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Abstract

We consider two types of random networks grown in blocks. Hooking networks
are grown from a set of graphs as blocks, each with a labelled vertex called a hook.
At each step in the growth of the network, a vertex called a latch is chosen from the
hooking network and a copy of one of the blocks is attached by fusing its hook with
the latch. Bipolar networks are grown from a set of directed graphs as blocks, each
with a single source and a single sink. At each step in the growth of the network, an
arc is chosen and is replaced with a copy of one of the blocks. Using Pólya urns, we
prove normal limit laws for the degree distributions of both networks. We extend
previous results by allowing for more than one block in the growth of the networks
and by studying arbitrarily large degrees.
Keywords: Hooking networks, bipolar networks, central limit laws, Pólya urns,
random trees, preferential attachment.

Mathematics Subject Classifications: 60C05, 05C80, 05C07, 60F05, 05C05

1 Introduction

Several random tree models have been studied where at each step in the growth of the
network, a vertex v is chosen amongst all the vertices of the tree, and a child is added to v.
When the choice of v is made uniformly at random, these trees are called random recursive
trees. When the choice of v is made proportionally to its degree deg(v), these trees are
called random plane-oriented recursive trees. Both models are examples of preferential
attachment trees, where the choice of v is made proportionally to χ deg(v) + ρ for real
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parameters χ and ρ (notice that a preferential attachment tree is a random recursive tree
when χ = 0 and is a random plane-oriented recursive tree when ρ = 0). Pólya urns were
used to prove multivariate normal limit laws for the degree distributions in all of these
random tree models [9, 10, 6, 4]. Asymptotic normality of degree sequences of similar
types of preferential attachment models have also been established without the use of
Pólya urns [11, 12].

The process of adding a child to a vertex v in a tree can instead be thought of as
taking the graph K2 (two vertices joined by an edge) with one of the vertices labelled
h, and fusing together the vertices v and h. Hooking networks are grown in a similar
manner from a set of graphs C = {G1, G2, . . . , Gm}, called blocks, where each block Gi

has a labelled vertex hi called a hook. At each step in the growth of the network, a vertex
v called a latch is chosen from the network, a block Gi is chosen, and the hook hi and the
vertex v are fused together. A more precise formulation is laid out in Section 1.2.1.

Several graphs can be thought of as hooking networks. Any tree can be grown as a
hooking network with K2 as the only block. A block graph (or clique graph) is a hooking
network whose blocks are complete graphs, and a cactus graph is a hooking network whose
blocks are cycles.

We prove multivariate normal limit laws for the degree distributions of hooking net-
works as the number of blocks attached tends to infinity (see Theorem 4). We allow for
a preferential attachment scheme for the choice of the latch (i.e., the latch v is chosen
proportionally to χ deg(v) + ρ). We also assign to each block Gi a value pi such that
p1 + p2 + · · ·+ pm = 1, and choose the block Gi to be attached with probability pi.

Along with the results for degree distributions of the random tree models described
above, Theorem 4 also generalizes other results on previously studied hooking networks.
Gopaladesikan, Mahmoud, and Ward [3] introduced blocks trees, which can be thought of
as hooking networks grown from a set of trees as blocks, where the root of each block has a
single child and acts as the hook. In their model, the latch is chosen uniformly at random
at each step, and the block to be attached is chosen according to an assigned probability
value. They proved a normal limit law for the number of leaves (vertices with degree 1)
in blocks trees. Mahmoud [8] proved multivariate normal limit laws for the number of
vertices with small degrees in self-similar hooking networks, which are hooking networks
grown from a single block called a seed. Both the case where the latch is chosen uniformly
at random and the case where the latch is chosen proportionally to its degree were studied
in [8]. In the extended abstract [2], we presented a proof of multivariate normal limit laws
in the specific cases of hooking networks grown from several blocks when the choice of the
latch as well as the choice of the block to be attached are made uniformly at random.

The methods used to prove our results for hooking networks also apply to proving mul-
tivariate normal limit laws for outdegree distributions of bipolar networks (see Theorem
8). Bipolar networks are grown from a set C = {B1, B2, . . . , Bm} of directed graphs, each
with a single source Ni: a vertex with zero indegree (deg−(Ni) = 0), and a single sink Si:
a vertex with zero outdegree (deg+(Si) = 0). At each step in the growth of the network,
an arc (v, u) is chosen and is replaced with one of the blocks Bi, by fusing Ni to v and Si
to u; see Section 1.2.2 for a more precise description. Previously, results were obtained for
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vertices of small outdegrees in bipolar networks grown from a single block, and where the
arc (v, u) to be replaced is chosen uniformly at random [1]. We extend previous results by
looking at bipolar networks grown from more than one block, by generalizing the choice
of the arc to be replaced, and by studying arbitrarily large degrees.

1.1 Composition of the paper

The networks studied are described in more detail in Section 1.2. Alongside the descrip-
tions of the networks, running examples of hooking networks and bipolar networks are
described in Sections 1.2.1 and 1.2.2 respectively. Our main results are stated in Section
1.3. These include multivariate normal limit laws for the vectors of degrees of hooking
networks and vectors of outdegrees of bipolar networks.

The theory of generalized Pólya urns developed by Janson in [5], which is the main
tool used in the proofs, is summarized in Section 2.

The proofs of our main results are presented in Section 3. This is done in three steps.
We start by describing how we study the vertices in our networks as balls in urns in
Section 3.1. Properties of the intensity matrices for these urns are gathered in Section
3.2. In Section 3.3, we prove that the matrices studied in 3.2 are indeed the intensity
matrices for the urns we are studying and, with the help of theorems proved in [5] and
stated in Section 2, we finish the proofs of our main results.

1.2 The networks studied

In the growth of hooking networks and in the growth of bipolar networks, a vertex v is
chosen at every step. The choice of the vertex v is made with probability proportional to
χ deg(v) + ρ in the case of the hooking networks and proportional to χ deg+(v) + ρ in the
case of the bipolar networks, where χ > 0 and ρ ∈ R so that χ+ρ > 0. Since these choices
are made proportionally, without loss of generality, we can limit the choice of χ to 0 or 1
(simply divide the numerators and denominators of (1) and (2) below by χ if this value
is nonzero). When χ = 1 we let ρ > −1, while we let ρ be strictly positive when χ = 0
to avoid the cases where χ deg(v) + ρ 6 0 or χ deg+(v) + ρ 6 0 (from the descriptions
below we see that the hooking networks studied are connected and so the vertex v has
degree deg(v) > 0; we also see below that all vertices v that are candidates for being a
latch in the bipolar networks studied satisfy deg+(v) > 0). For a positive integer k, we
let wk := χk + ρ.

1.2.1 Hooking networks

Let C = {G1, G2, . . . , Gm} be a set of connected graphs, each with at least 2 vertices, and
each with a labelled vertex hi. We allow for the graphs to contain self-loops and multiple
edges. The graph Gi is called a block, and the vertex hi is called its hook. Each block Gi

is also assigned a positive probability pi such that p1 + p2 + · · · + pm = 1. For example,
consider the set of blocks in Figure 1, with their hooks labelled and their probabilities
written underneath.
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h1

G1

p1 = 1/6

h2

G2

p1 = 1/3

h3

G3

p1 = 1/6

h4

G4

p1 = 1/3

Figure 1: A set of simple graphs as blocks

Let χ and ρ be real numbers satisfying the conditions set above. A sequence of hooking
networks G0,G1,G2, . . . is constructed as follows: one of the blocks Gi is chosen, and we
set G0 to be a copy of Gi (the choice of the first block does not need to be done at
random for our methods to work). The vertex H that corresponds to the hook of this
first block copied to make G0 is called the master hook of the hooking networks constructed
afterwards; when all the blocks are trees the master hook acts as the root of the network.
Recursively for n > 1, the hooking network Gn is constructed from Gn−1 by first choosing
a latch v at random proportionally to χ deg(v) + ρ amongst all the vertices of Gn−1, that
is, with probability

χ deg(v) + ρ∑
u∈V (Gn−1)

χ deg(u) + ρ
, (1)

where V (Gn−1) is the vertex set of Gn−1. Once the latch is chosen, a block Gi is chosen
according to its probability pi. A copy of Gi is attached to Gn−1 by fusing together the
latch v with the hook hi of the copy of Gi; that is, hi is deleted and edges are drawn from
v to the former neighbours of hi. Figure 2 is a sequence of hooking networks constructed
from the set of blocks in Figure 1 by taking a copy of G3 and attaching copies of G4, then
G2, and finally a copy of G1. The master hook of the network is labelled H, and at each
step the vertex chosen to be the latch is denoted by ∗.

H

∗

G0

H

∗

G1
H

∗

G2

H

G3

Figure 2: A sequence of hooking networks grown from the blocks G1, G2, G3 and G4 of
Figure 1
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1.2.2 Bipolar networks

For a vertex v in a directed graph B, we denote by deg−(v) the indegree of v: the number
of arcs leading into v, and by deg+(v) the outdegree of v: the number of arcs leading
out of v. If deg−(v) = 0 then v is called a source, and if deg+(v) = 0, v is called a sink.
Chen and Mahmoud [1] define a bipolar directed graph B to be a directed acyclic graph
containing a unique source N called the north pole of B, a unique sink S called the south
pole of B, and a directed path from every vertex v 6= S in B to S. The methods presented
here also apply to a more relaxed definition of bipolar directed graphs: connected directed
graphs with a single source and a single sink. Let C = {B1, B2, . . . , Bm} be a set of bipolar
directed graphs, each with their north pole Ni and south pole Si identified. Each Bi is
called a block, and is assigned a probability pi such that p1 + p2 + · · · + pm = 1. For
example, consider the set of blocks in Figure 3, with their north and south poles labelled
as well as their probabilities.

N1 S1

B1

p1 = 1/2

N2 S2

B2

p2 = 1/2

Figure 3: A set of bipolar directed graphs as blocks

Once again, we let χ and ρ be real numbers satisfying the conditions set at the begin-
ning of this section. We choose a block Bi and set the bipolar network B0 to be a copy of
Bi (once again, the choice of the first block need not be made at random). The vertices
corresponding to the north and south poles of B0 serve as the master source N and master
sink S respectively of the bipolar networks constructed afterwards. For n > 1, the bipolar
network Bn is constructed from Bn−1 in a manner similar to that of hooking networks.
First, a latch v is chosen proportionally to χ deg+(v) + ρ amongst all the vertices in Bn−1
that are not the master sink, that is, with probability

χ deg+(v) + ρ∑
u∈V (Bn−1)\{S} χ deg+(u) + ρ

, (2)

where V (Bn−1) is the vertex set of Bn−1. Once the is latch chosen, one of the arcs (v, u)
leading out of v is chosen uniformly at random amongst all the arcs leading out of v, and
finally a block Bi is chosen according to its probability pi. The arc (v, u) is deleted, and
a copy of the block Bi is added by fusing the north pole Ni with v, and fusing the south
pole Si with u. We never allow the master sink to be chosen as a latch (since it has no
arcs leading out of it). Figure 4 is a sequence of bipolar networks constructed from the
blocks in Figure 3. The master source N and the master sink S are labelled, and at each
step, the latch v is denoted by ∗, and the arc (v, u) to be removed is dashed.
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S∗N

B0

SN

∗
B1

SS∗N

B2

SN

B3

Figure 4: A sequence of bipolar networks grown from the blocks B1 and B2 from Figure
3

Previously, Chen and Mahmoud [1] studied what they called self-similar bipolar net-
works. These are bipolar networks grown from a single bipolar directed graph as the only
block. At each step in the growth of their networks, an arc (v, u) is chosen uniformly at
random amongst all the arcs to be deleted before being replaced with a copy of the block.
This is equivalent to choosing v proportionally to its outdegree deg+(v), and then choos-
ing an arc (v, u) uniformly at random amongst all the arcs leading out of v. Therefore,
the model of bipolar networks introduced here extends their model.

1.3 Main results

Before we state the main results, we need a useful definition. In the interest of length,
the notation (out)degree is used in the following discussion, and is interpreted as degree
for hooking networks and outdegree for bipolar networks.

Depending on the set of blocks that are used to grow the hooking networks or bipolar
networks, it is possible for some positive integers to never appear as the (out)degree of a
vertex in the network, while some integers are only the (out)degree of at most one vertex
at some point in the growth of the network. By ignoring these so-called nonessential
(out)degrees, formally defined below, the proofs using Pólya urns are simplified. We
also show by a simple argument below (see Proposition 3) that only the master hook or
master source may have a nonessential (out)degree. Excluding this single vertex from the
(out)degree distributions does not affect the asymptotic behaviour of these distributions.

Definition 1. Given a set C of blocks, a (strictly) positive integer k is called an essential
(out)degree if with positive probability, there is some n so that the n-th iteration of the
network grown out of C has at least two vertices with (out)degree k. A positive integer is
called a nonessential (out)degree if it is not an essential (out)degree.
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Remark 2. Our definition of essential (out)degrees differs slightly from the definition of
admissible (out)degrees used in [1] and [8], where any (out)degree that may appear in the
network is considered an admissible (out)degree.

In the example of hooking networks grown in Section 1.2.1 from the blocks in Figure
1, all of the hooks of the blocks have even degrees, and all other vertices in the blocks have
odd degrees. As a result, during the growth of the hooking networks, only the master
hook has even degree, while every other vertex has odd degree (as is evidenced by the
hooking networks in Figure 2). In that case, the odd numbers are essential degrees, and
the even numbers are nonessential.

Proposition 3. The only vertex in a hooking network (or bipolar network) that can have
a nonessential (out)degree is the master hook (or master source) of the network.

Proof. We only prove the proposition for hooking networks; the argument is similar for
bipolar networks.

Suppose there is a positive probability that a vertex v which is not the master hook
has degree k in the hooking network Gn, and without loss of generality let n be the
smallest number for which Gn has a vertex v with degree k. We will show that with
positive probability, another vertex that is not the master hook will have degree k in a
later iteration of the hooking network.

The vertex v first appears in the network as a non-hook vertex with degree k0 of a
newly added block; say the block was Gi0 and v is a copy of the vertex v0 in Gi0 . If
k0 6= k, then that means hooks of other blocks were fused to v, say the first hook fused
to v belonged to Gi1 , the second belonged to Gi2 , and so on until the last hook fused to
v which belonged to Gir (which was the last block added to create Gn). With positive
probability, a copy of the block Gi0 is joined to Gn by fusing the hook of Gi0 with a vertex
that is not v, say the master hook. Let u be the newly added vertex in the hooking
network that is a copy of v0 in Gi0 . For j = 1, . . . , r, there is a positive probability that
the block Gij is added to the hooking network Gn+j by fusing the hook of Gij with u. In
this case, u has degree k in Gn+r+1, and so there is a positive probability that 2 vertices
(v and u) have degree k in Gn+r+1. Therefore, k is an essential degree.

Also note that in the case of bipolar networks, only the master sink of the network
has outdegree 0, and we therefore ignore this vertex completely.

1.3.1 Main results for hooking networks

Let C = {G1, G2, . . . , Gm} be a set of blocks, each with an identified hook hi, and let
G0,G1,G2, . . . be a sequence of hooking networks grown from C, with the master hook of
the network labelled H. We allow for the latches and the blocks added at each step to be
chosen in the manner laid out in Section 1.2 (that is, with linear preferential attachment
with parameters χ and ρ, and probabilities pi assigned to each block Gi). For a positive
integer r, let

k1 < k2 < · · · < kr
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be the first r essential degrees. For a positive integer k, recall that wk = χk+ ρ. For each
block Gi in the set C, let V (Gi) be its vertex set. For a positive integer k, define

f(k) :=
∑
Gi∈C

pi · |{v ∈ V (Gi) \ {hi} : deg(v) = k}| (3)

and
g(k) :=

∑
Gi∈C

deg(hi)=k

pi. (4)

The value f(k) is the expected number of new vertices of degree k (that are not hooks)
added at any step, and g(k) is the probability that the degree of the latch chosen at any
step is increased by k after fusing with the hook of the newly attached block. For example,
for the blocks in Figure 1 we have that f(1) = 2 and f(3) = 5/3, while g(2) = 1/3 and
g(4) = 2/3. Define

λ1 :=
∑
k>1

(wkf(k) + χkg(k)). (5)

The value λ1 is the expected change in the denominator of (1) at each step in the growth
of the hooking network. For our running example of hooking networks grown from the
blocks in Figure 1, if we let χ = 1 and ρ = 0, then

λ1 =
31

3
. (6)

Let ν1 := f(k1)/(λ1 + wk1), and define recursively for i = 2, . . . , r

νi :=
1

λ1 + wki

(
f(ki) +

i−1∑
j=1

wkjg(ki − kj)νj

)
. (7)

The value λ1νi is the limit of the expected proportion of vertices with degree ki (see
Remark 5 below). Let ν be the vector

ν := (ν1, ν2, . . . , νr). (8)

For our running example of hooking networks grown from the blocks in Figure 1 with
χ = 1 and ρ = 0, and if we let r = 3, then the first 3 essential degrees are 1, 3, 5 (recall
that only odd numbers are essential in this example), and

ν =

(
6

34
,
11

85
,

63

3910

)
. (9)

We have the following multivariate normal limit law for the degrees of hooking net-
works.
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Theorem 4. Let Xn = (Xn,1, Xn,2, . . . , Xn,r), where Xn,i is the number of vertices with
essential degree ki in Gn, where Gn is a hooking network grown from the set of blocks C
using linear preferential attachment with parameters χ and ρ. Let λ1 be defined as in (5)
and let ν be the vector defined in (7) and (8). Then

n−1/2(Xn − nλ1ν)
d−→ N (0,Σ) (10)

for some covariance matrix Σ.

Remark 5. From (10), we see an immediate weak law of large numbers,

Xn/n
p−→ λ1ν. (11)

Furthermore, since the number of blocks is finite and each block has a finite number of
vertices, there is a constant C such that 0 6 Xn,i 6 Cn for all i = 1, 2, . . . , r and all
n. Therefore, the random vectors Xn/n are uniformly integrable which, along with (11),
imply

EXn/n→ λ1ν.

The convergence in (11) also holds almost surely (see Remark 14).

In some special cases, we can say even more about the convergence in (10). For each
block Gi, let E(Gi) be the set of edges of Gi, and let

si :=
∑

u∈V (Gi)

(χ deg(u) + ρ)− ρ = 2χ|E(Gi)|+ ρ(|V (Gi)| − 1). (12)

Corollary 6. Let Xn = (Xn,1, Xn,2, . . . , Xn,r), where Xn,i is the number of vertices with
essential degree ki in Gn, where Gn is a hooking network grown from the set of blocks C
using linear preferential attachment with parameters χ and ρ. Let λ1 be defined as in (5),
let ν be the vector defined in (7) and (8), and let si be defined as in (12) for each block
Gi. Suppose that there exists a constant s so that si = s for all blocks Gi. Then the
convergence (10) holds in all moments. In particular, n−1/2(EXn − nλ1ν) → 0, and so
nλ1ν in (10) can be replaced by EXn.

There are several cases where Corollary 6 applies. An obvious example is when there
is only one block to choose from. Other examples include when χ = 0 and all the graphs
have the same number of vertices, or when ρ = 0 and all the graphs have the same number
of edges.

To compare Theorem 4 with previous results on random recursive trees and preferential
attachment trees, consider a hooking network grown from K2 as the only block and where
χ = 0 and ρ = 1; as discussed earlier this produces random recursive trees. In this case,
f(1) = 1, g(1) = 1, and λ1 = 1, and so for any positive integer r the vector ν = (ν1, . . . , νr)
defined in (8) is given by

ν =

(
1

2
,
1

4
,
1

8
, . . . ,

1

2r

)
.
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We see that Theorem 4 extends previous results on random recursive trees [9, 6].
More generally, suppose that we look at a preferential attachment tree, where the latch

v is chosen with probability proportional to χ deg v + ρ. We once again have f(1) = 1
and g(1) = 1, and we have that λ1 = w1 + χ = w2. We see that ν1 = 1/(w2 +w1) and by
following the recursion of (7) we see that for any i = 2, 3, . . . , νi is given by

νi =
wi−1

w2 + wi

(
i−1∏
j=2

wj−1
w2 + wj

)
· ν1 =

1

w2 + w1

i∏
j=2

wj−1
w2 + wj

. (13)

In particular when χ = 1 and ρ = 0, then nλ1νi = 4n
i(i+1)(i+2)

, and so we see that Theorem

4 extends previous results on random plane-oriented recursive trees [10, 6], while (13)
along with Theorem 4 is the result stated in [4, Theorem 12.2].

Remark 7. In the literature on random recursive trees and preferential attachment trees,
the choice of the latch is usually made proportionally to χ deg+(v) + ρ′, where deg+(v) is
the number of children of v. But we can simply let ρ = ρ′−χ to get the same model, and
replace wk with w′k−1 = χ(k − 1) + ρ′ so that (13) resembles more the statements of the
previous results [9, 10, 6, 4]. The only vertex where this does not translate is the root (or
master hook) of the network, since deg(H) = deg+(H) in this case, but see Remarks 13
and 19 below for why this does not affect the limiting distribution.

1.3.2 Main results for bipolar networks

Let C = {B1, B2, . . . , Bm} be a set of blocks each with a north pole Ni and a south pole
Si identified, and let B0,B1,B2, . . . be a sequence of bipolar networks grown from C, with
the master source labelled N and the master sink labelled S. The latches v, arcs (v, u),
and blocks Bi are chosen in the manner laid out in Section 1.2 (by linear preferential
attachment with parameters χ and ρ for the latch, uniformly at random amongst arcs
leading out of v for (v, u), and according to its probability pi for Bi). For a positive integer
r, let

k1 < k2 < · · · < kr

be the first r essential outdegrees. We introduce similar notations as for the hooking
network case. Again, recall that for a positive integer k, we let wk = χk + ρ. For each
block Bi ∈ C, let V (Bi) be its vertex set. For a positive integer k, define

f(k) :=
∑
Bi∈C

pi · |{v ∈ V (Bi) \ {Ni, Si} : deg+(v) = k}| (14)

and for a nonnegative integer k, define

g(k) :=
∑
Bi∈C

deg+(Ni)=k+1

pi. (15)

The value f(k) is the expected number of new vertices of outdegree k added at any step,
and g(k) is the probability that the outdegree of a latch v is increased by k when (v, u)
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is replaced with a block (note here that g(0) 6= 0 if there is a block whose north pole has
outdegree 1). For the blocks of Figure 3 we have that f(1) = 1, f(2) = 1, and f(3) = 1/2,
while g(0) = 1/2 and g(1) = 1/2. For a set of blocks C, define

λ1 :=
∑
k>1

(wkf(k) + χkg(k)) . (16)

The value λ1 is the expected change in the denominator of (2) at each step in the growth
of the bipolar network. For our running example of bipolar networks grown from the
blocks in Figure 3, if we let χ = 0 and ρ = 1, then

λ1 =
5

2
. (17)

Let ψ1 := f(k1)/(λ1 + wk1(1− g(0))), and define recursively for i = 2, . . . , r

ψi :=
1

λ1 + wki(1− g(0))

(
f(ki) +

i−1∑
j=1

wkjg(ki − kj)ψj

)
. (18)

The value λ1ψi is the limit of the expected proportion of vertices with outdegree ki (see
Remark 9 below). Define

ψ := (ψ1, ψ2, . . . , ψr). (19)

For our running example of bipolar networks grown from the blocks in Figure 3 with
χ = 0 and ρ = 1, and if we let r = 3, then the first 3 essential outdegrees are 1, 2, 3, and

ψ =

(
1

3
,

7

18
,

25

108

)
. (20)

We have the following multivariate normal limit law for the outdegrees in the growth
of bipolar networks.

Theorem 8. Let Yn = (Yn,1, Yn,2, . . . , Yn,r), where Yn,i is the number of vertices with
outdegree ki in Bn, where Bn is a bipolar network grown from the set of blocks C using
linear preferential attachment with parameters χ and ρ. Let λ1 be defined as in (16) and
let ψ be the vector defined in (18) and (19). Then

n−1/2(Yn − nλ1ψ)
d−→ N (0,Σ) (21)

for some covariance matrix Σ.

Remark 9. With the same reasoning as in Remark 5, we have a weak law of large numbers

Yn/n
p−→ λ1ψ (22)

and a convergence of the means
EYn/n→ λ1ψ.

The convergence in (22) also holds almost surely (see Remark 14).
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Once again, we can say something more about the convergence in (21) in certain cases.
For each block Bi, let E(Bi) be the set of arcs of Bi, and let

si :=
∑

u∈V (Bi)

(χ deg+(u) + ρ)− χ− ρ = χ(|E(Bi)| − 1) + ρ(|V (Bi)| − 1). (23)

Corollary 10. Let Yn = (Yn,1, Yn,2, . . . , Yn,r), where Yn,i is the number of vertices with
essential outdegree ki in Bn, where Bn is a bipolar network grown from the set of blocks
C using linear preferential attachment with parameters χ and ρ. Let λ1 be defined as in
(16), let ψ be the vector defined in (18) and (19), and let si be defined as in (23) for each
block Bi. Suppose that there exists a constant s so that si = s for all blocks Bi. Then the
convergence (21) holds in all moments. In particular, n−1/2(EYn − nλ1ψ) → 0, and so
nλ1ψ in (21) can be replaced by EYn.

Remark 11. We could choose to study the indegrees of bipolar networks instead. Consider
networks B′0,B′1,B′2, . . . grown from the blocks C = {B′1, . . . , B′m}. Now we choose the latch
v proportionally to χ deg−(v)+ρ (instead of χ deg+(v)+ρ), and the arc to be replaced with
a block is chosen uniformly at random amongst the arcs leading into v (instead of leading
out of v). The multivariate normal limit law for the indegree distribution of such networks
is the same as that for the outdegree distribution of bipolar networks B0,B1,B2, . . . grown
in the manner laid out in Section 1.2.2 from the blocks C = {B1, . . . , Bm}, where the arcs
of B′i are reversed to make Bi.

2 Pólya urns

A generalized Pólya urn process (Xn)∞n=0 is defined as follows. There are q types (or
colours) 1, 2 . . . , q of balls and for each vector Xn = (Xn,1, Xn,2, . . . , Xn,q), the entry
Xn,i > 0 is the number of balls of type i in the urn at time n, starting with a given
(random or not) vector X0. Each type i is assigned an activity ai ∈ R>0 and a random
vector ξi = (ξi,1, ξi,2, . . . , ξi,q) satisfying ξi,j > 0 for i 6= j and ξi,i > −1. At each time
n > 1, a ball is drawn at random so that the probability of choosing a ball of type i is

aiXn−1,i∑q
j=1 ajXn−1,j

.

If the drawn ball is of type i it is replaced along with ∆Xn,j balls of type j for each j =
1, . . . , q, where the vector ∆Xn = (∆Xn,1,∆Xn,2, . . . ,∆Xn,q) has the same distribution
as ξi and is independent of everything else that has happened so far. We allow for
∆Xn,i = −1, in which case the drawn ball is not replaced.

The intensity matrix of the Pólya urn is the q × q matrix

A := (ajEξj,i)qi,j=1 .

By the choice of ξi,j, the matrix αI + A has non-negative entries for a large enough α,
and so by the standard Perron-Frobenius theory, A has a real eigenvalue λ1 such that all
other eigenvalues λ 6= λ1 satisfy Reλ < λ1.
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The following assumptions (A1)–(A7) are used in [5]. In the interpretation of balls in
an urn, the random vectors ξi and ∆Xn are integer-valued. However, for our applications,
this is not necessarily the case, which is why our assumption (A1) below takes a slightly
different form from the standard assumption (A1) in [5], taking instead the form discussed
in [5, Remark 4.2] (note the indices of the variables in (A1) below). A type i is called
dominating if in an urn starting with a single ball of type i, there is a positive probability
that a ball of type j can be found in the urn at some time for every other type j. If every
type is dominating, then the urn and its intensity matrix A are irreducible.

(A1) For each i, either

(a) there is a real number di > 0 such that X0,i and ξ1,i, ξ2,i, . . . , ξq,i are multiples
of di and ξi,i > −di, or

(b) ξi,i > 0.

(A2) E(ξ2i,j) <∞ for all i, j ∈ {1, 2, . . . , q}.

(A3) The largest eigenvalue λ1 of A is positive.

(A4) The largest eigenvalue λ1 of A is simple.

(A5) There exists a dominating type i with X0,i > 0.

(A6) λ1 is an eigenvalue of the submatrix of A given by the dominating types.

(A7) At each time n > 1, there exists a ball of dominating type.

In the Pólya urns we use, it is obvious that (A1) and (A2) hold. Our intensity matrices
are also irreducible, and so (A5) and (A6) hold trivially, while the Perron-Frobenius
theorem along with irreducibility guarantee that (A3) and (A4) hold. Our urns always
have balls of positive activity, and so (A7) holds by the irreducibility of the urns.

Denote column vectors as v with v′ as its transpose. The transpose of a matrix A is
also denoted as A′. Let a = (a1, . . . , aq)

′ denote the vector of activities, and let u′1 and
v1 be the left and right eigenvectors of A corresponding to the eigenvalue λ1 normalized
so that a · v1 = a′v1 = v′1a = 1 and u1 · v1 = u′1v1 = v′1u1 = 1. Define Pλ1 = v1u

′
1 and

PI = Iq − Pλ1 . Define the matrices

Bi := E(ξiξ
′
i)

for every i = 1, . . . , q, denote v1 = (v1,1, v1,2, . . . , v1,q)
′, and define the matrix

B :=

q∑
i=1

v1,iaiBi. (24)

In the case where Reλ < λ1/2 for every eigenvalue λ 6= λ1, define

ΣI :=

∫ ∞
0

PIe
sABesA

′
P ′Ie

−λ1sds, (25)
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where etA =
∑∞

j=0 t
jAj/j!. The result we use from [5] guarantees that if (A1)–(A7) hold

and Reλ < λ1/2 for all eigenvalues λ 6= λ1, then n−1/2(Xn − nµ)
d−→ N (0,Σ) for some

µ = (µ1, . . . , µq) and Σ = (σi,j)
q
i,j=1. We state below results from [5] (and gathered

in [4, Theorem 4.1]) which give the conditions for convergence to multivariate normal
distributions as well as the values of µ and Σ.

Theorem 12 ([5, Theorem 3.22 and Lemmas 5.4 and 5.3(i)]). Assume (A1)–(A7) and
that the right and left eigenvectors corresponding to λ1 are normalized as above. Assume
that Reλ < λ1/2 for each eigenvalue λ 6= λ1.

(i) Then, as n→∞,

n−1/2(Xn − nµ)
d−→ N (0,Σ) (26)

with µ = λ1v1 and some covariance matrix Σ.

(ii) Suppose further that, for some c > 0,

a · E(ξi) = c

for every i = 1, . . . , q. Then the covariance matrix is given by Σ = cΣI , where ΣI

is defined in (25).

(iii) Suppose that (ii) holds and that the matrix A is diagonalizable, and let {u′i}
q
i=1 and

{v′i}
q
i=1 be dual bases of left and right eigenvectors respectively, i.e., u′iA = λiu

′
i,

Avi = λivi, and u′ivj = δi,j. Then the covariance matrix Σ is given by

Σ = c

q∑
j,k=2

u′jBuk

λ1 − λj − λk
vjv
′
k, (27)

where B is defined in (24).

Remark 13. So long as (A5) is satisfied, the initial configuration X0 of the urn does not
have any effects on the limiting distribution.

Remark 14. From (26), we get a a weak law of large numbers

EXn/n
p−→ µ. (28)

In fact, the convergence in (28) holds almost surely for urns satisfying (A1)–(A7) (see [5,
Theorem 3.21]). Therefore, once the convergences in (10) and (21) are established via
Pólya urns in the following section, the convergences in (11) and (22) hold almost surely.

Remark 15. A recent result by Janson and Pouyanne [7] guarantees tha the convergence
(26) holds in all moments for certain balanced generalized Pólya urns; an urn is balanced
if the change in total activity at every step is constant. Some of our urns satisfy the
conditions of [7, Theorem 1.1] which implies in particular that n−1/2(EXn−nµ)→ 0, and
so nµ in (26) can be replaced by EXn.
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3 Proofs

We start by setting up Pólya urns so that balls in the urn correspond to vertices in the
growth of our network. Next, we prove important properties of the intensity matrices
associated with these Pólya urns. Finally, the pieces are placed together to prove our
main results.

3.1 Vertices as balls

In this section, we outline how we use the evolution of generalized Pólya urns to describe
the evolutions of the degree distributions in the networks that we study. Throughout
the section the notation (out)degree is used so that the discussion applies to both types
of networks simultaneously. Recall that Theorem 4 and Corollary 6 apply to degrees
of hooking netwoks, while Theorem 8 and Corollary 10 apply to outdegrees of bipolar
networks.

We start by first looking at an urn with infinitely many types. We assign a type to
each (out)degree in the network so that a ball of type k represents a vertex of (out)degree
k. We initiate each network by choosing a block from the list of blocks. This corresponds
to starting a Pólya urn with a ball of the matching type for the (out)degree of each
vertex in the block. In the evolution of the network, when a block is attached, this
corresponds to choosing a ball in the urn of type corresponding to the (out)degree of the
latch v and replacing it with a ball representing the new (out)degree of v along with balls
representing the (out)degrees of the rest of the vertices of the newly attached block. Since
a latch of (out)degree k is chosen at random proportionally to wk = χk+ ρ, then all balls
of type k have activity wk in the Pólya urn so that a ball of type k is chosen at random
proportionally to its activity wk.

The Pólya urn described above has infinitely many types, and so Theorem 12 does not
apply. Therefore, we would like to instead use an urn with finitely many types in the same
manner as is done in [6] and [4]. The urn is replaced with the following Pólya urn: let
d be a positive integer corresponding to the largest (out)degree we wish to study in this
instance of the model. A new ball of special type ∗ with activity a∗ = 1 is introduced, and
for every k > d, each ball of type k is replaced with wk balls of special type ∗. In this way,
the probability of choosing a ball of special type in the new urn is equal to the probability
of choosing a ball of type greater than d in the old urn. If a latch v with (out)degree
k 6 d is chosen, and a block is attached so that v now has (out)degree k + j > d, then
the ball of type k is removed and wk+j balls of special type are added. If instead v has
(out)degree k > d and a block is attached so that the (out)degree of the vertex is now
k + j, then the ball of special type that was chosen is placed back in the urn, along with
χj balls of special type.

The final change we will make to our urn is to represent the master hook of the hooking
network or the master source of the bipolar network, say with (out)degree k, with wk balls
of special type in our urn. This guarantees that all types of balls in the urn that are not
special types correspond to (out)degrees that are essential; recall from Definition 1 that
a positive integer k is an essential (out)degree if there is a positive probability that at
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some point in the growth of the network at least two vertices have (out)degree k, and
recall from Proposition 3 that only the master hook of the hooking network or the master
source of the bipolar network may have a nonessential degree. For a positive integer d,
the possible types of balls present in the urn are exactly the essential (out)degrees less
than or equal to d, together with a ball of special type ∗. In our intensity matrix, we
can then omit the rows and columns corresponding to types that are never present in the
urn. By restricting to essential (out)degrees, it can be verified that now every ball in the
urn is of dominating type. No matter the initial network (or initial configuration of the
urn), there is a positive probability that a ball representing a vertex with the essential
(out)degree k will be present in the urn. Therefore the urn (and its intensity matrix) is
irreducible. As discussed in Section 2, it is easy to verify that the assumptions (A1)–(A7)
are satisfied for irreducible urns. To avoid confusion, we label the type of a ball with the
(out)degree of the vertex it represents.

We illustrate how to calculate the intensity matrices for the urns associated with our
running examples of hooking networks and bipolar networks given in Section 1.2.

3.1.1 A Pólya urn for our running example of a hooking network

Consider the blocks in Figure 1, and a sequence of hooking networks grown from these
blocks. Let’s look at the instance of the model where the choice of a latch is made
proportionally to its degree (i.e., when χ = 1, ρ = 0 and so wk = k). Suppose we
look at vertices with degrees less than or equal to 5. As discussed after the definition
of essential degrees (Definition 1), the essential degrees for these hooking networks are
the odd numbers; and so 1, 3, 5 are the essential degrees less than or equal to 5. The
images in Figure 5 illustrate the possibilities for replacing a ball of type k, corresponding
to attaching a block to a latch with degree k. The probabilities in the figure are the
probabilities pi assigned to the blocks in Figure 1.

k
{ v

Type k

1/6−−→
v

2 Type 1, 1 Type k + 2

k
{ v

Type k

1/3−−→
v

4 Type 1, 1 Type k + 4

k
{ v

Type k

1/6−−→
v

2 Type 1, 2 Type 3,
1 Type k + 2

k
{ v

Type k

1/3−−→
v

4 Type 3, 1 Type k + 4

Figure 5: The replacements of a ball of type k in a hooking network grown from the blocks
in Figure 1

The intensity matrix for this urn has 4 rows and columns: one of each for balls of
type 1, 3, 5, and the last row and column for balls of special type ∗. Let’s consider what
happens when a block is attached to a latch with degree 1; this corresponds to choosing
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a ball of type 1. The probability that the block G1 is attached is 1/6. The hook of G1

has degree 2 and the two other vertices have degree 1. The ball of type 1 is removed and
replaced with a ball of type 3 (the new degree of the latch v) along with two new balls of
type 1. Performing similar calculations for the other blocks with the help of Figure 5, we
get that

Eξ1 =
1

6


1
1
0
0

+
1

3


3
0
1
0

+
1

6


1
3
0
0

+
1

3


−1
4
1
0

 =
1

6


6
12
4
0

 .

Recall that the rows and columns for nonessential degrees are removed, and so the first
row represents balls of type 1, the second row for balls of type 3, the third for balls of
type 5, and the final row for balls of special type ∗.

Now consider what happens when a ball of type 3 is chosen, i.e., if a vertex v with
degree 3 is chosen as a latch. If a hook with degree 4 is attached to v, the degree of v
is increased to 7. Recall that we instead place w7 = 7 balls of special type when this
happens. Performing similar calculations as above with the help of Figure 5 yields

Eξ3 =
1

6


2
−1
1
0

+
1

3


4
−1
0
7

+
1

6


2
1
1
0

+
1

3


0
3
0
7

 =
1

6


12
4
2
28

 .

Performing similar calculations when a ball of type 5 is chosen gives

Eξ5 =
1

6


2
0
−1
7

+
1

3


4
0
−1
9

+
1

6


2
2
−1
7

+
1

3


0
4
−1
9

 =
1

6


12
10
−6
50

 .

Finally let’s consider attaching a block to a vertex of degree greater than 5, or to the
master hook of the network. In either case, this corresponds to choosing a ball of special
type. If the hook of the block Gi attached has degree two, then the ball of special type
is replaced along with another 2χ = 2 balls of special type, while 4χ = 4 balls of special
type are added if the hook has degree 4. Therefore, we calculate for the special type ∗

Eξ∗ =
1

6


2
0
0
2

+
1

3


4
0
0
4

+
1

6


2
2
0
2

+
1

3


0
4
0
4

 =
1

6


12
10
0
20

 .

The activities for the types are w1 = 1, w3 = 3 and w5 = 5 for types 1, 3, 5 respectively,
while the special type ∗ has activity 1 (as discussed earlier). The intensity matrix A
consists of Eξ1, 3Eξ3, 5Eξ5 for the first 3 columns, and Eξ∗ for the last column, thus we

the electronic journal of combinatorics 27(2) (2020), #P2.45 17



get

A =
1

6


6 36 60 12
12 12 50 10
4 6 −30 0
0 84 250 20

 .

One can verify that the eigenvalues of A are λ1 = 31/3 and −1,−3,−5 and we see that
λ1 is what was calculated in (6). By Theorem 12, we have a multivariate normal limit
law. One can also verify that the right eigenvector v1 of A associated with λ1 satisfying
a · v1 = 1, where a = (1, 3, 5, 1) is the vector of activities, is

v1 =

(
6

34
,
11

85
,

63

3910
,
1387

3910

)′
.

Restricted to the first 3 entries, the vector v1 is exactly the vector ν calculated in (9), and
so by Theorem 12, Theorem 4 is true in this particular case.

3.1.2 A Pólya urn for our running example of a bipolar network

Now consider the blocks of Figure 3 and a sequence of bipolar networks grown from these
blocks. Let’s look at the instance of the model where the choice of the latch is made
uniformly at random (i.e., when χ = 0, ρ = 1, and so wk = 1). All positive integers
are essential outdegrees. The images of Figure 6 illustrate the possibilities of replacing a
ball of type k, corresponding to choosing a latch v with outdegree k and one of the arcs
leading out of v uniformly at random. The probabilities in the figure are the probabilities
pi assigned to the blocks in Figure 3.

k − 1

{
v u

Type k

1/2−−→
v u

2 Type 1, 1 Type 3, 1 Type k

k − 1

{
v u

Type k

1/2−−→
v u

2 Type 2, 1 Type k + 1

Figure 6: The replacement of a ball of type k in a bipolar network grown from the blocks
in Figure 3

Suppose we look at vertices with outdegrees less than or equal to 3. We can calculate
the intensity matrix in the same way as the intensity matrix for the hooking network
example above. The main difference in this case is that there is a positive probability
that the outdegree of a latch v is not changed. For example, if a ball of type 2 is chosen;
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that is, if a latch v with outdegree 2 is chosen, then with probability 1/2, the degree of v
is not changed after the block B1 is attached. In this case, the ball of type 2 is replaced
in the urn, along with 2 balls of type 1 and one ball of type 3. We can calculate

Eξ2 =
1

2


2
0
1
0

+
1

2


0
1
1
0

 =
1

2


2
1
2
0

 .

For the urn in this case, a vertex with outdegree greater than 3 is represented by a single
ball of special type ∗. The intensity matrix is

A =
1

2


1 2 2 2
3 1 2 2
1 2 0 1
0 0 1 0

 . (29)

The eigenvalues for A are λ1 = 5/2 and −1/2, and we see that λ1 is precisely what was
calculated in (17). The right eigenvector v1 of A associated with λ1 whose entries sum to
1 is

v1 =

(
1

3
,

7

18
,

25

108
,

5

108

)′
.

Restricted to the first 3 entries, the vector v1 is exactly the vector ψ calculated in (20).
The multivariate normal limit law claimed by Theorem 8 holds by Theorem 12 in this
case.

3.2 Properties of the intensity matrices

Recall that wk = χk + ρ. Let A = (aij)
r+1
i,j=1 be the (r + 1)× (r + 1) matrix with entries

aij =



wkjf(ki) i < j 6 r

f(ki) i < j = r + 1

wki(f(ki) + g(0)− 1) i = j 6 r

wkj(f(ki) + g(ki − kj)) j < i 6 r

wkj
∑

k>kr
wk(f(k) + g(k − kj)) j < i = r + 1∑

k>kr
wkf(k) +

∑
k>1 χkg(k) j = i = r + 1

(30)

where f(k) was introduced in (3) and (14), g(k) was introduced in (4) and (15), and
k1, . . . , kr are essential degrees. We prove properties of A that are useful to the proofs of
our main results. From Theorem 12, we see that to prove our main result, we need to prove
properties of the eigenvalues and eigenvectors of A. The eigenvalues and eigenvectors of
A depend on properties of the values f(k) and g(k). These properties are gathered in the
following proposition.
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Proposition 16. For f(k) defined in (3) and (14), and g(k) defined in (4) and (15), the
following properties hold:

(F) If k 6 kr and k 6= ki for all i = 1, . . . , r, then f(k) = 0.

(G1)
∑

k>0 g(k) = 1.

(G2) If k 6 kr and k 6= ki for all i = 1, . . . , r, then g(k − kj) = 0 for all j = 1, . . . , r.

Proof. In the interest of space, the lemma is proved for both hooking networks and bipolar
networks simultaneously. The notation (out)degree is used, and is interpreted as degree
for hooking networks and outdegree for bipolar networks.

If f(k) 6= 0, then there is a positive probability that at any step in the growth of the
network, a new vertex (that is not the master hook or the master source) appears with
(out)degree k. By Definition 1 and by Proposition 3, k is an essential (out)degree in this
case, and so if k 6 kr, then k ∈ {k1, . . . , kr}, proving that (F) holds. The property (G1)
holds since

∑
k>0 g(k) = p1+· · ·+pm = 1, where pi is the probability of the block Gi or Bi.

As for the property (G2), assume that g(k−kj) 6= 0 for some essential (out)degree kj 6 kr.
Since kj is an essential (out)degree, there is a positive probability that some vertex v (that
is not the master hook or the master source) has (out)degree kj. By definition, there is a
probability of g(k− kj) that the (out)degree of v is increased to k if a hook is fused to v.
Therefore, there is a positive probability that there is a vertex with (out)degree k, and
so k is an essential (out)degree, again by Definition 1 and Proposition 3. If k 6 kr, then
k ∈ {k1, . . . , kr}, and so (G2) holds.

Let
λ1 =

∑
k>1

(wkf(k) + χkg(k))

be the value defined in (5) and (16). We calculate the eigenvalues of A in the following
lemma.

Lemma 17. The matrix A has eigenvalues

λ1, wk1(g(0)− 1), wk2(g(0)− 1), . . . , wkr(g(0)− 1).

Proof. We can calculate the eigenvalues of A directly. For any λ, look at the matrix
A−λI. For each i = 1, . . . r, add wki times row i to row r+ 1 of A−λI to get the matrix
A′λ. Using properties (F) and (G2), along the (r + 1)-th row of A′λ, the j-th entry for
j = 1, . . . , r is

wkj

∑
k>1

wkf(k) +
∑
k>kj

wkg(k − kj)− wkj − λ

 (31)

while the (r + 1)-th entry is∑
k>1

(wkf(k) + χkg(k))− λ = λ1 − λ. (32)
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Next, subtract wkj times column r + 1 from column j in A′λ for every j = 1, . . . , r to get
the matrix A′′λ. Since

wkg(k − kj)− χ(k − kj)g(k − kj) = (χkj + ρ)g(k − kj) = wkjg(k − kj), (33)

the j-th entry for j = 1, . . . , r of the (r + 1)-th row is

wkj

∑
k>1

wkf(k) +
∑
k>kj

wkg(k − kj)− wkj − λ

− wkj (λ1 − λ)

= wkj

∑
k>1

wkf(k) +
∑
k>kj

wkg(k − kj)− wkj − λ1

 (34)

= wkj

∑
k>1

wkf(k) +
∑
k>kj

wkg(k − kj)− wkj −
∑
k>1

(wkf(k) + χkg(k))


= wkj

∑
k>kj

wkg(k − kj)− wkj
∑
k>kj

χ(k − kj)g(k − kj)− w2
kj

= wkj
∑
k>kj

wkjg(k − kj)− w2
kj

(by (33))

= w2
kj
− w2

kj
= 0. (by property (G1))

For every i, j 6 r, the i, j-th entry of A′′λ is simply aij − wkjf(ki) when i 6= j and
aii − λ − wkif(ki) on the diagonals, where aij is given in (30). Therefore, A′′λ is the
following (r + 1)× (r + 1) matrix

A′′λ =



wk1(g(0)− 1)− λ 0 · · · 0 f(k1)

wk1g(k2 − k1) wk2(g(0)− 1)− λ · · · 0 f(k2)

...
...

. . .
...

...

wk1g(kr − k1) wk2g(kr − k2) · · · wkr(g(0)− 1)− λ f(kr)

0 0 · · · 0 λ1 − λ


.

Since the determinant of a matrix is unchanged by adding one row to another or by
subtracting a column from another, both A− λI and A′′λ have the same determinant. We
can calculate the determinant of A′′λ by expanding along the bottom row, and since the
upper r× r matrix of A′′λ is lower triangular, we see immediately that A has characteristic
polynomial

(λ1 − λ)
r∏
i=1

(wki(g(0)− 1)− λ),

from which we can read off the eigenvalues stated in the lemma.
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We now calculate the right eigenvector of A associated with λ1. Let v1,1 = f(k1)/(λ1+
wk1(1− g(0))), and define recursively for i = 2, . . . , r

v1,i =
1

λ1 + wki(1− g(0))

(
f(ki) +

i−1∑
j=1

wkjg(ki − kj)v1,j

)
. (35)

Finally, define

v1,r+1 = 1−
r∑
j=1

wkjv1,j (36)

and
v1 = (v1,1, v1,2, . . . , v1,r, v1,r+1)

′. (37)

Lemma 18. Let v1 be the vector defined above, and let a = (wk1 , wk2 , . . . , wkr , 1)′. The
vector v1 is the unique right eigenvector of A associated with λ1 for which a · v1 = 1.

Proof. We verify that v1 is a right eigenvector of A associated with λ1. We can look
instead at A′λ which is introduced in the previous proof. Since only row operations were
used to get from A− λI to A′λ, we get that (A− λI)v1 = 0 if and only if A′λv1 = 0. We
therefore need only to verify that A′λ1v1 = 0 (where all instances of λ are replaced with
λ1).

Along the (r + 1)-th row of A′λ1 for any j = 1, . . . , r the j-th entry is given by (31),
but with λ replaced by λ1, which is exactly (34), and so is equal to 0 by the calculations
performed above. From (32), the (r+1)-th entry in the (r+1)-th row is simply λ1−λ1 = 0.
Therefore, the last row of A′λ1 is all zeros and the (r+ 1)-th entry of the vector A′λ1v1 is 0.

The top r × (r + 1) submatrix of A′λ1 is the same as the top r × (r + 1) submatrix of
A− λ1I. After rearranging the equality (35) as

f(ki) +
i−1∑
j=1

wkjg(ki − kj)v1,j = v1,i(λ1 + wki(1− g(0))) (38)

and recalling the entries aij of A from (30), we see that for i = 1, . . . , r, the i-th entry of
the vector A′λ1v1 is

i−1∑
j=1

aijv1,j + (aii − λ1)v1,i +
r∑

j=i+1

aijv1,j + ai,j+1v1,r+1

= f(ki)

(
r∑
j=1

wkjv1,j + v1,r+1

)
+

i−1∑
j=1

wkjg(ki − kj)v1,j + v1,i(wki(g(0)− 1)− λ1)

= f(ki) +
i−1∑
j=1

wkjg(ki − kj)v1,j + v1,i(wki(g(0)− 1)− λ1) (by (36))

= v1,i(λ1 + wki(1− g(0))) + v1,i(wki(g(0)− 1)− λ1) = 0. (by (38))
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Therefore A′λ1v1 = 0. Furthermore,

a · v1 =
r∑
j=1

wkjv1,j +

(
1−

r∑
j=1

wkjv1,j

)
= 1.

Since λ1 has algebraic (and geometric) multiplicity 1, then v1 is the unique vector satis-
fying the statement of the lemma.

3.3 Proofs of main results

Recall the definitions of f(k) from (3) and (14), and g(k) from (4) and (15) for a set
of blocks C. Recall also that wk = χk + ρ. Let k1 < · · · < kr be the first r essential
(out)degrees for hooking networks or bipolar networks grown from C.

We now prove Theorem 4; the multivariate normal limit law for the degrees of hooking
networks. Our main results for bipolar networks can be proved in a very similar manner,
and we only outline the differences in the proofs.

Proof of Theorem 4. We look at two cases: when a block is attached to a latch that is not
the master hook of the network with degree less than or equal to kr, and when a block is
attached to a latch of degree greater than kr or to the master hook of the network. Recall
that the master hook of the network is represented by balls of special type in the urn.

Case I: Let kj 6 kr be an essential degree and suppose that at some step in the growth
of the network a vertex v is chosen as a latch where deg(v) = kj and v is not the master
hook of the network. Suppose a block is attached to v. This corresponds to choosing a
ball of type kj. Let ki 6 kr be an essential degree. Other than the latch, the expected
number of new vertices of degree ki added to the network is equal to f(ki). If ki > kj, the
probability that the degree of v is increased to ki is equal to the probability of choosing
a block whose hook has degree ki − kj, which is exactly g(ki − kj). For ki, kj 6 kr and
with E(ξkj ,ki) being the expected change in the number of balls of type ki in the networks
when a ball of type kj is chosen, the arguments above show that

E(ξkj ,ki) =


f(ki) i < j

f(ki)− 1 i = j

f(ki) + g(ki − kj) i > j.

For every k that is an essential degree greater than kr, balls of special type are added
instead of balls of type k. By a similar argument as above, the expected number of new
balls of special type added corresponding to vertices of degree k when a latch of degree
kj is chosen is wk(f(k) + g(k − kj)). Summing over all essential degrees greater than kr,
the expected number of balls of special type added when a ball of type kj is chosen is

E(ξkj ,∗) =
∑
k>kr

wk(f(k) + g(k − kj)).
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Case II: Now suppose at some step the latch v is either the master hook of the network
or that deg(v) > kr. In either case this corresponds to choosing a ball of special type in
our urn; recall that the master hook is represented by balls of special type. Suppose that
a block is attached to v. For an arbitrary essential degree ki 6 kr, the expected number
of new vertices added with degree ki is f(ki). Therefore with E(ξ∗,ki) being the expected
number of balls of type ki added when a ball of special type is chosen,

E(ξ∗,ki) = f(ki).

For any k > 1, the probability that the degree of v is increased by k is g(k). In this case,
the ball of special type is placed back in the urn along with χk new balls of special type.
For any k > kr, the expected number of new vertices with degree k is once again f(k).
Therefore, summing over all values of k, the expected change in the number of balls of
special type in the urn is

E(ξ∗,∗) =
∑
k>kr

wkf(k) +
∑
k>1

χkg(k).

Let E(ξkj) := (Eξkj ,k1 , . . . ,Eξkj ,kr ,Eξkj ,∗) for j = 1, . . . , r and for the special type ∗ let
E(ξ∗) := (Eξ∗,k1 , . . . ,Eξ∗,kr ,Eξ∗,∗). The activity of each ball of type kj 6 kr is wkj , and
the activity of the ball of special type ∗ is 1. The intensity matrix is therefore the matrix
A whose columns are wkjE(ξkj) for j = 1, . . . , r and whose (r + 1)-th column is E(ξ∗).
This is precisely the matrix given in (30), with g(0) = 0.

By Lemma 17, we get that the intensity matrix A has largest real eigenvalue λ1 =∑
k>1(wkf(k) + χkg(k)) > 0, and the other eigenvalues −wk1 ,−wk2 , . . . ,−wkr are all

negative (and so less than λ1/2).
The vector v1 defined in (37) with g(0) = 0 and restricted to the first r entries is

exactly the vector ν defined in (8). Theorem 4 now follows immediately from Lemma 18,
and Theorem 12.

Proof of Corollary 6. Every time a new block Gi with hook hi is attached to the hooking
network by fusing hi with the latch v, any new vertex u of Gi added to the network is
represented either by a ball of type deg(u) (with activity χ deg(u) + ρ) or by χ deg(u) + ρ
balls of special type (with activity 1). As for the latch v, one of the following cases applies:

• a ball of activity χ deg(v) + ρ is removed and replaced with a ball of activity
χ(deg(v) + deg(hi)) + ρ,

• a ball of activity χ deg(v) + ρ is removed and replaced with χ(deg(v) + deg(hi)) + ρ
balls of special type (with activity 1), or

• an additional χ deg(hi) balls of special type are added.

In any case the change in the total activity of the urn is

si = χ deg(hi) +
∑

u∈V (Gi)\{hi}

(χ deg(u) + ρ) = 2χ|E(Gi)|+ ρ(|V (Gi)| − 1),
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where the last equality holds thanks to the handshaking lemma (the sum of the degrees
in a graph is twice the number of edges). Suppose that all si are equal. The change in
total activity is equal at every step, independent of which block is attached. Therefore,
the corresponding urn is balanced. By [7, Remark 1.9], the urn satisfies the conditions of
[7, Theorem 1.1], and so by Remark 15, Corollary 6 holds.

Theorem 8 and Corollary 10 are proved in a similar manner to the two proofs above.
We therefore omit the details, and only specify where the proofs differ.

Proof of Theorem 8: The probability that the degree of a latch v is increased by k is now
the probability of choosing a block whose north pole had outdegree k + 1 (since an arc
is removed from v when a block is attached). This probability is exactly defined to be
g(k). If a north pole has outdegree 1, then the outdegree of v is not changed, and so the
probability that the outdegree of v is unchanged is g(0). With similar arguments as in the
proof of Theorem 4, we can calculate the intensity matrix. The only differences between
the intensity matrix for bipolar networks and that for hooking networks are the first r
diagonal entries, which are

wkiE(ξki,ki) = wki(f(ki)− g(0)− 1)

for i = 1, . . . , r in the case of bipolar networks. The value E(ξ∗,∗) is the same as before
since χkg(k) = 0 when k = 0.

From Lemma 17, we get that the largest real eigenvalue of the intensity matrix is
λ1 =

∑
k>1(wkf(k) + χkg(k)) > 0 and the other eigenvalues are

wk1(g(0)− 1), wk2(g(0)− 1), . . . , wkr(g(0)− 1).

Since g(0) 6 1, each eigenvalue λ 6= λ1 is non-positive, and so is less than λ1/2. The
vector v1 defined in (37) restricted to the first r entries is exactly the vector ψ defined in
(19), and the result now follows just as in the proof of Theorem 4.

Proof of Corollary 10. Since an arc is removed at each step, the total change in activity
when block Bi is attached is (by similar argument to the proof of Corollary 6)

si = χ deg+(Ni)− χ+
∑

u∈V (Bi)\{Ni,Si}

(χ deg+(u) + ρ) = χ(|E(Bi)| − 1) + ρ(|V (Bi)| − 1).

If all the si’s are equal for every block, then once again the urn is balanced and Corollary
10 holds by [7, Theorem 1.1] and Remark 15.

Remark 19. From Remark 13 we know that the initial configuration of our urn does not
effect the limiting distribution. This means that we may let the original block used to
make G0 or B0 to be chosen at random, or to be deterministic. It also means that if we
wanted to change the probability of choosing the master hook of a hooking network or the
master source of a bipolar network, we can simply change the number of balls of special
type at the beginning of the urn process.
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Remark 20. We can say something more about the covariance matrices Σ of Theorems 4
and 8. With the activity vector a = (wk1 , . . . , wkr , 1),

a · E(ξ∗) =
∑
k>1

(wkf(k) + χkg(k)) = λ1,

and for j = 1, . . . , r,

a · E(ξkj) =
∑
k>1

wkf(k) +
∑
i>j

wkig(ki − kj)− wkj

=
∑
k>1

wkf(k) +
∑
i>j

(wkj + χ(ki − kj))g(ki − kj)− wkj

=
∑
k>1

wkf(k) + wkj
∑
k>0

g(k) +
∑
k>0

χkg(k)− wkj

=
∑
k>1

wkf(k) +
∑
k>0

χkg(k) = λ1,

with the last line following from property (G1) of Proposition 16. Thus, we see that
Theorem 12 (ii) applies with c = λ1 and Σ = λ1Σ1, where Σ1 is defined in (25).

Remark 21. Furthermore, if χ > 0, then the values wk = χk + ρ are all different, and so
from Lemma 17, all of the eigenvalues of A are different. In this case, the matrix A is
diagonalizable, and so Theorem 12 (iii) applies and Σ can be calculated from (27). The
diagonalizability of A does not hold in general, see for example the matrix A of (29).
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