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Abstract

We consider the involutions known as toggles, which have been used to give
simplified proofs of the fundamental properties of the promotion and evacuation
maps. We transfer these involutions so that they generate a group Pn that acts
on the set Sn of permutations of {1, . . . , n}. After characterizing its orbits in terms
of permutation skeletons, we apply the action in order to understand West’s stack-
sorting map. We obtain a very simple proof of a result that clarifies and extensively
generalizes a theorem of Bouvel and Guibert and also generalizes a theorem of
Bousquet-Mélou. We also settle a conjecture of Bouvel and Guibert. We prove
a result related to the recently-introduced notion of postorder Wilf equivalence.
Finally, we investigate an interesting connection among the action of Pn on Sn, the
group structure of Sn, and the stack-sorting map.

Mathematics Subject Classifications: 05A05, 05E18, 05A19

1 Introduction

1.1 Toggles, Trees, and Permutations

A linear extension of an n-element poset P is a bijection L : P → [n] such that
L(x) 6 L(y) whenever x 6P y. We often view L as a labeling of the elements of P ,
where L(x) is the label of x. Let L(P ) denote the set of linear extensions of P . In [2],
Bender and Knuth made use of special involutions on semistandard Young tableaux,
which, when restricted to standard Young tableaux, can be seen as involutions on the set
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of linear extensions of a poset. Subsequently, these have been called Bender-Knuth invo-
lutions. Promotion and evacuation are bijections defined on L(P ) that were first studied
extensively by Schützenberger [37–39]. We refer the reader to Stanley’s beautiful survey
article [41], which gives much more information about these important maps. Haiman [32]
and Malvenuto–Reutenauer [35] simplified Schützenberger’s approach by showing that
promotion and evacuation can be defined in terms of generalizations of the Bender-Knuth
involutions. Following the work of Striker and Williams in [42], the term toggle has been
used to refer to Bender-Knuth involutions and other related types of involutions. Roughly
speaking, a toggle is an involution on a set of combinatorial objects that only makes a
small local change. See [36] for more information about toggles.

The toggles that Haiman and Malvenuto–Reutenauer used are defined as follows. If
i ∈ [n− 1] and L ∈ L(P ), then we obtain a new labeling swapi(L) of P by swapping the
labels i and i+1. Note that swapi(L) is a linear extension of P if and only if the elements
L−1(i) and L−1(i+ 1) are incomparable in P . The toggle pi : L(P )→ L(P ) is defined by

pi(L) =

{
swapi(L), if swapi(L) ∈ L(P );

L, otherwise.

Note that each map pi is an involution and that pi ◦ pj = pj ◦ pi whenever i and j are
not consecutive integers. We let SZ denote the symmetric group on a set Z, which is
the group of bijections from Z to itself. Thus, p1, . . . , pn−1 ∈ SL(P ). The toggle group of
p1, . . . , pn−1 is the subgroup of SL(P ) generated by p1, . . . , pn−1.

A rooted plane tree is a rooted tree with finitely many vertices in which the (possibly
empty) subtrees of each vertex are linearly ordered (from left to right). Binary plane
trees, ternary plane trees, Motzkin trees, and many other natural trees are all examples
of rooted plane trees. Given a set X of positive integers, a decreasing plane tree on X
is a rooted plane tree whose vertices are bijectively labeled with the elements of X so
that every nonroot vertex has a label that is smaller than the label of its parent. If
X = [n], then this is the same as a linear extension of the poset whose Hasse diagram
is the rooted plane tree (where the root is the maximum element and the leaves are the
minimal elements). Let DPT be the set of decreasing plane trees. The skeleton of a
decreasing plane tree T is the rooted plane tree obtained by removing the labels from T .
A binary plane tree is a rooted plane tree in which each vertex has exactly 2 (possibly
empty) subtrees (the left and right subtrees). Let DBPT ⊆ DPT be the set of decreasing
binary plane trees.

Throughout this article, unless otherwise specified, we use the word permutation to
refer to an ordering of a finite set of positive integers, written as a word. Let Sn denote
the set of permutations of [n]. We can obtain a permutation from a labeled tree using a
tree traversal. One useful tree traversal that is defined on decreasing binary plane trees is
the in-order traversal (sometimes called the symmetric order traversal). In order to read
a decreasing binary plane tree in in-order, we read the left subtree of the root in in-order,
then read the label of the root, and finally read the right subtree of the root in in-order.
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For example,

12 3

4 5

6
I−−→ 246153.

The in-order reading I(T ) of a decreasing binary plane tree T is a permutation of the
set of labels of T . It is well known [4, 40] that the in-order reading I is a bijection from
DBPT to the set of all permutations. Since we have already defined the skeleton of a
decreasing binary plane tree (this is the tree obtained by removing the labels), it makes
sense to define skeletons of permutations. Namely, the skeleton of a permutation π is the
skeleton of I−1(π).

Because each permutation π ∈ Sn has an associated decreasing binary plane tree
I−1(π), which can be seen as a linear extension of a poset, we can transfer the toggles
p1, . . . , pn−1 above to obtain toggles p1, . . . , pn−1 ∈ SSn .1 Thus, we obtain a group Pn =
〈p1, . . . , pn−1〉 6 SSn . Note that Pn is not a toggle group as we defined it above because
different permutations could have different skeletons that then give rise to different posets.
The permutations π and pi(π) always have the same skeleton, so all of the elements of
Pn preserve skeletons. We call the maps p1, . . . , pn−1 polyurethane toggles and call Pn

the nth polyurethane group.2

Just as Haiman and Malvenuto–Reutenauer used toggles to simplify Schützenberger’s
proofs concerning promotion and evacuation, we will use the above toggles on Sn to
generalize and simplify the proofs of several results concerning West’s stack-sorting map.
This is a function s that sends permutations to permutations; we define it in Section 2.

Although we will not need this fact, we wish to remark that the polyurethane toggles fit
into a more general context explored by Björner and Wachs [3]. Given π = π1 · · · πn ∈ Sn,
let π−1 be the permutation whose πth

i entry is i for all i ∈ [n]. Fix a binary plane tree
T , and let A be the set of permutations in Sn with skeleton T . A special consequence of
one of the main results in [3] (written using different language) is that the set s(A)−1 =
{s(π)−1 : π ∈ A} is an interval in the weak Bruhat order and that the inversion statistic
and the major index are equidistributed on s(A)−1.

1.2 Summary of Main Results

Section 2 provides necessary background on the stack-sorting map, the postorder traversal,
and permutation statistics. We begin Section 3 with a simple proof that two permutations
in Sn are in the same orbit under the action of the polyurethane group Pn if and only
if they have the same skeleton. We will also see that every orbit contains a unique
231-avoiding permutation and a unique 132-avoiding permutation. This allows us to give
useful alternative definitions of two “sliding operators” that were defined and used heavily
in [17] and [22]. We then give a new proof of one of the main theorems from [11] that is
much simpler than the original proof and neatly explains why the permutation statistics

1We use the same symbols p1, . . . , pn−1 by an abuse of notation, but this should not lead to any
confusion since we usually only consider the toggles defined on Sn.

2Polyurethane is a polymer used to manufacture surface coatings that preserve skeletons.
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appearing in that theorem are actually there. Our proof yields a result that is much
stronger than the original theorem, and it allows us to prove a conjecture of Bouvel and
Guibert as a simple consequence.

We prove that if π, π′ ∈ Sn have the same skeleton, then there is a skeleton-preserving
bijection ω : P−1(π)→ P−1(π′), where P is the postorder traversal defined in Section 2.
We then consider a theorem of Bousquet-Mélou concerning “sorted permutations” and
“canonical preimages.” We give a vast generalization of her result in terms of what we call
“higher-order twisted stack-sorting operators.” In fact, this generalization simultaneously
subsumes Bousquet-Mélou’s theorem and the aforementioned conjecture of Bouvel and
Guibert. We also show that the skeleton of a permutation in Sn determines the skeleton
of its canonical preimage (see Section 3 for definitions).

Finally, we will consider an interesting connection among the action of Pn on Sn, the
group structure of Sn, and the stack-sorting map. This allows us to give a new description
of one of the sliding operators from [17] and [22]. We end with two open problems, one of
which is the problem of determining the isomorphism type of the polyurethane group Pn.

2 Preliminaries

If π is a permutation of a set of n positive integers, then the normalization (also call
the standardization) of π is the permutation in Sn obtained by replacing the ith-smallest
entry in π with i for all i ∈ [n]. We say a permutation is normalized if it is equal to its
normalization. Given τ ∈ Sm, we say a permutation σ = σ1 · · ·σn contains the pattern
τ if there exist indices i1 < · · · < im in [n] such that the normalization of σi1 · · ·σim is
τ . We say σ avoids τ if it does not contain τ . Let Av(τ (1), τ (2), . . .) denote the set of
normalized permutations that avoid the patterns τ (1), τ (2), . . . (this list of patterns could
be finite or infinite). A set of the form Av(τ (1), τ (2), . . .) is called a permutation class. Let
Avn(τ (1), τ (2), . . .) = Av(τ (1), τ (2), . . .) ∩ Sn.

In his seminal monograph The Art of Computer Programming, Knuth [34] defined a
certain stack-sorting algorithm. His analysis of this algorithm led to several important
advances in combinatorics and theoretical computer science, such as the kernel method [1]
and the notion of permutation pattern avoidance [4,33]. In his dissertation, West [44] de-
fined a deterministic variant of Knuth’s algorithm, which has now received a large amount
of attention [4–14,16–31,43–45]. This variant is a function s, called the stack-sorting map.
The function s sends the empty permutation to itself. If π is a nonempty permutation
with largest entry n, then we can write π = LnR. We then define s recursively by
s(π) = s(L)s(R)n. For example,

s(246153) = s(24) s(153) 6 = s(2) 4 s(1) s(3) 5 6 = 241356. (1)

Almost all questions that people have asked about the stack-sorting map can be
phrased naturally in terms of preimages of permutations. West [44] defined the fertil-
ity of a permutation π to be |s−1(π)|. It follows from Knuth’s analysis that the fertility
of the identity permutation 123 · · ·n is the nth Catalan number Cn = 1

n+1

(
2n
n

)
. Indeed,
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Knuth showed that

s−1(123 · · ·n) = Avn(231) and |Avn(231)| = Cn. (2)

West also went through a great deal of effort to compute the fertilities of the permutations

23 · · · k1(k+1) · · ·n, 12 · · · (k−2)k(k−1)(k+1) · · ·n, and k12 · · · (k−1)(k+1) · · ·n,

showing in particular that these fertilities are the same. Bousquet-Mélou reproved the
fact that the first and last permutations have the same fertility in [10], and the current
author generalized this in [22] and [25].

The articles [11,14,18,20,22,25] are concerned with stack-sorting preimages of permu-
tation classes. One motivation for this line of work comes from the fact that s−1(Av(231))
is the set of 2-stack-sortable permutations (see [4,11,18] for definitions). Another motiva-
tion comes from the fact that there are several permutation classes Av(τ (1), τ (2), . . .) such
that s−1(Av(τ (1), τ (2), . . .)) is also a permutation class (see [20,25] for examples). The ar-
ticles [11,22,25] consider when the preimage sets of two permutation classes are counted
by the same numbers, a phenomenon dating back to West that was named “fertility Wilf
equivalence” in [22]. These articles also consider permutation statistics that are jointly
equidistributed on the various preimage sets. We will see that the action of Pn on Sn
yields a remarkably simple tool for analyzing fertility Wilf equivalence.

We defined the in-order tree traversal I in the introduction. Another tree traversal,
called the postorder traversal, is defined on all decreasing plane trees. We read a decreasing
plane tree in postorder by reading the subtrees of the root from left to right (each in
postorder) and then reading the label of the root. Letting P(T ) denote the postorder
reading of a decreasing plane tree T , we find that P is a map from DPT to the set of all
permutations. The fundamental link between the stack-sorting map and decreasing plane
trees comes from the identity [4]

s = P ◦ I−1. (3)

For example, we have

246153
I−1

−−→
12 3

4 5

6
P−−→ 241356,

which agrees with (1).
If T ,T ′ ⊆ DPT, then we say a map ψ : T → T ′ is skeleton-preserving if T and ψ(T )

have the same skeleton for all T ∈ T . The article [22] considers when two permutation
classes Av(τ (1), τ (2), . . .) and Av(τ ′(1), τ ′(2), . . .) are postorder Wilf equivalent, which means
that there exists a skeleton-preserving bijection

η : P−1(Av(τ (1), τ (2), . . .))→ P−1(Av(τ ′(1), τ ′(2), . . .)).

As stressed in [22], this is a very strong condition.
Throughout this article, we are interested in joint equidistribution of permutation

statistics. The following definition formalizes this notion.
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Definition 1. A permutation statistic is a function from the set of normalized permu-
tations to C. Let A and A′ be sets of normalized permutations, and let E be a set of
permutation statistics. We say that the elements of E are jointly equidistributed on A and
A′ if there is a bijection g : A→ A′ such that f(g(π)) = f(π) for all π ∈ A and all f ∈ E .

A descent of a permutation π = π1 · · · πn is an index i ∈ [n − 1] such that πi >
πi+1. The descent set of π, denoted Des(π), is the set of descents of π. Let LenDes
denote the set of all permutation statistics f such that f(π) only depends on the length
and descent set of π. A few such statistics (see [11] or [15] for their definitions) are
des, asc,maj, valley, peak, ddes, dasc, rir, rdr, lir, ldr. It is straightforward to show that an
index i is a descent of π if and only if the vertex whose label is read ith in the in-order
traversal of I−1(π) has a right child. This means that the length and descent set of a
permutation are determined by the permutation’s skeleton.

Definition 2. We say a permutation statistic f is skeletal if for every permutation π,
f(π) only depends on the skeleton of π.

There are several important skeletal statistics that are not in LenDes. A few examples
(see [11] or [15] for their definitions) are rmax, lmax, indmax, slmax, slmax ◦ rev. Theorem
3.2 in [11] gives a list of several permutation statistics and states that the statistics in that
list are jointly equidistributed on s−1(Avn(231)) and s−1(Avn(132)) for every n > 1. The
statistics in the list appear somewhat arbitrary at first, but Theorem 9 below clarifies this
matter, showing that all but one of those statistics appear in the list precisely because
they are skeletal. The one remaining statistic is interesting; it appears in the list for a
slightly different reason.

We will see that the polyurethane action allows us to understand joint equidistribution
of statistics on “higher-order” preimages of permutations under s. In order to make this
more precise, we make the following definition, which is motivated by the conjecture of
Bouvel and Guibert mentioned above (which is stated below in (5)).

Definition 3. Let rev denote the reversal operator defined on permutations by

rev(π1 · · · πn) = πn · · · π1.

A higher-order twisted stack-sorting operator is a map of the form s = νm ◦ νm−1 ◦ · · · ◦ ν1,
where ν1, . . . , νm ∈ {s, rev} and ν1 = s.

3 Polyurethane Actions and Some Applications

In the introduction, we defined the toggles p1, . . . , pn−1 ∈ SL(P ), where P is a poset with
n elements and L(P ) is the set of all linear extensions of P . We then said that we could
view a binary plane tree as the Hasse diagram of a poset and use the in-order reading I to
transfer these toggles so that they are defined on permutations. It will be convenient to
have an equivalent definition of these maps that avoids any reference to linear extensions
of posets. For π ∈ Sn and i ∈ [n − 1], let swapi(π) be the permutation obtained from π
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by swapping the positions of i and i + 1. Similarly, for each decreasing plane tree T on
[n], let swapi(T ) be the labeled tree obtained from T by swapping the labels i and i + 1
(the resulting tree is not necessarily a decreasing plane tree).

Definition 4. Define the polyurethane toggle pi ∈ SSn by

pi(π) =

{
swapi(π), if there is an entry a > i+ 1 appearing between i and i+ 1 in π;

π, otherwise.

Let Pn = 〈p1, . . . , pn−1〉 be the subgroup of SSn generated by p1, . . . , pn−1. We call Pn

the nth polyurethane group.

For example, p2(3547126) = swap2(3547126) = 2547136 because the entry 4 is larger
than 3 and lies between 2 and 3 in 3547126. Note that pn−1 is just the identity element of
SSn . The elements of Pn preserve the skeletons of the permutations on which they act.
In other words, any two permutations in Sn that lie in the same Pn-orbit must have the
same skeleton. The following theorem shows that the converse is also true.

Theorem 5. Two permutations in Sn are in the same orbit under the action of Pn if
and only if they have the same skeleton. The number of orbits of the Pn-action on Sn
is the nth Catalan number Cn = 1

n+1

(
2n
n

)
. Every orbit contains a unique 231-avoiding

permutation and a unique 132-avoiding permutation.

Proof. Suppose π ∈ Sn contains the pattern 231. It is straightforward to check that there
must be some i ∈ [n − 1] and some a ∈ [n] with a > i + 1 such that i + 1 appears to
the left of a in π and i appears to the right of a in π. The permutation pi(π) contains
strictly fewer copies of the pattern 231 than π does. This shows that we can repeatedly
apply the polyurethane toggles until we eventually reach a 231-avoiding permutation.
Hence, every orbit of the Pn-action contains at least one 231-avoiding permutation. A
similar argument shows that every orbit contains at least one 132-avoiding permutation.
We know from (2) that there are Cn 231-avoiding permutations (and Cn 132-avoiding
permutations) in Sn, so there are at most Cn orbits. It is well known that Cn is the
number of (unlabeled) binary plane trees on n vertices, so it is the number of skeletons
of permutations in Sn. We saw above that any two permutations in the same orbit must
have the same skeleton, so there are at least Cn orbits. This proves that there are exactly
Cn orbits. It follows that two permutations in Sn with the same skeleton must be in the
same orbit. Furthermore, each orbit contains a unique 231-avoiding permutation and a
unique 132-avoiding permutation.

Many of the results in [17] and [22] depend on “sliding operators” swu, swd : Sn → Sn.
Those two articles give different equivalent definitions of these maps. We can give a third
definition of swu and swd with the help of Theorem 5; it is straightforward to check that
the following definition is equivalent to the ones presented in [17] and [22].

Definition 6. Given π ∈ Sn, let swu(π) be the unique 132-avoiding permutation with the
same skeleton as π. Let swd(π) be the unique 231-avoiding permutation with the same
skeleton as π.
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Remark 7. We can restrict the maps swu and swd to Avn(231) and Avn(132), respectively.
It is clear that swu : Avn(231) → Avn(132) and swd : Avn(132) → Avn(231) are inverse
bijections that preserve skeletons.

Settling a conjecture of Claesson, Dukes, and Steingrimsson, Bouvel and Guibert [11]
proved that the permutation classes Av(231) and Av(132) are fertility Wilf equivalent,
meaning that |s−1(Avn(231))| = |s−1(Avn(132))| for every n > 1. In fact, they proved
the much stronger assertion that the permutation statistics in the set

LenDes∪{rmax, lmax, zeil, indmax, slmax, slmax ◦ rev} (4)

are jointly equidistributed on s−1(Avn(231)) and s−1(Avn(132)) for every n > 1 (see [11]
for the definitions of these statistics). They also conjectured that

|s−1(Avn(231))| = |s−1(Avn(132))| (5)

for every higher-order twisted stack-sorting operator s (see Definition 3), and they sug-
gested that the statistics in (4) might also be jointly equidistributed on s−1(Avn(231))
and s−1(Avn(132)). One especially notable statistic appearing in (4) is the Zeilberger
statistic zeil, which originated in Zeilberger’s study of 2-stack-sortable permutations [45]
and has received attention in subsequent articles such as [9,11,15,22]. For π ∈ Sn, zeil(π)
is defined to be the largest integer m such that the entries n, n− 1, . . . , n−m+ 1 appear
in decreasing order in π. All of the statistics in (4) except zeil are skeletal.

Bouvel and Guibert gave a somewhat complicated proof of the above equidistribution
result using generating trees. In Theorem 9 below, we obtain a more general version of
their theorem and prove their conjecture via a simple application of the polyurethane ac-
tion. We first need the following lemma, which is the primary reason why the polyurethane
toggles are useful for studying the stack-sorting map.

Lemma 8. If σ ∈ Sn and i ∈ [n− 1] are such that pi(s(σ)) = swapi(s(σ)), then pi(σ) =
swapi(σ) and s(pi(σ)) = pi(s(σ)).

Proof. If pi(s(σ)) = swapi(s(σ)), then there must be an entry lying between i and i+ 1 in
s(σ) that is larger than i+1. Since s(σ) = P(I−1(σ)) by (3), it follows from the definition
of the postorder traversal and the fact that I−1(σ) is a decreasing plane tree that i is not
a descendant of i+1 in I−1(σ). This means that there is an entry lying between i and i+1
in σ that is larger than i+ 1, so pi(σ) = swapi(σ). We have I−1(pi(σ)) = swapi(I−1(σ)),
so it follows from (3) and the definition of the postorder traversal that

s(pi(σ)) = P(I−1(pi(σ))) = swapi(P(I−1(σ))) = swapi(s(σ)) = pi(s(σ)).

Theorem 9. If s is a higher-order twisted stack-sorting operator and π, π′ ∈ Sn have
the same skeleton, then zeil and all of the skeletal statistics are jointly equidistributed
on s−1(π) and s−1(π′). In particular, zeil and all of the skeletal statistics are jointly
equidistributed on s−1(Avn(231)) and s−1(Avn(132)).
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Proof. Theorem 5 tells us that π and π′ are in the same Pn-orbit. Since Pn is generated
by the polyurethane toggles p1, . . . , pn−1, it suffices to prove the first statement of the
theorem in the case in which π′ = pi(π) for some i ∈ [n−1]. The proof is trivial if π = π′,
so we can assume π′ = swapi(π).

According to Definition 3, s = νm ◦ νm−1 ◦ · · · ◦ ν1 for some ν1, . . . , νm ∈ {s, rev} with
ν1 = s. Let ϕ0 : Sn → Sn be the identity map. For j ∈ {1, . . . ,m}, let ϕj = ϕj−1 ◦νm+1−j.
We prove by induction on j that pi(ϕ

−1
j (π)) = ϕ−1j (π′) for all j ∈ {0, 1, . . . ,m}. The base

case j = 0 is trivial, so assume that j ∈ {1, . . . ,m} and that pi(ϕ
−1
j−1(π)) = ϕ−1j−1(π

′). It
is easy to see that the involutions pi, rev ∈ SSn commute. Therefore, if νm+1−j = rev, we
have

pi(ϕ
−1
j (π)) = pi(rev(ϕ−1j−1(π))) = rev(pi(ϕ

−1
j−1(π))) = rev(ϕ−1j−1(π

′)) = ϕ−1j (π′)

as desired. Now assume νm+1−j = s. Choose σ ∈ ϕ−1j (π). We have s(σ) ∈ ϕ−1j−1(π), so

pi(s(σ)) ∈ ϕ−1j−1(π
′). Since π 6= π′, this implies that s(σ) 6= pi(s(σ)). By the definition

of pi, we must have pi(s(σ)) = swapi(s(σ)). We can now use Lemma 8 to see that
s(pi(σ)) = pi(s(σ)) ∈ ϕ−1j−1(π

′). Thus, pi(σ) ∈ s−1(ϕ−1j−1(π
′)) = ϕ−1j (π′). As σ was

arbitrary, this proves that pi(ϕ
−1
j (π)) ⊆ ϕ−1j (π′). Since π = pi(π

′), we can use the same
argument with the roles of π and π′ interchanged to prove the reverse containment. This
completes the inductive step. In the following paragraph, we will make use of the fact,
which we just proved, that

s(pi(σ)) = pi(s(σ)) whenever σ ∈ ϕ−1j (π) and νm+1−j = s. (6)

Now that we have proven that pi(ϕ
−1
j (π)) = ϕ−1j (π′) for all j ∈ {0, 1, . . . ,m}, we can

set j = m to see that pi(s
−1(π)) = s−1(π′). We know that f(pi(σ)) = f(σ) for every σ ∈

s−1(π) and every skeletal statistic f . In order to complete the proof of the first statement
of the theorem, we need to show that zeil(pi(σ)) = zeil(σ) for every σ ∈ s−1(π). For
this, we appeal to Lemma 3.1 in [22], which states that zeil(λ) = min{rmax(λ), tl(s(λ))}
for every λ ∈ Sn. Here, tl is the “tail length” statistic and rmax(λ) is the number of
right-to-left maxima of λ. For the purposes of this proof, we only need the fact that tl
and rmax are skeletal statistics (see [22] for more details). Choose σ ∈ s−1(π). Since
rmax is skeletal, rmax(pi(σ)) = rmax(σ). Noting that s = ϕm and ν1 = s (by Definition
3), we can use (6) to see that s(pi(σ)) = pi(s(σ)). We now use the fact that tl is skeletal
to see that tl(s(pi(σ))) = tl(pi(s(σ))) = tl(s(σ)). This proves that

zeil(pi(σ)) = min{rmax(pi(σ)), tl(s(pi(σ)))} = min{rmax(σ), tl(s(σ))} = zeil(σ).

Recall from Remark 7 that swu : Avn(231)→ Avn(132) is a skeleton-preserving bijec-
tion. For each π ∈ Avn(231), we can use the first statement of the theorem to see that zeil
and all of skeletal statistics are jointly equidistributed on s−1(π) and s−1(swu(π)). It fol-
lows that these statistics are jointly equidistributed on s−1(Avn(231)) and s−1(Avn(132)).
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If we appeal to a result from [22], we can extensively generalize the second part of
Theorem 9. Given π ∈ Sn, let

χm(π) =

{
(n+m− 1) · · · (n+ 3)(n+ 1)π(n+ 2)(n+ 4) · · · (n+m) if m ≡ 0 (mod 2);

(n+m) · · · (n+ 3)(n+ 1)π(n+ 2)(n+ 4) · · · (n+m− 1) if m ≡ 1 (mod 2).

For example,
χ5(132) = 86413257, and χ6(132) = 864132579.

Let
A =

⋃
m>0

{χm(1), χm(12), χm(1423), χm(2143)}. (7)

Let τ (1), τ (2), . . . be a (possibly empty) list of permutations taken from the set A, and let
τ ′(i) = swu(τ (i)) for all i. In [22], it is proven that

swu(Av(231, τ (1), τ (2), . . .)) = Av(132, τ ′(1), τ ′(2), . . .).

Applying the first part of Theorem 9 to each π ∈ Av(231, τ (1), τ (2), . . .), we obtain the
following result.

Theorem 10. Let s be a higher-order twisted stack-sorting operator. If τ (1), τ (2), . . . is a
list of permutations taken from the set A in (7), then zeil and all of the skeletal statistics
are jointly equidistributed on s−1(Av(τ (1), τ (2), . . .)) and s−1(Av(τ ′(1), τ ′(2), . . .)).

We now prove the surprising fact that the skeleton of a permutation π determines
the entire set of rooted plane trees appearing as skeletons of trees in P−1(π). The
polyurethane action makes the proof remarkably simple.

Theorem 11. If π, π′ ∈ Sn have the same skeleton, then there exists a skeleton-preserving
bijection

ω : P−1(π)→ P−1(π′).

Proof. We know by Theorem 5 that π and π′ are in the same Pn-orbit. Because Pn is
generated by p1, . . . , pn−1, it suffices to prove the theorem in the case in which π′ = pi(π)
for some i ∈ [n − 1]. The proof is trivial if π = π′, so we can assume π′ = swapi(π).
Choose T ∈ P−1(π). There must be an entry lying between i and i+ 1 in π that is larger
than i+1. It follows from the definition of the postorder traversal and the fact that T is a
decreasing plane tree that i is not a descendant of i+1 in T . This means that swapi(T ) is
a decreasing plane tree. Furthermore, P(swapi(T )) = swapi(P(T )) = swapi(π) = π′. As
T was arbitrary, this shows that swapi(P−1(π)) ⊆ P−1(π′). We can repeat this argument
with the roles of π and π′ interchanged to prove that swapi(P−1(π)) = P−1(π′). We now
put ω = swapi to complete the proof.

Most familiar skeletal permutation statistics (des, peak, maj, rmax, slmax, etc.) are
easily seen to be skeletal. Theorem 9 provides us with several interesting skeletal statistics
that are not at all obviously skeletal. One such statistic is the fertility statistic itself! We
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define this statistic by fer(π) = |s−1(π)|. More generally, if s is a higher-order twisted
stack-sorting operator, then we can define the higher-order twisted fertility statistic fers
by fers(π) = |s−1(π)|. Theorem 9 tells us that all of these statistics are skeletal. An-
other interesting statistic, which was introduced in [17] in order to understand so-called
uniquely sorted permutations, is the deficiency statistic def. Bousquet-Mélou [10] defined
a permutation to be sorted if its fertility is positive. If π ∈ Sn, then def(π) is defined
to be the smallest nonnegative integer ` such that π(n + 1)(n + 2) · · · (n + `) is sorted.
Because we now know that the fertility statistic fer is skeletal, it is easy to verify that def
is also skeletal.

Bousquet-Mélou [10] defined a decreasing binary plane tree to be canonical if every
vertex v that has a left child also has a nonempty right subtree TRv such that the first
entry in I(TRv ) is smaller than the label of the left child of v. She defined a permutation
π to be canonical if I−1(π) is canonical. She then proved the following result.

Theorem 12 ([10]). For every sorted permutation π, there is a unique canonical permu-
tation σ ∈ s−1(π). Moreover, the fertility of π and the set of binary plane trees that are
skeletons of elements of s−1(π) only depend on the skeleton of σ.

Given a sorted permutation π ∈ Sn, we call the unique canonical permutation in
s−1(π) the canonical preimage of π. Theorem 12 led Bousquet-Mélou to ask for a general
method for computing the fertility of a permutation from the skeleton of its canonical
preimage. This was accomplished in [23–25] using different language. Invoking Theorem
9, we obtain the following strengthening of Bousquet-Mélou’s theorem.

Corollary 13. If s is a higher-order twisted stack-sorting operator and π, π′ ∈ Sn are
sorted permutations whose canonical preimages have the same skeleton, then all of the
skeletal statistics are jointly equidistributed on s−1(π) and s−1(π′).

One might ask if Theorem 12 actually tells us anything new. In other words, Corollary
13 would follow immediately from Theorem 9 (without the help of Theorem 12) if we could
show that the skeleton of the canonical preimage of a sorted permutation π determines
the skeleton of π. This turns out to be false. The sorted permutations 42135 and 32145
have different skeletons, but their canonical preimages 45231 and 35241 have the same
skeleton. Thus, Corollary 13 applies when π = 42135 and π′ = 32145 even though
Theorem 9 does not apply in this case. This also explains why we did not include the
statistic zeil in the collection of jointly equidistributed statistics in Corollary 13. We
have s−1(42135) = {45231} and s−1(32145) = {35241}, and zeil is not equidistributed
on these two sets because zeil(45231) = 1 6= 2 = zeil(35241). Let us remark, however,
that we can add zeil to the collection of jointly equidistributed statistics in Corollary 13
if s 6∈ {s, rev ◦s}. Indeed, in this case, we can write s = ŝ ◦ s̃ for some higher-order
twisted stack-sorting operators ŝ and s̃. Theorem 12 tells us that there is a skeleton-
preserving bijection from ŝ−1(π) to ŝ−1(π′), so it follows from Theorem 9 that there is
a skeleton-preserving bijection from s−1(π) = s̃−1(ŝ−1(π)) to s−1(π′) = s̃−1(ŝ−1(π′)) that
also preserves the zeil statistic.

We have just seen that the skeleton of the canonical preimage of a sorted permutation
π does not determine the skeleton of π. The reverse dependency, however, does hold.

the electronic journal of combinatorics 27(2) (2020), #P2.46 11



Theorem 14. If π, π′ ∈ Sn are sorted permutations that have the same skeleton, then the
canonical preimages of π and π′ have the same skeleton.

Proof. As in the proofs of Theorems 9 and 11, it suffices to consider the case in which
π′ = pi(π) = swapi(π) for some i ∈ [n − 1]. Let σ and σ′ be the canonical preimages
of π and π′, respectively. Lemma 8 tells us that s(pi(σ)) = pi(s(σ)) = pi(π) = π′. We
claim that pi(σ) is canonical. If we can prove this, then we will know that pi(σ) = σ′

because the canonical preimage of π′ is unique. This will prove that σ and σ′ have the
same skeleton, as desired.

To prove the claim, we assume by way of contradiction that pi(σ) is not canonical.
From this assumption, one can verify that i+1 is the left child of a vertex v in I−1(σ) and
that v has a nonempty right subtree TRv such that the first entry of I(TRv ) is i. One can
now check that every entry of P(I−1(σ)) appearing between i and i+ 1 is a descendant of
i in I−1(σ). Every such entry is necessarily smaller than i. Since P(I−1(σ)) = s(σ) = π
by (3), we find that there are no entries between i and i + 1 in π that are greater than
i+ 1. However, this means that pi(π) = π 6= swapi(π), which is a contradiction.

We end this section with a discussion of a somewhat unexpected connection among
skeletons of permutations, the stack-sorting map, and the group structure of Sn. One can
naturally identify Sn with the symmetric group S[n] by associating π = π1 · · · πn ∈ Sn with
the bijection from [n] to [n] that sends i to πi for all i ∈ [n]. This defines a group operation
· on Sn. More precisely, if π = π1 · · · πn and σ = σ1 · · ·σn, then π · σ = πσ1 · · · πσn . Let
π−1 denote the inverse of π in the group Sn. Note that π ∈ Av(231) if and only if
π−1 ∈ Av(312).

One can show (see Exercise 19 in Chapter 8 of [4]) that

π, σ ∈ Sn have the same skeleton if and only if π−1 · s(π) = σ−1 · s(σ). (8)

Exercise 21 in Chapter 8 of [4] asks the reader to compute the size of the set {π−1 · s(π) :
π ∈ Sn}. The answer is the nth Catalan number Cn. In fact, we can use Theorem 5 to
obtain the following proposition.

Proposition 15. We have

{π−1 · s(π) : π ∈ Sn} = Avn(312) and {s(π)−1 · π : π ∈ Sn} = Avn(231).

Proof. We know by Theorem 5 that every Pn-orbit of Sn contains a unique 231-avoiding
permutation. Since s−1(123 · · ·n) = Avn(231) by (2), it follows from the above discussion
that

{π−1 · s(π) : π ∈ Sn} = {π−1 · s(π) : π ∈ Avn(231)} = {π−1 : π ∈ Avn(231)} = Avn(312).

Therefore,

{s(π)−1 ·π : π ∈ Sn} = {(π−1 ·s(π))−1 : π ∈ Sn} = {σ−1 : σ ∈ Avn(312)} = Avn(231).
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In Definition 6, we defined a sliding operator swd. There are two alternative definitions
of this operator (which better explain the name “sliding operator” and the symbol “swd”)
appearing in [17] and [22]. As a consequence of Proposition 15, we obtain a fourth
description of this operator that bears very little resemblance to the other three.

Corollary 16. For every π ∈ Sn, we have swd(π) = s(π)−1 · π.

Proof. We know by Proposition 15 that s(π)−1 · π ∈ Avn(231), so it follows from (2) that
s(s(π)−1 · π) = 123 · · ·n. This shows that (s(π)−1 · π)−1 · s(s(π)−1 · π) = π−1 · s(π), so
(8) tells us that π and s(π)−1 · π have the same skeleton. The proof now follows from
Definition 6.

4 Open Problems

It would be interesting to determine the actual isomorphism types (or even just the
orders) of the polyurethane groups Pn. We know that pn−1 = 1 and that p2i = 1 for
each i ∈ [n − 2]. It is also easy to see that pipj = pjpi when i and j are not consecutive
integers, and one can verify that (pipi+1)

6 = 1. This shows that Pn is a quotient of the
Coxeter group with Coxeter graph 6 6 6 6︸ ︷︷ ︸

n−2

. It is easy to see that P3

has order 2. One can also show that P4 is the Coxeter group G2, which is isomorphic to
D12, the dihedral group of order 12.

We know by Theorem 9 that the statistic fers2 given by fers2(π) = |s−2(π)| is skeletal.
It would be very interesting (and probably very useful) to have a method for determining
fers2(π) from the skeleton of π. Alternatively, one could attempt to follow the ideas
introduced in [23–25] to produce a method for determining fers2(π) from the skeleton
of the canonical preimage of π when π is sorted (those articles are phrased in terms of
“canonical valid hook configurations” instead of canonical preimages).
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