
Enumerating Parking Completions

Using Join and Split∗

Ayomikun Adeniran
Department of Mathematics

Texas A&M University
Texas, U.S.A.

ayoijeng88@tamu.edu

Steve Butler†

Department of Mathematics
Iowa State University

Iowa, U.S.A.

butler@iastate.edu

Galen Dorpalen-Barry
School of Mathematics
University of Minnesota

Minnesota, U.S.A.

dorpa003@umn.edu

Pamela E. Harris
Department of Mathematics and Statistics

Williams College
Massachusetts, U.S.A.

peh2@williams.edu

Cyrus Hettle
School of Mathematics

Georgia Institute of Technology
Georgia, U.S.A.

chettle@gatech.edu

Qingzhong Liang
Department of Mathematics

Duke University
North Carolina, U.S.A.

qingzhong.liang@duke.edu

Jeremy L. Martin‡

Department of Mathematics
University of Kansas

Kansas, U.S.A.

jlmartin@ku.edu

Hayan Nam
Department of Mathematics

Iowa State University
Iowa, U.S.A.

hnam@iastate.edu

Submitted: Dec 3, 2019; Accepted: Apr 8, 2020; Published: Jun 12, 2020

c©The authors. Released under the CC BY-ND license (International 4.0).

∗This work was completed in part at the 2018 Graduate Research Workshop in Combinatorics, which
was supported in part by NSF grants #1604458 and #1603823, NSA grant #H98230-18-1-0017, a gener-
ous award from the Combinatorics Foundation, and Simons Foundation Collaboration Grants #426971
(to M. Ferrara) and #316262 (to S. Hartke).
†SB was supported in part by Simons Foundation Collaboration Grant #427264.
‡JLM was supported in part by Simons Foundation Collaboration Grant #315347.

the electronic journal of combinatorics 27(2) (2020), #P2.44 https://doi.org/10.37236/9194

https://doi.org/10.37236/9194


Abstract

Given a strictly increasing sequence t with entries from [n] := {1, . . . , n}, a
parking completion is a sequence c with |t|+ |c| = n and |{t ∈ t | t 6 i}|+ |{c ∈ c |
c 6 i}| > i for all i in [n]. We can think of t as a list of spots already taken in a
street with n parking spots and c as a list of parking preferences where the i-th car
attempts to park in the ci-th spot and if not available then proceeds up the street
to find the next available spot, if any. A parking completion corresponds to a set of
preferences c where all cars park.

We relate parking completions to enumerating restricted lattice paths and give
formulas for both the ordered and unordered variations of the problem by use of a
pair of operations termed Join and Split. Our results give a new volume formula
for most Pitman-Stanley polytopes, and enumerate the signature parking functions
of Ceballos and González D’León.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

Let [n] = {1, . . . , n}. A parking function is a sequence c = (c1, . . . , cn) ∈ [n]n such that
there exists a permutation σ of [n] such that cσ(i) 6 i for all i ∈ [n]. The name “parking
function” comes from the following setup: n cars attempt to park in a one-way street with
spots labeled from 1 to n. The i-th car parks at its preferred spot ci, if it is available;
otherwise, it parks at the first available spot after ci. If all spots from ci on are filled,
then the i-th car cannot park. A parking function is then a sequence of preferences so
that all n cars are able to park. It is well known that the number of parking functions
of length n is (n+ 1)n−1, and the number of increasing parking functions (i.e., increasing
rearrangements of parking functions) is the Catalan number Cn = 1

n+1

(
2n
n

)
. In addition,

both parking functions and increasing parking functions can be interpreted as labeled and
unlabeled lattice paths, respectively. For more on parking functions and their extensive
combinatorial connections, see the survey by Yan [18].

Suppose that m of the n spots are already taken. We want to determine the possible
preferences for n − m cars so that they can all successfully park. We call the set of
successful preference sequences the parking completions for a sequence t = (t1, . . . , tm)
where the entries of t denote which spots are taken in increasing order. We will let
PCn(t) denote the set of parking completions of t in [n] and IPCn(t) denote the set of
(weakly) increasing parking completions of t in [n].

Theorem 1.1. The number of parking completions of t = (t1, . . . , tm) in [n] is

∣∣PCn(t)
∣∣ =

∑
`∈Ln(t)

(
n−m

`

)m+1∏
j=1

(`j + 1)(`j−1),

where

Ln(t) =

{
` = (`1, . . . , `m+1) ∈ Nm+1

∣∣∣∣ `1 + · · ·+ `j > tj − j for all j ∈ [m], and
`1 + · · ·+ `m+1 = n−m

}
.
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The notion of parking completions unifies work of Yan [17], Gessel–Seo [8] (under
the name of c-parking functions), and Ehrenborg–Happ [5, 6], who studied the case t =
(1, . . . , `), and Diaconis–Hicks [4], who considered the case that t = (i) for some i ∈ [n].
Although it is not immediate, Theorem 1.1 implies the following generalization of Diaconis
and Hicks’ enumeration of parking function shuffles [4, Corollary 1].

Corollary 1.2. Let m,n > 1 and let 1 6 i 6 n−m. Then

|PCn((i+ 1, . . . , i+m))
∣∣ =

n−m∑
k=i

(
n−m
k

)
(k + 1)k−1m(n− k)n−k−m−1.

For increasing parking completions, there is a similar result.

Theorem 1.3. The number of increasing parking completions of t = (t1, . . . , tm) in [n] is

∣∣IPCn(t)
∣∣ =

∑
`∈Ln(t)

m+1∏
i=1

1

`i + 1

(
2`i
`i

)
,

where

Ln(t) =

{
` = (`1, . . . , `m+1) ∈ Nm+1

∣∣∣∣ `1 + · · ·+ `j > tj − j for all j ∈ [m], and
`1 + · · ·+ `m+1 = n−m

}
.

For the special case t = () (where no spots are taken), these formulas become∣∣PCn(t)
∣∣ = (n + 1)n−1 and

∣∣IPCn(t)
∣∣ = 1

n+1

(
2n
n

)
, the classical counts for parking func-

tions and increasing parking functions, respectively. Theorems 1.1 and 1.3 also admit
weighted analogues (equations (3) and (4) respectively) that enumerate parking functions
and increasing parking functions by the sums of their entries.

Parking completions turn out to be a mild specialization of what were called generalized
x-parking functions in [17]. Pitman and Stanley [16, Theorem 1] showed that the number
of x-parking functions equals the volume of what is now called a Pitman-Stanley polytope,
and gave a formula which our Theorem 1.2 superficially resembles. In fact the two formulas
are not equivalent, often producing incomparable expressions for the number of parking
completions as a composition (see Example 5.1), so that Theorem 1.2 provides a new
volume formula for (most) Pitman-Stanley polytopes,

Rational Catalan combinatorics is a recent development that has attracted significant
attention (see [1, 2, 9, 10]). The essential idea is to replace the condition ci 6 i in the
definition of an increasing parking function with ci 6 qi, where q is a rational number.
Ceballos and González D’León [3] studied a further generalization, signature Catalan com-
binatorics. Signature parking functions correspond to labeled lattice paths constrained
to lie in some fixed Ferrers diagram. There is in fact an easy bijection (Proposition 5.4)
between increasing parking completions and the signature Dyck paths of [3], raising the
possibility of applying our results to signature and rational Catalan combinatorics.

The paper will proceed as follows. We begin with background on parking functions,
lattice paths, and tuples in Section 2. In Section 3, we introduce two inverse bijections
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Join and Split between lists of parking functions and arbitrary non-decreasing integer
sequences. These two maps are then used to prove the main results in Section 4. In
Section 5, we discuss the applications to Pitman–Stanley polytopes and to signature
Catalan combinatorics.

The authors thank two anonymous referees for their careful readings and constructive
suggestions.

2 Preliminaries

In this section, we give the necessary definitions and conventions for the rest of the paper.

2.1 Parking Completions and Lattice Paths

Let t = (t1, . . . , tm) be a (strictly) increasing list of elements from [n] and let u =
(u1, . . . , un−m) be the list of elements of [n] \ {t1, . . . , tm}, sorted in (strictly) increas-
ing order. If we think of t as the taken spots, then u can be interpreted as the unoccupied
spots.

Definition 2.1. An increasing parking completion of t is a weakly increasing sequence
(c1, . . . , cn−m) ∈ [n]n−m such that (t1, . . . , tm, c1, . . . , cn−m) is a parking function. Equiva-
lently, the sequence satisfies ci 6 ui for all i. The set of all increasing parking completions
of t will be denoted IPCn(t).

A (ordinary) parking completion of t is a sequence c ∈ [n]n−m whose weakly increasing
rearrangement is an increasing parking completion of t. The set of all parking completions
of t will be denoted PCn(t).

It is immediate from the definition that parking completions of t are stable under
rearrangement.

We will explore parking completions and increasing parking completions using lattice
paths. A lattice path L from (1, 1) to (p+ 1, q+ 1) is a sequence of p right steps and q up
steps on the integer lattice Z2. Lattice paths with q up steps are in bijection with weakly
increasing nonnegative integer sequences c = (c1, . . . , cq): for each 1 6 i 6 q there is an
up step at x = ci. An example of a lattice path is shown in Figure 1.

1 2 3 4 5 6

Figure 1: A lattice path with p = q = 5 and c = (1, 1, 2, 3, 3).
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Proposition 2.2 ([14, Exercise 6.19(b),(s)]). There is a bijection between the lattice paths
with p = q = n that stay weakly above the diagonal (i.e., that contain no point (i, j) with
i > j) and increasing parking functions of length n.

We can modify this bijection to count increasing parking completions. Suppose that
t = (t1, . . . , tm) and u = (u1, . . . , un−m) are two increasing lists of integers whose disjoint
union as sets is [n]. Then

IPCn(t) = {(c1, . . . , cn−m) ∈ [n]n−m | ci 6 ui for all i and c1 6 · · · 6 cn−m}.

Consequently, we can describe IPCn(t) as the lattice paths lying weakly above and to the
left of the points (i, ui) for 1 6 i 6 n−m.

Let λu = (u1 − 1, . . . , un−m − 1) be an integer partition (where the terms are in
increasing order), and let Fu denote the corresponding Ferrers diagram (using the English
convention). Then ∣∣IPCn(t)

∣∣ =
∣∣{lattice paths in Fu}

∣∣.
We will illustrate this in Example 2.4.

We can use known results to count these lattice paths. The Lindström-Gessel-Viennot
lattice path theorem ([15, Theorem 2.7.1]; see also [15, Exercise 3.149]) implies the fol-
lowing.

Proposition 2.3. Let t = (t1, . . . , tm) and u = (u1, . . . , un−m) be two increasing lists of
integers whose disjoint union as sets is [n]. Then

∣∣IPCn(t)
∣∣ = det

[(
un−m+1−i

i− j + 1

)]n−m
i,j=1

.

Example 2.4. Let n = 4, m = 2, t = (1, 3) and u = (2, 4) (so λu = (1, 3)). The lattice
paths in Fu are shown in Figure 2.

1 2 3 4

(2, 4)
1 2 3 4

(2, 3)
1 2 3 4

(2, 2)
1 2 3 4

(1, 4)
1 2 3 4

(1, 3)
1 2 3 4

(1, 2)
1 2 3 4

(1, 1)

Figure 2: Lattice paths in F(2,4) and the corresponding increasing parking functions.

The computation from Proposition 2.3 gives:

∣∣IPC4((1, 3))
∣∣ = det

((
4
1

) (
4
0

)(
2
2

) (
2
1

)) = det

(
4 1
1 2

)
= 7.
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1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

Figure 3: The sub-lattice Fu for Example 2.5.

Example 2.5. Let n = 8, m = 4, t = (1, 2, 6, 7) and u = (3, 4, 5, 8) (so λ = (2, 3, 4, 7)).
Then the elements of IPC8(t) correspond to lattice paths from the bottom left to the top
right of Fu shown in Figure 3.

By Proposition 2.3,

∣∣IPC8((1, 2, 6, 7))
∣∣ = det


(
8
1

) (
8
0

) (
8
−1

) (
8
−2

)(
5
2

) (
5
1

) (
5
0

) (
5
−1

)(
4
3

) (
4
2

) (
4
1

) (
4
0

)(
3
4

) (
3
3

) (
3
2

) (
3
1

)

 = det


8 1 0 0
10 5 1 0
4 6 4 1
0 1 3 3

 = 146.

We can extend the bijection between lattice paths and increasing parking completions
to decorated lattice paths L and general (not necessarily increasing) parking completions.
Given a parking completion c, label each up step of L with the index i for which ci is
its x-coordinate (requiring that labels of consecutive up steps increase bottom to top).
For example, the sequence (4, 6, 1, 2, 4) corresponds to the decorated lattice path shown
in Figure 4.

1 2 3 4 5 6 7

3

4

1

5

2

Figure 4: A decorated lattice path corresponding to (4, 6, 1, 2, 4).

2.2 Operations with Lists

In this section we set up notation for manipulation of lists, which will be necessary for
studying parking completions.

Definition 2.6. If a = (a1, . . . , ak) and b = (b1, . . . , b`) are lists, then we have the
following conventions:
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1. a⊕ x = (a1 + x, . . . , ak + x) denotes adding the value x to each entry of the list,

2. a	 x = (a1 − x, . . . , ak − x) denotes subtracting the value x from each entry of the
list, and

3. a • b = (a1, . . . , ak, b1, . . . , b`) denotes the concatenation of two lists.

Definition 2.7. A shuffle of the lists a(1), . . . , a(k) is a word on the multiset union of the
letters of all the a(i) with the letters coming from each a(i) having their relative order
preserved. The set of all shuffles of a(1), . . . , a(k) is denoted Shuff(a(1), . . . , a(k)).

For example, we have

Shuff((a, b), (x, y)) = {(a, b, x, y), (a, x, b, y), (a, x, y, b), (x, a, b, y), (x, a, y, b), (x, y, a, b)}.

Note that

| Shuff(a(1), . . . , a(k))| 6
(
|a(1)|+ · · ·+ |a(k)|
|a(1)|, . . . , |a(k)|

)
(1)

with equality if no letter appears in more than one of the lists a(i).
Finally, let PF∗ (respectively, IPF∗) denote the set of all finite collections

C = (c(1), . . . , c(r))

of parking functions (respectively, increasing parking functions). The sizes of the c(i) do
not have to be the same, and we also allow c(i) to be an empty list. In some cases, it may
be convenient to regard an element of PF∗ or IPF∗ as an infinite collection (c(1), c(2), . . . ),
where c(i) is the empty parking function for all i sufficiently large. The size of C is
|C| =

∑
i |c(i)|.

3 The Join/Split Bijection

The goal for this section is to introduce a pair of size-preserving bijections

IPF∗
Join−−−−→
←−−−−
Split

{finite nondecreasing lists}.

The right hand side corresponds to all possible nondecreasing preference sequences, of all
finite lengths, for cars that could be produced. The maps Join and Split will be used to
prove Theorem 1.3 and then we will carry out an appropriate “reshuffling” to establish
Theorem 1.1.
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3.1 Visualization of Join and Split

Recall from §2.1 that every weakly increasing sequence of positive integers p = (p1, . . . , pn)
corresponds to a lattice path L := L(p), where the pi indicate the x-coordinates of up
steps. (We will follow the convention that the lattice path ends with infinitely many right
steps, which we truncate as needed.) The sequence p is a parking function if and only if
L never crosses below the line y = x. In other words, p is a parking function when L is
a Dyck path.

If p is not a parking function, then we can look at the first violation of L, namely the
first time that L crosses to the right of y = x. The first violation will always correspond
with a right step. An example of this is shown in Figure 5: the dashed line is y = x and
the first violation is marked with a black dot.

1 2 3 4 5 6 7 8 9

Figure 5: The lattice path L(1, 2, 2, 5, 8, 9) with the first violation of being a parking
function marked.

The portion of the lattice path that occurs before the first violation is a parking
function. The idea of Split is to decompose a lattice path as a sequence of parking
functions, connected by violating edges. More precisely, to compute Split(L), we proceed
as follows:

• Find the longest Dyck path that is a prefix of the current lattice path.

• Record the sequence of up steps before the first violation (which corresponds to the
longest prefix that can be made into a PF when decorated as in Figure 4).

• Shift coordinates so that the right endpoint of the first violation is now (1, 1), and
redraw the line y = x in the new coordinates.

• Repeat until all up steps have been processed.

As every lattice path L can be uniquely identified by a list of north steps p, we often abuse
notation and write Split(p), for Split(L(p)). The full process for applying Split to p =
(1, 2, 2, 5, 8, 9) is illustrated in Figure 6; the result is Split(p) = ((1, 2, 2), (1), (), (1, 2)).
Note that in the last step we added a right step to the end in order to meet with the
dashed line.
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1 2 3 4 5 6 7 8 9

1

2

2

a(1) = (1, 2, 2)

1 2 3 4 5

1

a(2) = (1)

1 2 3

a(3) = ()

1 2 3

1

2

a(4) = (1, 2)

Figure 6: Split((1, 2, 2, 5, 8, 9)) = ((1, 2, 2), (1), (), (1, 2)). All violations are marked with
black dots.

The Join operation, the reverse of Split, is even easier to visualize. Given a sequence
(a(1), . . . , a(r)) of parking functions, attach the corresponding (possibly empty) Dyck paths
end-to-end in order, inserting a right step (violation) between each. Then, write down
the list of x-coordinates of the up steps, in weakly increasing order.

3.2 Formal Definition of Join and Split

Definition 3.1. Let (a(1), . . . , a(r)) ∈ IPF∗. For each i ∈ [r], let `i = |a(i)|; let Li =
`1 + · · ·+ `i, by convention L0 = 0, and define b(i) = a(i) ⊕ (Li−1 + i− 1). Then

Join((a(1), . . . , a(r))) = b(1) • · · · • b(r).

Equivalently, Join can be defined recursively by

Join((a(1), . . . , a(r))) =

{
() if r = 0,

a(1) •
[
Join((a(2), . . . , a(r)))⊕ (`1 + 1)

]
if r > 0.

Note that Join((a(1), . . . , a(r))) is an increasing sequence because all entries in a(i) are at
most `i and so all entries in b(i) are at most `i + Li−1 + i− 1 = Li + i− 1; on the other
hand, the entries in b(i+1) are at least 1 + (Li + (i+ 1)− 1) = Li + i+ 1.

Definition 3.2. Let p = (p1, . . . , pn) be a nondecreasing sequence. If |p| = 0, then
Split(p) = (). Otherwise, Split is defined recursively as follows:

the electronic journal of combinatorics 27(2) (2020), #P2.44 9



Let a be the longest prefix of p that is a (possibly empty) IPF, and write p = a •q.
If q is not empty, then Split(p) = (a,Split(q	(|a|+1))); otherwise, Split(p) = a.

Alternatively, Split can be computed by the following iterative algorithm:

Initialize: p(0) := p; L0 := 0; r = 0
Loop: while |p(r)| > 0
r := r + 1
a(r) := the longest initial sequence of p(r−1) that is an IPF
q(r) := suffix of p(r−1) following a(r) (so that p(r−1) = a(r) • q(r))
Lr := Lr−1 + |a(r)|
p(r) := q(r) 	 (|a(r)|+ 1)

Output: (a(1), . . . , a(r))

Example 3.3. Let p = p(0) = (1, 2, 2, 5, 8, 9). The Split algorithm proceeds as follows:

r a(r) q(r) Lr p(r)

1 (1, 2, 2) (5, 8, 9) 3 (5, 8, 9)	 4 = (1, 4, 5)
2 (1) (4, 5) 4 (4, 5)	 2 = (2, 3)
3 () (2, 3) 4 (2, 3)	 1 = (1, 2)
4 (1, 2) () 6 ()

Thus, Split(p) = ((1, 2, 2), (1), (), (1, 2)).
If we take this output, ((1, 2, 2), (1), (), (1, 2)) ∈ IPF∗, and put it into Join, then we

have the following: (`1, `2, `3, `4) = (3, 1, 0, 2), (L1, L2, L3, L4) = (3, 4, 4, 6), and

Join((1, 2, 2), (1), (), (1, 2))

= [a(1) ⊕ (L0 + 0)] • [a(2) ⊕ (L1 + 1)] • [a(3) ⊕ (L2 + 2)] • [a(4) ⊕ (L3 + 3)]

= [(1, 2, 2)⊕ 0] • [(1)⊕ 4] • [()⊕ 6] • [(1, 2)⊕ 7]

= (1, 2, 2) • (5) • () • (8, 9) = (1, 2, 2, 5, 8, 9) = p.

Theorem 3.4. The functions Join and Split are mutual inverses, hence bijections.

Proof. If p is an IPF, then Split(p) = (p) and Join((p)) = p. Suppose that p is not an
IPF, then p = a • q where a is the maximal initial subsequence that is an IPF. Under
the map Split, this will be sent to (a,Split(q 	 (|a| + 1))). Conversely, given a list of
increasing parking functions of the form (a) • A under the map Join, this will be sent
to a • [Join(A) ⊕ (|a| + 1)]. In particular, the two maps preserve the first initial IPF.
Applying induction using q	 (|a|+ 1) and A establishes the result.

4 Enumerating (increasing) parking completions

We now use the Join and Split maps from §3 to establish the enumerative results.
Throughout this section we let t = (t1, . . . , tm) be the taken spots, and u = (u1, . . . , un−m)
be the unoccupied spots of [n]. We assume that t and u are in increasing order.
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Lemma 4.1. We have the following:

1. For all i, we have uti−i < ti < uti−i+1.

2. For all i, j we have j > ti − i+ 1 if and only if uj > j + i.

Proof. We know that ti− i is the number of unoccupied spots before ti. So the (ti− i)-th
unoccupied spot will occur to the left of ti, and the (ti − i + 1)-th unoccupied spot will
occur to the right of ti. This establishes assertion (1).

Assertion (1) can be restated as uti−i− (ti− i) < i and uti−i+1− (ti− i+ 1) > i. Since
the sequence (u1 − 1, u2 − 2, . . . ) is weakly increasing, it follows that uj − j > i if and
only if j > ti − i+ 1. This establishes assertion (2).

We want to relate an increasing parking completion with taken spots t with a list
A = (a(1), . . . ) of increasing parking functions. Informally, the idea is to “fill in” the gaps
between the taken spots (if too many cars are trying to squeeze into one gap, they can
move to the next). The first i increasing parking functions should park Li cars to fill at
least the first i gaps (and possibly additional spots), which translates into the condition
Li > ti − i. (Recall that Li = `1 + · · ·+ `i, where `i = |a(i)|.) We formalize this with the
following definition.

Definition 4.2. Let t = (t1, . . . , tm) with tm 6 n, A = (a(1), . . . , a(m+1)) ∈ IPF∗, and let

Li =
i∑

j=1

|a(j)| for i ∈ [m+ 1]. Then A is (n, t)-compatible if Li > ti − i for all i ∈ [m] and

Lm+1 = n−m. We write IPF∗n,t for the set of all (n, t)-compatible elements of IPF∗.

Example 4.3. Let A = ((1, 1, 2, 2), (1), (1), ()), so that m = 3 and (L1, . . . , Lm) =
(4, 5, 6, 6). Then A ∈ IPF∗9,(3,6,7) (because L4 = 6 = n − m = 9 − 3 and t = (3, 6, 7) 6
(4+1, 5+2, 6+3)) and A ∈ IPF∗10,(2,5,7,9), but A 6∈ IPF∗9,(6,7,8) (because L1 = 4 < t1−1 = 5).

We now establish the connection between IPF∗n,t and IPC.

Theorem 4.4. Let t = (t1, . . . , tm) with tm 6 n. Then Split(IPCn(t)) = IPF∗n,t and
Join(IPF∗n,t) = IPCn(t).

Proof. First, given A = (a(1), . . . , a(m+1)) ∈ IPF∗(n,t), we need to show that

Join(A) = (c1, . . . , cn−m) ∈ IPCn(t).

It is equivalent to show that ck 6 uk for all k ∈ [n−m]. Suppose that ck arises from a
(i+1)
j

(the j-th entry of a(i+1)). As in the previous section, let `i = |a(i)| and Li = `1 + · · ·+ `i.

Then k = Li + j and ck = Li + i+ a
(i+1)
j . Since a(i+1) is an increasing parking function, it

follows that a
(i+1)
j 6 j. So we have ck 6 Li+i+j = k+i 6 uk. The last inequality follows

from Lemma 4.1(2) since k = Li + j > (ti− i) + j > ti− i+ 1 and A is (n, t)-compatible.
Second, given p = (p1, . . . , pn−m) ∈ IPCn(t), we need to show that

A = (a(1), . . . , a(m+1)) = Split(p) ∈ IPF∗(n,t).
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Since A ∈ IPF∗ we need to show that Lm+1 = n − m (which follows by noting that
|A| = |p| = n−m) and that Li > ti− i for i ∈ [m]. Suppose, for the sake of contradiction,
that Li + i < ti for some i. The first term in a(i+1) will always be 1. Looking at the term
in p that the first term produces, we can conclude pLi+1 = Li + i+ 1. Since p is a weakly
increasing sequence, all other terms from that point forward in the output from Join will
be at least as large, showing that none of those cars can park in the spots at or before
Li + i. That leaves Li cars to fill the open spots in [Li + i]. This is impossible since there
are at most i−1 taken spots which have occurred on or before Li+ i and so at least Li+1
spots needing to be filled.

4.1 Enumeration of Increasing Parking Completions (Proof of Theorem 1.3)

By Theorem 4.4, there is a bijection between IPCn(t) and IPF∗n,t. To enumerate IPF∗n,t,
we group the elements of IPF∗n,t according to the sequence

(|a(1)|, . . . , |a(m+1)|) = (`1, . . . , `m+1);

note that in all cases `1 + · · ·+ `j > tj− j. Each a(i) corresponds to an increasing parking
function of length i, for which there are C`i = 1

`i+1

(
2`i
`i

)
possibilities. Putting this all

together we have ∣∣IPCn(t)
∣∣ =

∣∣IPF∗n,t∣∣ =
∑

`∈Ln(t)

m+1∏
i=1

1

`i + 1

(
2`i
`i

)
,

where

Ln(t) =

{
` = (`1, . . . , `m+1) ∈ Nm+1

∣∣∣∣ `1 + · · ·+ `j > tj − j for all j ∈ [m], and
`1 + · · ·+ `m+1 = n−m

}
. (2)

4.2 Enumeration of Ordinary Parking Completions (Proof of Theorem 1.1)

We now enumerate ordinary parking completions. In what follows, hatted symbols (such
as â) indicate sequences which need not be in increasing order; unhatted symbols (such
as a) indicate weakly increasing sequences. Given p̂ ∈ PCn(t), let p ∈ IPCn(t) be its
(unique) weakly increasing rearrangement. Let Split(p) = (a(1), . . . , a(m+1)) ∈ IPF∗, so
that

p = Join(Split(p)) = b(1) • · · · • b(m+1),

where b(i) = a(i) ⊕ (Li−1 + (i − 1)) and Li = `1 + · · · + `i with `i = |a(i)|. Moreover,
(b(1), . . . ,b(m+1)) is “setwise increasing”: if i < j, then every entry in b(i) is less than
every entry in b(j). Therefore, given ` = (`1, . . . , `m+1), the b(i), and therefore the a(i),
can be recovered from any shuffle of the b(i).

We now classify parking completions by the length sequences of their splits. For
` = (`1, . . . , `m+1), define

Ŝn,t(`) =
{

(â(1)⊕ (L0 + 0)) • · · · • (â(m+1)⊕ (Lm +m)) | â(i) ∈ PF and |â(i)| = `i for all i
}
.
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In particular,

|Ŝn,t(`)| =
m+1∏
j=1

(`j + 1)(`j−1).

Now consider the set Shuff(Ŝn,t(`)) (see Definition 2.7). As noted above, the m + 1
sequences a(i) ⊕ (Li−1 + (i − 1)) can be recovered individually from any shuffle of them.
Therefore, equality holds in (1):

| Shuff(Ŝn,t(`))| =
(
n−m

`

)
|Ŝn,t(`)| =

(
n−m

`

)m+1∏
j=1

(`j + 1)(`j−1).

Summing over all possible ` gives the final formula for the number of parking completions:

∣∣PCn(t)
∣∣ =

∑
`∈Ln(t)

(
n−m

`

)m+1∏
j=1

(`j + 1)(`j−1),

where Ln(t) is defined as in (2).

4.3 Sum Enumerators

In this subsection, we consider sum-weighted analogues of the main results. Let

A = (a(1), . . . , a(m+1)) ∈ IPF∗n,t,

so that p = Join(A) ∈ IPCn(t). Let `i = |a(i)| and Li = `1 + · · · + `i. For ` =
(`1, . . . , `m+1), define

ψ(`) =
m+1∑
i=1

`i(Li−1 + i− 1) = e2(`)− e1(`) +
m+1∑
i=1

i`i,

where e2 and e1 are elementary symmetric functions on m+1 variables and Li = `1+· · ·+`i
as in Definition 3.1. Then the definition of Join implies that

sum(p) =
m+1∑
i=1

(
sum(a(i)) + `i(Li−1 + i− 1)

)
= ψ(`) +

m+1∑
i=1

sum(a(i))

where sum(p) and sum(a(i)) denote the sums of the entries of p and a(i), respectively.
Therefore ∑

p∈IPCn(t)

qsum(p) =
∑

`∈Ln(t)

qψ(`)
m+1∏
i=1

∑
a∈IPF`i

qsum(a), (3)

where IPFk means the set of all increasing parking functions of length k and Ln(t) is
defined as in (2).
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As in §4.2, an ordinary parking completion p ∈ PCn(t) can be constructed by choosing
` = (`1, . . . , `m+1) ∈ Ln(t); choosing parking functions a(1), . . . , a(m+1) of lengths `; setting
b(i) = a(i)⊕ (Li−1 + i− 1); and taking p to be any of the

(
n−m
`

)
shuffles of the b(i)’s. The

upshot is that

∑
p∈PCn(t)

qsum(p) =
∑

`∈Ln(t)

(
n−m

`

)
qψ(`)

m+1∏
i=1

∑
a∈PF`i

qsum(a). (4)

The final summation is the sum enumerator for ordinary parking functions, which is
well studied. It carries, for instance, the same information as the specialization of the
Tutte polynomial TKn(x, y) of the complete graph Kn at y = 1 [12, Theorem 3.6], can
be computed recursively via the theory of Gončarov polynomials, and can be described
in terms of tree inversions [18, Theorem 1.4]; see also [7, Thm. 1.6], [11, Thm 6.4], and [13].

4.4 Parking Completions of a Block (Proof of Corollary 1.2)

We now specialize to the case that the taken spots consist of a contiguous block, i.e.,
t = (i+ 1, . . . , i+m). Parking completions with a single spot taken (m = 1, i arbitrary)
were enumerated by Diaconis and Hicks [4, Corollary 1], who showed (in our notation)
that ∣∣PCn((k))

∣∣ =
n−k∑
s=0

(
n− 1

s

)
(s+ 1)s−1(n− s)n−s−2. (5)

The case i = 0 with arbitrary m was first considered by Yan [17] under the name of
c-parking functions. Gessel and Seo [8, §10] showed that for ` 6 n,∣∣PCn((1, . . . , `))

∣∣ = (`+ 1)(n+ 1)n−`−1. (6)

This formula was generalized by Ehrenborg and Happ [6, Theorem 1.2] to the case of cars
of different sizes. Our Corollary 1.2, which we now prove, covers the case that both i and
m are arbitrary, generalizing both (5) and (6).

Let ĉ ∈ PCn((i+ 1, . . . , i+m)). Then ĉ is a shuffle of â with p̂⊕ (|â|+ 1), where â is
a parking function and p̂ is a parking completion (as in the discussion in §4.2). For the
remainder of our discussion we set k = |â|.

Because ĉ contains a violation immediately after â, it must be the case that the first k
cars (those whose preferences occur in â) fill at least the first i spots (and possibly more).
Hence i 6 k 6 n−m (the upper bound comes when â would park in all available spaces).
For a fixed choice of k there are (k + 1)k−1 possible choices for the parking function â.

After using the preferences from â, the first k+m spots will be filled. This means that
p̂ is a parking completion of [n−k−1] where the first m−1 spots are already taken (after
appropriate shifting). For a fixed k, formula (6) implies that there are m(n− k)n−k−m−1

such parking completions.
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We now have counts for â and p̂ for a particular choice of k. The last thing to note
is that we can combine them together by shuffling, and since the entries are distinct this
introduces the binomial coefficient

(
n−m
k

)
. So adding over all possible choices of k we have

|PCn((i+ 1, . . . , i+m))
∣∣ =

n−m∑
k=i

(
n−m
k

)
(k + 1)k−1m(n− k)n−k−m−1.

This establishes Corollary 1.2.
If we now sum over all of the possible t consisting of m continuous entries, the result

simplifies nicely.

Proposition 4.5. Let 1 6 m 6 n. Then
n−m∑
i=0

|PCn((i+ 1, . . . , i+m))
∣∣ = (n+ 1)n−m.

Proof. We use a variation of the classic proof that there are (n+ 1)n−1 parking functions.
Place the spots 1, . . . , n in a circle and add a new spot labeled 0. Each car drives to

its preferred spot and then travels, with wraparound, until it parks. Therefore, in this
setting all cars are able to park. We first select t, for which there are n + 1 possibilities,
and this fixes the first m locations of the cars. The remaining n −m cars now select an
arbitrary location and park; this can be done in (n+1)n−m ways. In each case exactly one
spot remains open, and by shifting all preferences each spot is equally likely to be open
over all combinations (so each spot has probability 1/(n + 1) of being open). A parking
completion corresponds to when 0 is the open spot; this happens (n+ 1)n−m times.

It is possible to more directly derive the result of Corollary 1.2 from Theorem 1.1.
Observe that setting `1 = k and t = (i+ 1, . . . , i+m), we can rewrite Theorem 1.1 as

∣∣PCn(t)
∣∣ =

n−m∑
k=i

(
n−m
k

)
(k + 1)k−1

∑
(`2,...,`m+1)�n−m−k

(
n−m− k
`2, . . . , `m+1

)m+1∏
j=2

(`j + 1)(`j−1).

where the symbol � denotes composition. Therefore, Corollary 1.2 will follow from the
following lemma, which gives a combinatorial interpretation of the inner sum.

Lemma 4.6. For all fixed k satisfying 1 6 k 6 n−m, we have

∑
(`2,...,`m+1)�n−m−k

(
n−m− k
`2, . . . , `m+1

)m+1∏
j=2

(`j + 1)`j−1 = m(n− k)n−k−m−1.

Proof. Fix `2, . . . , `m+1. The left-hand side of the desired equality is the number of trees
on vertices 1, . . . , n− k + 1 that can be constructed by the following procedure.

1. Start with m buckets labeled 2, . . . ,m+ 1.

2. Put each element of {m + 2, . . . , n − k + 1} into one of the buckets. (The buckets
are allowed to be empty.) Let Bi be the set of elements in the i-th bucket and let
`i = |Bi|.

the electronic journal of combinatorics 27(2) (2020), #P2.44 15



3. For each i ∈ {2, . . . ,m+ 1}, choose a tree Ti with vertices Bi ∪ {i}.

4. Add a new vertex 1 adjacent to each of 2, . . . ,m+ 1.

Steps (1) and (4) involve no choice, while there are
(
n−m−k
`2,...,`m+1

)
possibilities for step (2)

and
∏m+1

j=2 (`j + 1)`j−1 possibilities for step (3). The resulting trees are precisely those in
which vertex 1 has degree m and neighbors 2, . . . ,m+ 1.

The right-hand side counts the Prüfer codes for labeled trees of the form described
(where the Prüfer code is constructed by iteratively deleting the largest leaf vertex and
recording its neighbor). The last m entries of the code correspond to deleting vertices
2, . . . ,m+1, and are all 1. The (m+1)-th entry from the end must be one of 2, . . . ,m+1,
so there are m choices. The remaining n− k −m− 1 entries can be any number except
1, so there are n− k choices for each of them. This gives m(n− k)n−k−m−1 Prüfer codes,
finishing the proof.

5 Connections to Other Parking Function Variations

5.1 u-Parking Functions and Pitman-Stanley Polytopes

Let u = (u1, . . . , uN) ∈ NN with u1 6 · · · 6 uN . A u-parking function [18, §1.4.1]
is a sequence â ∈ NN whose non-decreasing rearrangement a = (a1, . . . , aN) satisfies
1 6 ai 6 ui for all i ∈ [N ].1 The set of all u-parking functions is denoted PF(u). Parking
completions are a special case of u-parking functions: if u1 < · · · < uN 6 n and t is the
strictly increasing complement of u in [n], then PF(u) = PCn(t).

Let x = ∆u = (u1, u2−u1, . . . , uN −uN−1). Pitman and Stanley [16, Theorem 1], [18,
Theorems 1.27 and 1.29] showed that the number of u-parking functions is

PN(x) = |PF(u)| = N !
∑
k∈KN

N∏
i=1

xkii
ki!

=
∑
k∈KN

(
N

k

)
xk11 · · ·x

kN
N (7)

where KN is the set of balanced sequences of length N , i.e.,

KN =

{
k ∈ NN

∣∣∣∣∣
j∑
i=1

ki > j for all j ∈ [N − 1] and
N∑
i=1

ki = N

}
.

The number PN(x)/N ! is the volume of the so-called Pitman-Stanley polytope

ΠN(x) =
{

y ∈ RN | yi > 0 and y1 + · · ·+ yi 6 x1 + · · ·+ xi for all i ∈ [N ]
}
.

In addition, there is a determinantal formula for |PF(u)| [18, Theorem 1.25], which
can be obtained using the theory of Gončarov polynomials:

|PF(u)| = det (sij)
N
i,j=1 , where sij =


uj−i+1
i

(j − i+ 1)!
if j + i− 1 > 0,

0 otherwise.

(8)

1In [18], which uses zero-indexing, this condition is written as 0 6 a′i < ui.
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The index set and summation formula in the Pitman-Stanley formula (7) strongly
resemble those of Theorem 1.1. However, the following example suggests that there does
not seem to be a simple translation between the two.

Example 5.1. Let n = 4, u = (1, 4), and t = (2, 3). Then

PCn(t) = PF(u) = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (4, 1)}.

In Theorem 1.1, the index set for the summation is

Ln(t) =
{
` = (`1, `2, `3) ∈ N3 | `1 > 1, `1 + `2 > 1, `1 + `2 + `3 = 2

}
= {(1, 1, 0), (1, 0, 1), (2, 0, 0)},

so Theorem 1.1 gives

|PCn(t)| =
(

2

1, 1, 0

)
20201−1 +

(
2

1, 0, 1

)
201−11−1 +

(
2

2, 0, 0

)
311−11−1

= 2 + 2 + 3 = 7.

On the other hand, setting N = |u| = 2 and x = ∆u = (1, 3), the balanced sequences
of length N are

K2 =
{
k = (k1, k2) ∈ N2 | k1 > 1, k1 + k2 = 2

}
= {(1, 1), (2, 0)},

so the Pitman-Stanley formula (7) gives

PN(x) = |PF(u)| =
(

2

1, 1

)
1131 +

(
2

2, 0

)
1230 = 6 + 1 = 7.

Neither of the compositions 6 + 1 and 3 + 2 + 2 of |PF(u)| = 7 refines the other, making
it unlikely that either (7) or Theorem 1.1 can be obtained from the other.

Question 5.2. The summands in (7) give the volumes of the pieces in a natural decom-
position of the associated Pitman-Stanley polytope [16, Theorems 9 and 18]. Does there
exist an analogous decomposition realizing Theorem 1.1 geometrically?

Such a decomposition would be essentially different from that given by Pitman and
Stanley, and would be of substantial value in understanding these polytopes.

5.2 Signature Parking Functions

Recall from Section 3.1 that L(p) denotes the lattice path with up-steps at x-coordinates
given by the entries of a weakly increasing integer sequence p. If s = (s1, . . . , sa) is a
composition (i.e., an arbitrary sequence of positive integers), we define L̃(s) = L(s1, s1 +
s2 − 1, . . . ,

∑j
i=1 si − (j − 1), . . . , ). As an example, the lattice path for s = (3, 4, 4, 2, 1)

is shown in Figure 7 in red.
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Figure 7: The lattice path corresponding to the composition s = (3, 4, 4, 2, 1).

Signature Dyck paths were introduced by Ceballos and González D’León [3] as a gener-
alization of rational Dyck paths (see, e.g., [1, 2, 9, 10]). We have modified their definition
slightly by expressing the signature as a lattice path, but it is simple to translate between
the two settings.

Definition 5.3. [3, Defn. 3.2] A Dyck path with signature s, or for short an s-Dyck path,
is a lattice path D consisting of right and up steps starting at (1, 1) and ending at

(b, a) = (|s| − `(s) + 1, `(s))

which is weakly above and to the left of the lattice path L̃(s). The collection of all Dyck
paths with signature s is denoted DPs.

A signature parking function (with signature s) then corresponds to a labeling of the
up steps of an s-Dyck path, just as in the correspondence between parking functions and
decorated lattice paths (see Figure 4).

Given a signature s, define a partition λ = λ(s) = (s1−1, s1+s2−2, . . . , s1+· · ·+sa−a)
(with parts listed in weakly increasing order). Then the lattice paths contained in the
Ferrers diagram of λ are precisely those in DPs. In general, signature Dyck paths with
mild restrictions on the entries and increasing parking completions are equivalent.

Proposition 5.4. Let s = (s1, . . . , sa) be a composition with s1, sa > 1 and si > 2 for all
1 < i < a. Let n = 1+s1+ · · ·+sa−a, let u = (s1, s1+s2−1, . . . , s1+ · · ·+sa−1−(a−2)),
and let t consist of the ordered list of the elements in [n] not in u. Then |DPs| = |IPCn(t)|.

For example, if s = (2, 3) then λ(s) = (1, 3), and the s-Dyck paths are those shown
in Figure 2. In general, given lists t,u of taken and unoccupied spots in [n], we can
reconstruct a signature s = (s1, . . . , sa) of length a = |u|+ 1 by setting si = ui − ui−1 − 1
(with the conventions u0 = 0 and ua = n+ 1).

Consequently, Theorems 1.1 and 1.3 can easily be translated into enumeration formulas
for signature parking functions and signature Dyck paths: PCn(t) can be replaced with
signature parking functions labelling an s-Dyck path in Theorem 1.1, and IPCn(t) can be
replaced with DPs in Theorem 1.3.
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