of Labbé and Nevo in
[12]. Aisbett has shown in [1] that this conjecture holds for the dual simplicial complex
of all flag nestohedera. In this paper we prove Conjecture 2 for all Θ ∈ sd(Σd−1):

Theorem 3. Suppose that Θ ∈ sd(Σd−1). Then there is a flag simplicial complex ∆(Θ)
such that f(∆(Θ)) = γ(Θ).

The definition of ∆(Θ) given in this paper is dependent upon the sequence of subdi-
visions of Σd−1 that produce Θ. For dimensions 2 and 3 the required complex is a set of
γ1(Θ) points. For dimensions 4 and 5 the required complex is a graph with γ1(Θ) vertices
and γ2(Θ) edges without triangles. This construction coincides with the simplicial com-
plexes defined in [1] when Θ is the dual simplicial complex of a flag nestohedron, a proof
of which can be found in [2]. This is not immediately obvious, since the definition in [1]
used the language of building sets.

Frohmader [9, Theorem 1.1] showed that the f -vector of any flag simplicial complex
satisfies the Frankl-Füredi-Kalai inequalities (see [8]). So Theorem 1.3 implies that γ(Θ)
satisfies the Frankl-Füredi-Kalai inequalities, for all Θ ∈ sd(Σd−1). In [14] Nevo, Petersen
and Tenner show that the f -vector of the barycentric subdivision of a homology sphere
satisfies the Frankl-Füredi-Kalai inequalitites.

The main result of this paper was proven independently by Volodin in [19] and [18],
and by Aisbett in [3]. The current paper is an amalgamation of the authors’ results.
The results and constructions discussed in this article formed the basis of the theory of a
wide class of polyhedra, the theory of 2-truncated cubes; see [5, 6]. This theory has been
developed and found applications in the framework of Toric topology, a new direction of
algebraic topology; see [7].

2 Definitions

A simplicial complex Θ with a finite vertex set VΘ is a set of subsets of VΘ such that

• {i} ∈ Θ for every i ∈ VΘ, and

• if I ∈ Θ, and J ⊆ I, then J ∈ Θ.

Elements of a simplicial complex are called faces, and the dimension of a face F is equal
to |F | − 1. Faces of dimension 0 are called vertices, faces of dimension 1 are called edges,
and a facet is a face that is not properly contained in any other face. The dimension of a
simplicial complex is the maximal dimension of all its faces. The 1-dimensional simplicial
complex that consists of the 0 and 1-dimensional faces of a simplicial complex Θ is called
the 1-skeleton of Θ. Observe that a 1-dimensional simplicial complex is also a graph, so
we will use graph terminology when referring to 1-skeletons.

A simplicial complex is flag if for every set S ⊆ VΘ with the property that {a, b} ∈ Θ
for all a, b ∈ S, the set S is a face of Θ. A flag simplicial complex Θ is determined by
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its underlying 1-skeleton, since the faces of Θ are those subsets of vertices that form a
complete graph.

Suppose Θ is a simplicial complex with vertices VΘ. If W ⊆ VΘ, then Θ|W denotes
the restriction of Θ to W . The restriction Θ|W is the simplicial complex with vertex set
W , such that F is a face in Θ|W if and only if F is a face in Θ. A subcomplex of Θ is a
simplicial complex whose vertex set is a subset of VΘ, and whose faces form a subset of
the faces of Θ.

The link of a face F in a simplicial complex Θ, denoted lkΘ(F ), is the following
subcomplex of Θ:

lkΘ(F ) := {G ∈ Θ | G ∪ F ∈ Θ, G ∩ F = ∅}.

If a simplicial complex Θ is flag, then lkΘ(F ) is the restriction of Θ to the set of vertices
in VΘ − F that are adjacent to every vertex in F .

The stellar subdivision or subdivision of a simplicial complex Θ in the face F is the
simplicial complex Θ′ given by:

• Θ′ has vertices VΘ′ = VΘ ∪ {s} where s 6∈ VΘ,

• if G ∈ Θ and F 6⊆ G, then G ∈ Θ′,

• if H ∈ Θ, F 6⊆ H, and H ∪ F ∈ Θ, then H ∪ {s} ∈ Θ′.

If F is simplex, we denote by F ◦ the stellar subdivision of F in the face F .
If Θ1 and Θ2 are simplicial complexes, then the join of Θ1 and Θ2, denoted Θ1 ∗ Θ2,

is the simplicial complex on the vertex set VΘ1 ∪ VΘ2 defined by

Θ1 ∗Θ2 := {F1 ∪ F2 | F1 ∈ Θ1, F2 ∈ Θ2}.

Simplicial complexes Θ1 and Θ2 are equivalent, denoted Θ1
∼= Θ2, if there is an inclusion

preserving bijection between their faces.

Claim 4. (See [4, End of Section 2]). If Θ is a flag simplicial complex, and we perform
a stellar subdivision on an edge S of Θ to obtain the simplicial complex Θ′, then Θ′ is a
flag simplicial complex.

Proof. Consider a set L of vertices of Θ′ such that any pair of vertices in L is an edge in
Θ′. We will show that L ∈ Θ′.

If s 6∈ L then every two element subset of L does not include s, hence they were in Θ.
This implies that L was in Θ and since S 6⊆ L this implies that L ∈ Θ′.

Suppose that s ∈ L. Let H denote L \ {s}. Then all two element sets in H are in Θ
so that H ∈ Θ. Since {s} ∪ {v} ∈ Θ′ for all v ∈ H this implies that {v} ∪ S ∈ Θ for all
v ∈ H. This implies that H ∪ S ∈ Θ since Θ is flag, and hence that L ∈ Θ′.

Recall that sd(Σd−1) denotes the set of simplicial complexes that can be obtained from
Σd−1 by a sequence of edge subdivisions.
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Corollary 5. The simplicial complexes in sd(Σd−1) are flag homology spheres.

Proof. The simplicial complexes in sd(Σd−1) are flag by Claim 4, and they are homology
spheres since stellar subdivisions do not change the topology of the simplicial complex.

The following Proposition assists us in our purpose of proving the main result of this
paper, Theorem 10. It describes how the γ-polynomial of a flag homology sphere changes
under an edge subdivision.

Proposition 6. [10, Proposition 2.4.3]. Suppose Θ′ is a flag homology sphere obtained
from a flag homology sphere Θ by stellar subdividing an edge S. Then

γ(Θ′)− γ(Θ) = tγ(lkΘ(S)).

Proof. If we stellar subdivide a face F in a simplicial complex Θ to obtain Θ′, the change
in the f -vector is

f(Θ′)− f(Θ) = f(F ◦ ∗ lk(F ))− f(F ∗ lk(F )),

since the set of faces in Θ− Θ′ is F ∗ lk(F ) and the set of faces in Θ′ − Θ is F ◦ ∗ lk(F ).
In general for simplicial complexes A and B we have

f(A ∗B) = f(A)f(B).

Hence
f(Θ′)− f(Θ) = f(lkΘ(S))[f(S◦)− f(S)]

= f(lkΘ(S))[1 + 3t+ 2t2 − (1 + 2t+ t2)] = f(lkΘ(S))[t(1 + t)].

If Θ is of dimension (d− 1), then

h(Θ′)− h(Θ) = (1− t)df(lkΘ(S))

(
t

1− t

)[
t

1− t

(
1 +

t

1− t

)]

= (1− t)df(lkΘ(S))

(
t

1− t

)[
t

(1− t)2

]
= t(1− t)d−2f(lkΘ(S))

(
t

1− t

)
= t · h(lkΘ(S)).

So

γ(Θ′)

(
t

(1 + t)2

)
− γ(Θ)

(
t

(1 + t)2

)
=

t

(1 + t)2
γ(lkΘ(S))

(
t

(1 + t)2

)
.

The result follows.
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3 Subdivision sequences

For the purposes of this argument, say that a subdivision sequence is a sequence of sim-
plicial complexes

(Θ0,Θ1, . . . ,Θm)

where Θ0 is equivalent to Σd−1 for some d and each Θi (i = 1, . . . ,m) is obtained from
Θi−1 by subdividing an edge. (Not up to equivalence, but literally, so the set of vertices of
Θi consists of the set of vertices of Θi−1 together with one new vertex). For i = 1, 2, . . . ,m
we label the unique vertex of Θi that is not contained in Θi−1 by wi, so that VΘi − VΘ0 =
{w1, w2, . . . , wi} for all i.

Suppose that (Θ0,Θ1, . . . ,Θm) is a subdivision sequence, and that we have subdivided
Θm−1 in the face G = {ga, gb} to obtain Θm. Define a set of vertices V m(F ) (a subset of
w1, . . . , wm) for each face F ∈ Θm inductively as follows:
Let

V m(F ) = ∩v∈FV m({v}),

and let

V m({wm}) = V m−1(G),

V m({v}) = V m−1({v}) ∪ {wm} if {wm} ∈ lkΘm({v}) and v 6∈ {ga, gb}, and

V m({v}) = V m−1({v}), otherwise.

When no subdivisions are performed let V 0({v}) = ∅ for all {v} ∈ Σd−1 = Θ0.
Define a flag simplicial complex ∆(Θm) inductively as follows. Obtain the one-skeleton

of ∆(Θm) by attaching wm to the vertices in V m−1(G) of ∆(Θm−1), and let ∆(Θ0) = ∅.
For all m, and for all F ∈ Θm, let ∆m(F ) denote the flag simplicial complex ∆(Θm)|Vm(F ),
so that V m(F ) = V∆m(F ).

Suppose (Θ0, . . . ,Θm) is a subdivision sequence, and that the face G = {ga, gb} of
Θm−1 is subdivided to obtain Θm. Observe that every F ∈ Θm lies in one of the following
five sets:

F1 : = {F ∈ Θm | ga or gb ∈ F, and wm 6∈ F},
F2 : = {F ∈ Θm | ga or gb ∈ F, and wm ∈ F},
F3 : = {F ∈ Θm | ga, gb 6∈ F, and wm ∈ F},
F4 : = {F ∈ Θm | ga, gb, wm 6∈ F, and {wm} ∈ lkΘm(F )},
F5 : = {F ∈ Θm | ga, gb, wm 6∈ F, and {wm} 6∈ lkΘm(F )}.

The following lemma, which describes how the vertex sets V m(F ) change under an edge
subdivision, is used to prove Proposition 8, which describes how the simplicial complexes
∆m(F ) change under edge subdivisions. For ease of notation we will write V m(v) rather
than V m({v}) for vertices v.

Lemma 7. Suppose (Θ0,Θ1, . . . ,Θm) is a subdivision sequence, and that Θm−1 is subdi-
vided in the edge G = {ga, gb} to obtain Θm. Then
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if F ∈ F1, then
V m(F ) = V m−1(F ),

if F ∈ F2 and ga ∈ F , then

V m(F ) = V m−1(F − {wm} ∪ {gb}),

and the same result is true with ga and gb swapped,

if F ∈ F3, then
V m(F ) = V m−1(F − {wm} ∪G),

if F ∈ F4, then
V m(F ) = V m−1(F ) ∪ {wm},

if F ∈ F5, then
V m(F ) = V m−1(F ).

Proof. Suppose F ∈ F1. Without loss of generality we assume that ga ∈ F . Then

V m(F ) = ∩v∈F V m(v)

=V m(ga) ∩v∈F\{ga} V m(v)

=V m−1(ga) ∩v∈F\{ga} V m−1(v)

=V m−1(F ).

The third equality follows from the fact that for any v ∈ F\{ga} either V m(v) =
V m−1(v) or V m(v) = V m−1(v) ∪ {wm}, and wm 6∈ V m(ga).

Suppose that F ∈ F2, and without loss of generality that ga ∈ F . Then

V m(F ) = ∩v∈F V m(v)

=V m(ga) ∩ V m(wm) ∩v∈F\{ga,wm} V
m(v)

=V m−1(ga) ∩ V m−1(gb) ∩v∈F\{ga,wm} V
m−1(v)

=V m−1(F − {wm} ∪ {gb}).

The third equality follows from the fact that V m(wm) = V m−1(ga) ∩ V m−1(gb), and
the fact that for all v ∈ F\{ga, wm}, V m(v) = V m−1(v) ∪ {wm} however wm 6∈ V m(ga).

Suppose that F ∈ F3. Then

V m(F ) = ∩v∈F V m(v)

=V m(wm) ∩v∈F\{wm} V
m(v)

=V m−1(ga) ∩ V m−1(gb) ∩v∈F\{wm} V
m−1(v)

=V m−1(F − {wm} ∪G).

The third equality follows from the fact that V m(wm) = V m−1(ga) ∩ V m−1(gb), and
the fact that for all v ∈ F\{wm}, V m(v) = V m−1(v) ∪ {wm} however wm 6∈ V m(wm).
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Suppose that F ∈ F4. Then

V m(F ) = ∩v∈F V m(v)

= ∩v∈F (V m−1(v) ∪ {wm})
=V m−1(F ) ∪ {wm}.

Suppose that F ∈ F5. Then

V m(F ) = ∩v∈F V m(v)

= ∩v∈F V m−1(v)

=V m−1(F ).

The second equality follows from the fact that for all v ∈ F either V m(v) = V m−1(v)
or V m(v) = V m−1(v) ∪ {wm}. Since not every vertex in F is adjacent to wm, this implies
that for some v ∈ F , we have V m(v) = V m−1(v).

Proposition 8. Suppose (Θ0,Θ1, . . . ,Θm) is a subdivision sequence. Then

if F ∈ F1 then
∆m(F ) = ∆m−1(F ),

if F ∈ F2 and ga ∈ F , then

∆m(F ) = ∆m−1(F − {wm} ∪ {gb}),

and the same result holds with ga and gb swapped,

if F ∈ F3 then
∆m(F ) = ∆m−1(F − {wm} ∪G),

if F ∈ F4 then

∆m(F ) = ∆m−1(F ) ∪∆m−1(F ∪G) ∗ {wm},

if F ∈ F5 then
∆m(F ) = ∆m−1(F ).

Proof. Suppose that F ∈ F1. Then since V m(F ) = V m−1(F ), and ∆(Θm) is obtained
from ∆(Θm−1) by adding faces that contain wm only, it follows immediately that ∆m(F ) =
∆m−1(F ).

Suppose that F ∈ F2. Then V m(F ) = V m−1(F −{wm}∪{gb}) which is a subset of the
vertices of ∆(Θm−1), hence it follows immediately that ∆m(F ) = ∆m−1(F −{wm}∪{gb}).
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Suppose that F ∈ F3. Then since V m(F ) = V m−1(F − {wm} ∪G) it follows immedi-
ately that ∆m(F ) = ∆m−1(F − {wm} ∪G).

Suppose that F ∈ F4. Then V m−1(F ) ∩ V m−1(G) = ∩v∈FV m−1(v) ∩ V m−1(ga) ∩
V m−1(gb) = V m−1(F ∪G). Now V m(F ) = V m−1(F ) ∪ {wm}, and since wm is adjacent to
the vertices V m−1(G) in ∆(Θm) this implies wm is adjacent to the vertices V m−1(F ∪G)
within V m−1(F ). Therefore ∆m(F ) = ∆m−1(F ) ∪∆m−1(F ∪G) ∗ {wm}.

Suppose that F ∈ F5. Then since V m(F ) = V m−1(F ) it follows immediately that
∆m(F ) = ∆m−1(F ).

4 The main theorem

In this section, we will prove the main result of this paper, Theorem 10. We first prove a
seemingly more general form of this theorem, Theorem 9. It shows that if (Θ0, . . . ,Θm)
is a subdivision sequence, then the Nevo and Petersen Conjecture holds for the link of all
faces in Θm. However, for all faces F ∈ Θm, it is true that lkΘm(F ) ∈ sd(Σd′) for some
d′ 6 d− 1, so this theorem is not a generalisation of Theorem 10.

Theorem 9. Suppose that F ∈ Θm. Then f(∆m(F )) = γ(lkΘm(F )).

Proof. We suppose that this holds by induction for all k < m. When m = 0, for all faces
F ∈ Θ0 = Σd−1 we have that

f(∆0(F )) = 1

and
γ(lkΘ0(F )) = 1.

Suppose that F ∈ Θm.

If F ∈ F1 then ∆m(F ) = ∆m−1(F ) and lkΘm(F ) ∼= lkΘm−1(F ), so that

f(∆m(F )) = f(∆m−1(F )) = γ(lkΘm−1(F )) = γ(lkΘm(F )).

Suppose that F ∈ F2. Then ∆m(F ) = ∆m−1(F−{wm}∪{gb}), and lkΘm(F ) ∼= lkΘm−1(F−
{wm} ∪ {gb}), so that

f(∆m(F )) = f(∆m−1(F − {wm} ∪ {gb})) = γ(lkΘm−1(F − {wm} ∪ {gb})) = γ(lkΘm(F )).

Suppose that F ∈ F3. Then ∆m(F ) = ∆m−1(F −{wm}∪G), and lkΘm(F ) ∼= lkΘm−1(F −
{wm}∪G)∗Σ0, where Σ0 is the complex with two non-adjacent vertices ga, gb. Therefore,
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f(∆m(F )) =f(∆m−1(F − {wm} ∪G))

=γ(lkΘm−1(F − {wm} ∪G))

=γ(lkΘm−1(F − {wm} ∪G))γ(Σ0)

=γ(lkΘm−1((F − {wm} ∪G) ∗ Σ0)

=γ(lkΘm(F )).

Suppose F ∈ F4. Then ∆m(F ) = ∆m−1(F )∪∆m(F ∪G)∗{wm}, and lkΘm(F ) is obtained
by subdividing lkΘm−1(F ) in the edge G. Therefore, by Proposition 6

f(∆m(F )) = f(∆m−1(F )) + tf(∆m−1(F ∪G)),

and

γ(lkΘm(F )) =γ(lkΘm−1(F )) + tγ(lklkΘm−1 (F )(G))

=γ(lkΘm−1(F )) + tγ(lkΘm−1(F ∪G))

and since f(∆m−1(F )) = γ(lkΘm−1(F )) and f(∆m−1(F ∪ G)) = γ(lkΘm−1(F ∪ G)) this
implies that

f(∆m(F )) = γ(lkΘm(F )).

Suppose F ∈ F5. Then ∆m(F ) = ∆m−1(F ), and lkΘm(F ) = lkΘm−1(F ), so that

f(∆m(F )) = f(∆m−1(F )) = γ(lkΘm−1(F )) = γ(lkΘm(F )).

Note that the empty face ∅ ∈ Θm has link Θm, i.e. lkΘm(∅) = Θm. Observe also that
∅ ∈ F4 for all m, and V m(∅) = {w1, . . . , wm}, so that ∆m(∅) = ∆(Θm). This, along
with Theorem 9 immediately implies the main result of this paper:

Theorem 10.
f(∆(Θm)) = γ(Θm).

Theorem 11 ([8, Frankl-Füredi-Kalai]). Denote by
(
n
k

)
r

the number of k-cliques in the
Turan graph Tn,r. For natural numbers m, k and r > k there exists a unique canonical
representation

m =

(
nk
k

)
r

+ · · ·+
(
nk−s
k − s

)
r−s
,

where nk−1 − bnk−i

r−i c for all 0 6 i < s and nk−s > k − s > 0. Define

m〈k〉r =

(
nk
k + 1

)
r

+ · · ·+
(

nk−s
k − s+ 1

)
r−s
.

The integer vector (f0, . . . , fn) with non-negative components is the f -vector of some r-

colorable simplicial complex K if and only if fk 6 f
〈k〉r
k−1 .
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Then, using the Frankl-Füredi-Kalai inequalities we obtain the following result:

Corollary 12. Let Θ ∈ sd(Σd−1). Then 0 6 γi 6 γ
〈k〉r
k , where k > 1, r = bn

2
c.

Let us apply the obtained result to polytopes of dimensions 4 and 5. Their γ-vectors
have only 3 components: (1, γ1, γ2). In this case we obtain a graph with γ1 vertice and γ2

edges without triangles. Therefore, we have 3 inequalities:

1. γ1 > 0;

2. γ2 > 0;

3. γ2 6
γ1(γ1−1)

2
.
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