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Abstract

Classical parking functions can be defined in terms of drivers with preferred
parking spaces searching a linear parking lot for an open parking spot. We may
consider this linear parking lot as a collection of n vertices (parking spots) arranged
in a directed path. We generalize this notion to allow for more complicated “parking
lots” and define parking functions on arbitrary directed graphs. We then consider
a relationship proved by Lackner and Panholzer between parking functions on trees
and “mapping digraphs” and we show that a similar relationship holds when edge
orientations are reversed.

Mathematics Subject Classifications: 05A19

1 Introduction

Parking functions were first defined by Konheim and Weiss [8] during their study of the
linear probing solution to collisions on hash tables. The authors described a sequence
of n drivers attempting to park randomly along a one-way street. If the spot a driver
attempts to park in is occupied, she drives to the next available spot and parks. As we are
interested in the number of ways such a procedure results in all n drivers parking, we may
consider the initial checked spot as a preferred parking place, rather than a randomly
chosen spot. Let s € [n]™ and consider a directed path with vertex set [n] and edge
orientations ¢ — ¢+ 1. One-by-one the drivers attempt to park according to the following
process:

1) Driver ¢ begins at vertex s;.

2) If the current vertex is unoccupied, the driver parks there. If it is occupied, the
driver drives to the next vertex, following edge orientation, and repeats Step 2.
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3) If she parks, the process continues with driver i + 1 attempting to park at vertex
Si+1. Otherwise, the process terminates.

A sequence s such that all n drivers successfully park is called a classical parking
function of length n. With some consideration, one can see that as long as there is no
i such that too many drivers prefer a vertex from {i,i + 1,7 4+ 2,...,n}, then all drivers
will park. This is formulated in an alternative definition of parking functions:

Definition 1 (Parking Functions). A classical parking function of length n is a sequence
s € [n]"™ such that for all i € [n],

Hj:sj =i} <n—i+1.

Additionally, we may consider the case when m < n drivers attempt to park. We call
these (n, m)-parking functions and the definition is the same as in the classical case for
s € [n]™.

It is well-known that there are (n+1)""! parking functions of length n, while there are
(n—m+1)(n+1)""! classical (n, m)-parking functions [3]. Classical parking functions have
appeared throughout combinatorics as chains in the noncrossing lattice, in enumeration
of hyperplane arrangements, in noncrossing partitions, and in tree enumeration (see [5,
12, 14] as well as references herein).

Parking functions have seen many generalizations: G-parking functions [11], u-parking
functions [9], parking sequences [4], rational parking functions [1], and those defined on
tree-shaped parking lots [2, 10]. In this paper, we extend the “drivers searching for a
parking spot” analogy from the trees in [10] to general digraphs and give a description
that generalizes the set definition of the classical parking functions in Section 2. In
Sections 3 and 4, we closely follow the results of Lackner and Panholzer [10] and show
that many of their theorems have analogues when the edge orientations of the tree and
mapping digraphs are reversed. Finally, we conclude with some new research directions
and propose extensions to the concepts of increasing and prime parking functions.

This paper is, in part, an expansion of Sections 2 and 4 of [6].

2 Parking Functions on Digraphs

One interpretation of classical parking functions is of drivers attempting to park in a
preferred spot along a street and parking in the first available spot they find afterwards.
We may extend this notion to general digraphs by allowing driver to choose which out-edge
to travel along. More formally,

Definition 2 (Parking Process). Pick n,m such that 0 < m < n. Let s € [n]™ and D
be a digraph with vertex set [n]. One-by-one m drivers attempt to park according to the
following process:

1) Driver ¢ begins at vertex s;.
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Figure 1: A digraph with parking function s = (1,1, 3,2, 1).

2) If the current vertex is unoccupied, the driver parks there. If it is occupied, the
driver chooses a vertex in the neighborhood of the current one and drives there.

3) The driver repeats step 2) until she either parks, and the next driver enters, or is
unable to find an available parking space, and the process terminates.

When the maximum outdegree of a vertex in D is 1, the parking process is determin-
istic. In the general case, however, drivers must “choose” which edge to take in search of
a parking spot. Our interest lies in the possibility of all drivers parking, so we give the
following definition as our parking function generalization:

Definition 3. For a sequence s € [n]™ and digraph D with vertex set [n], we say that s
is a parking function on D if it is possible for all of the m drivers to park following the
parking process. If s is a parking function on D, we call the pair (D, s) an (n, m)-parking
function.

Figure 1 gives an example of an (n,n)-parking function. Drivers 2 and 5 are the only
drivers who may make a choice of which edge to travel along and all drivers can park as
long as at least one of those drivers uses the edge (1,4) during parking.

Definition 3 is clearly a generalization of the classical parking function case, but it is
sometimes difficult to apply practically, so we now consider an equivalent definition that
is more useful. For i, j € [n], we say i <p j if and only if there exists a directed path from
1 to 7 in D. We have ¢ <p ¢ for any ¢ as the directed path between ¢ and itself contains
zero edges, making <p a quasiorder on the vertices of D. If we wish to consider when
1# j, we say 1 <p j. For vertex i, define the set of vertices reachable from i as

Rp(i) ={j €[n]:i=2p j}.
Then for any A C [n] define the reachable set of A as

Rp(A) = | Rp(d).

€A
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Theorem 4. Let D be a digraph with vertex set [n] and s € [n]™. Let C = {C4,...Cp}
be the set of cars, indexed such that the driver of C; prefers spot s;. Then s is a parking
function on D if and only if for all A C C we have

A<l U Bl
s;:C; €A

Proof. If we let B be the bipartite graph with vertex set C' U [n] where {C;, j} € E(B) if
and only if s; <p 7, then by Hall’s Theorem, we are claiming that s is a parking function
if and only if there exists a matching on B saturating C. If s is a parking function, then
park the drivers in some manner. Suppose C; is parked on v; for each 7. Then, since
we must have s; <p v;, the edge {C;,v;} is in B. These edges define a matching that
saturates C'.

The other direction is not as clear because the parking process requires drivers to park
in the first empty spot they find. We use a matching M = {{C;,v;}}1*; to determine a
(not necessarily unique) way of parking on D.

The iterative process is the same for each Cj, starting at ¢ = 1. At step ¢, pick any
x with s; <p © =<p v; such that there exists a walk s; = yo = y1 — -+ — yx — x such
that the y;’s are spots occupied by cars in previous iterations. If no such y, exists, then
x = s;. Park C; in x and delete {C;,v;} from M. If {C;,x} € M for some j > i, then
replace this edge with {C}, v;}. Now repeat with Cjy.

In each step, the vertex x is the first unoccupied vertex along some walk between s;
and the vertex with which C; is matched. At least one such x exists because, at the start
of step 7, C; is matched with a vertex which is not occupied by any car. At the end
of step i, we know the updated M is a matching saturating {C;}s~; because we know
s; =p v; = x from the edge {C;,v;} and © <p v; by our choice of z. Thus, s; <p v;, so
the edge {C;,v;} is in B. O

Rather than considering subsets of the drivers, we may reformulate the statement in
terms of the number of drivers wanting to park in various “regions” of the graph (c.f.
Definition 1).

Corollary 5. Let D be a digraph with vertex set [n] and s € [n]™. Then s is a parking
function on D if and only if for all B C [n| we have

{Ci: si € Rp(B)}| < [Rp(B)|.
Proof. Let s be a parking function on D and B C [n]|. Let A = {C; : s; € Rp(B)}.
Because s is a parking function, we know |A| < | |J Rp(s;)|, but also by the definition
$;:C; €A
of Rp(B), we have |J Rp(s;) € Rp(B).
5::C;, €A
On the other hand, suppose for all B C [n] we have [{C; : s; € Rp(B)}| < |Rp(B)|,
let ACC,and B= |J {s;}. By definition, Rp(B) = |J Rp(s;), and so
CZ'GA CiGA
Al < HCi = si € Ro(B)} < |Rp(B)| = | | Ro(s:)l.
C;eA
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thus s is a parking function. O]

From this set definition, it is immediately obvious that the ordering of s does not
matter.

Corollary 6. Let (D, s) be a parking function and o € &,,. Then the permuted sequence
So = (S(1)s 56(2)s - - - » Se(m)) 15 also a parking function on D.

Remark 7. The number of distinct Rp(B) is the same as the number of filters of the
quasiorder =<p, which is, in general, much less than 2".

In the case of a classical parking function s, for any B C [n| with smallest element b,
we have that |Rp, (B)| = |Rp, (b)] = n+1—>. Thus, fori € [n], [{j:s; = i}| <n+1-—1,
as in Definition 1. In addition, Corollary 5 generalizes the description of parking functions
given in [10], which we now consider as we turn our attention to rooted trees with edges
oriented away from the root.

3 Parking Functions on Source Trees

Lackner and Panholzer [10] and Butler, Graham, and Yan [2] independently generalized
the “drivers searching for a parking space” interpretations of parking functions to rooted
trees with edges oriented towards a root. In this section, we follow the enumerative
discussion from [10] and show that several of their theorems have analogous results when
edge orientations are reversed. B

If T is a rooted tree with vertex set [n] and edges oriented towards the root, we let 7" be
the tree obtained by reversing the orientation of all the edges. In our pictures, the root will
be the top-most vertex. We call these sink and source trees, matching whether the root
is a sink or source vertex. Similarly, if M} is the digraph obtained from f : [n| — [n] by

letting V/(My) = [n]| with edge set E = {(i, f(1))},, we let Mf be the digraph obtained
from M; by reversing edge orientations. That is, E(Mf) = {(f(9),9)},. We will call
these mapping and inverse mapping digraphs, respectively. We note that digraphs in each
of these families have a single cycle on each connected component. Define the sets

To={T :V(T) =[n] and T is a rooted sink tree},
M,, = {M : M is the mapping digraph of some f : [n] — [n]}.

We similarly define 7,, and ./\7n for the source trees and inverse mapping digraphs.

Figure 2 gives an example of a source tree and an inverse mapping digraph along with
an s € [7]" that is a parking function on both.

For source trees, because the indegree of a node is at most 1, for two distinct vertices,
w and v, the sets Rz(u) and Rz(v) are either disjoint or one contains the other. Thus,
the 2" inequalities in Corollary 5 reduce to only n independent inequalities.

We briefly introduce some notation out of convenience. We call u the parent of v if
the two are adjacent and u lies on the unique path between the root and v. Here, we do

ot
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s=(2,3,4,1,3,5,1)

(3)

GO

9'0

Figure 2: A source tree and inverse mapping digraph with a common parking function.

not consider edge orientation. Further, for a vertex u of T, let fu be the subtree induced
by the set R#(u). Thus, Corollary 5 can be restated as:

Corollary 8. Let T be a source tree and s € [n]™. Then s is an (n, m)-parking function
on T if and only if for all u € [n] we have

{i:si € T} < |Tl.
Additionally, for digraph D with vertex set [n], let
P(D,m) = |[{s € [n]™ : s is a parking function on D}|.
We first study the extremal values of P(T', m).

Proposition 9. Let T be a source_tree, u a non-root vertex, v the parent of u, and w
such that v <% w and w ¢ T,,. Let T" be the tree obtained by removing the edge (v, u) and

adding the edge (w,u). Then P(T,m) < P(T",m).

Proof. To clarify which tree we are considering, we denote by z’ the vertex in T’ with
label z. Let (T, s) be an (n, , m)-parking function. By Corollary 5, we must check [{i : s; €
T',} < [T for all z € V(T"). By the construction of T7, |{i : s; € T MN=Wi:s; €T, v H

and |T;,| = |Ty| for all ¥ not satisfying v' <z v’ <7 w'.
Therefore, let i be a vertex satisfying v’ <= y' <7 w’. We thus have:

(i si€ThY = {itsi € T} + {i:s € T}
< Tyl + |7

As a result, we obtain an upper and lower bound on P(T, m).
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Corollary 10. The number of (n,m)-parking functions is mazimized when T is a path
and minimized when T is a star, meaning

Z (m) (7’L — 1)m—z < P(T, m) < (n —m + 1)(7’L + 1)m—17

i
=0
where n® =n(n —1)(n —2)---(n — k + 1) is the falling factorial.

Proof. For a path, the parking functions, up to vertex labeling, are classical parking
functions, and thus number (n —m + 1)(n + 1)™"1.

On a star, for 0 < ¢ < m, when ¢ drivers prefer the root, there are (:;__12) ways to
choose the preferred non-root vertices, (T) ways to place the drivers preferring the root
in s, and (m — 7)! ways to order the drivers preferring non-roots in s. O]

In the case of sink trees, the maximum and minimum number of parking functions
also occur on paths and stars, respectively. From [10], we have

n™ + (?) (n—1)"=L < P(Tym)< (n—m+1)(n+1)"""

If T is a star, it is not immediately clear for an arbitrary choice of (n, m) which of P(T,m)
and P(f ,m) is larger. However, we can say after inspecting the formulae that if m is
0 or 1 then the two are equal and if n > 3 then P(T,3) is larger. What happens when
3 < m < n remains open, but we can determine which is larger when m = n for all T

Theorem 11. Let T € 7,,. Then
P(T,n) < P(T,n)
with equality if and only if T is a path.

Proof. Let (T, s) be a parking function on sink tree 7. We give a process to determine an
involution 7 € &,, such that 7(s) = (7(s1),7(s2),...,7(s,)) is a parking function on the
source tree T. Park cars on T following the parking procedure, highlighting an edge if it
is used by a driver after failing to park at her preferred spot. Since 7' is a sink tree, each
vertex has outdegree at most 1, so parking is deterministic. We define 7 by individually
considering the components connected by highlighted edges. So without loss of generality,
we may assume that every edge in 7' is highlighted.

We define a collection of length > 2 “paths” in T, one for each leaf, whose vertices form
a partition of the vertices of T'. The purpose of these “paths” is to identify a section of the
tree where we can “flip” the edge orientations and driver preferences and still guarantee
each driver a spot to park.

Let {v;}, for 1 < ¢ < k be the leaves of T" indexed such that v; < v;41. We recursively
define the sets P;: the set P; is the smallest set of vertices of the path between v; and the
root such that no vertices from P;, j < 4, are in P;, there are | P;| drivers preferring P;, and
all vertices of P; are connected to v; through vertices in {Pj}éz1 For example, on the left
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tree of Figure 3, we have sets P, = {1,2,3,5} and P, = {4,6}. Two drivers prefer the leaf
{1}, three drivers prefer the vertices {1, 2}, four drivers prefer {1,2,3} and {1, 2, 3,5}, so
the latter is P;. When determining P», we skip over vertices in previously-chosen paths,
in this case the vertex labeled 5.

p=(1,4,4,2,1,3) 7(p) = (5,6,6,3,5,2)
©® ©
(5) (5)

\@ - @ @

@ @
@ @

Figure 3: Constructing a parking function on 7' from one on 7. 7 = (15)(23)(46)

The collection {P;}%_, must partition the vertices of T. Suppose it does not and let
v ¢ P, for any i be such that v is the only vertex in T, the subtree rooted at v, with
this property. The vertex v is not a leaf of T, as all leaves are in the sets {P;}%_; by
construction, and thus is the terminus of at least one edge, (u,v). Since none of the
“paths” corresponding to leaves of T}, contain v and because all cars can park, all cars
preferring spots w =<7 w can park without occupying v. This means the edge (u,v) is
not used by any driver after failing to park in her preferred spot, which contradicts our
assumption that this was true of all edges. Therefore, such a v can not exist.

For each i, let n; = |P;| and label the elements of P; by w; ; such that w;; = v; Zp
Wi2 27 ... 27 W;y,. Finally, we define T(wi,j) = W;n,4+1—j- This reverses the driver
preference along the “path” so that when the edge orientation is flipped for TV, the drivers
may park as they did on T'. B

We can recover the P; from (7', 7(s)) using the exact same method. Thus, we can
invert the process. On the right tree of Figure 3, zero drivers prefer {1}, one driver
prefers {1,2}, two drivers prefer {1,2 3}, and four drivers {1,2,3,5}, so this is P;. For
Py, no drivers prefer {4}, we skip over 5 as it is already in P;, and two drivers prefer
{4,6}.

If T is not a directed path, then this process is not surjective because the parking
function in which all n drivers prefer the root of 1" is not obtainable in this manner as at
least one driver prefers each leaf vertex. O

Define the following for n > 1:

Fom=Y_ P(T,m), and M,,, = Y P(M,m).
TeT, MeM,

Similarly, define ﬁn’m and anm for source trees and inverse mappings. Summing over all
T € 7, gives us
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Corollary 12. Forn > 1,

an g Fn,na

)

with equality only when n € {1,2}.

As we previously mentioned, when m < n, the result of Theorem 11 does not neces-
sarily hold. For the tree in Figure 4, P(T,2) = 15, as any sequence except (4,4) parks.
However, P(T,2) = 14 as neither (1,1) nor (2,2) are parking functions.

@
(3)
O @

Figure 4: A tree T for which P(T,2) > P(T,?2).

Remark 13. The extremal values for P(M £,m) are less interesting than the corresponding

values on trees. When M, 7 is a cycle, P(My, m) is maximal (as all n™ sequences can park)
and is minimal when f = d. Thus

m! < P(Mf,m) <n™.

In fact, the same is true for P(Mg, m).

4 Comparing P(T, m) and P(Mf,m).

Lackner and Panholzer [10] proved n - F,, ,;,, = M, . In fact, this relationship still holds
when the edge orientations are reversed. We prove the claim when m = n, then we will
show the more general case. While the overall idea of the proofs are similar to their
counterparts in [10], there are some technical differences in dealing with the source trees.
Because, on sink trees, the spot in which each driver parked was well-defined, the authors
of [10] were able to identify edges in the digraphs that were not used during parking and
thus could be freely manipulated. In our case, as the drivers no longer necessarily have
a unique walk along which to search for a parking spot, we must instead identify edges
that are not necessary for some successful parking. This is simple enough on trees using
the characterization of Corollary 5, but it is not immediately clear for inverse mapping
digraphs. So, we first prove that at least one cycle edge on each component of an inverse
mapping digraph is not needed for parking.

Lemma 14. Let (Mf,s) be a parking function. Then there exists at least one edge in
each cycle of My that can be deleted such that all drivers can still park.
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Proof. We induct on the number of vertices in a cycle. Let (M £,8) be an (n,n)-parking
function. Without loss of generality, we may assume there is only one component of M ¥
and thus a unique cycle in the graph. If only one vertex is in the cycle, then there is an
edge of the form (u, ) which is useless for parking and may be deleted.

Now suppose the cycle has length » > 1. Furthermore, suppose without loss of gen-
erality that the vertices of the cycle are labeled by [r], f(r) = 1, and f(i) =i+ 1 for
i € [r—1]. Let M be the graph obtained by deleting all cycle edges. Define for 1 < i < 7,
Vi = |Rm(i)] and o := |{j : s; € Ruy(7)}]. These are the numbers of vertices in and
drivers preferring the subtree induced by the vertex ¢ along with all 7 < i, v for v non-cycle
vertices in M, Iz

If a; < V; for all @ € [r], then there are strictly fewer than n drivers attempting to
park, contradicting the assumption that (M £,8) is an (n,n)-parking function. Hence, we

know a; > V; for some 7. Since s is a parking function on M, at least one driver prefers
i (otherwise, too many drivers prefer non-cycle vertices). We construct an (n —1,n — 1)-
parking function by contracting the edge (i, — 1) to identify the vertices i — 1 and i as
a single vertex (with label ¢ — 1) to form the digraph M’, deleting the first instance of i
from s, and changing all others to i — 1 to form the sequence s’. For non-cycle vertex v,
|Rz\7f (v)| = |Rpr(v)|, as are the number of drivers preferring each set. If v is instead a
cycle vertex, then n = \Rﬁf(v)| = |Ryv(v)| + 1, while n drivers prefer Rﬁf(v) and n — 1
drivers prefer Ry (v). Thus, (M’,s') is a parking function with » — 1 vertices in the cycle.

By the inductive hypothesis, there exists an edge e that can be deleted from M'. We
claim this same edge in M/ is not necessary for parking via s.

Let T be the digraph obtained by deleting e from M; and 7" be obtained by deleting
e from M’. Since (1", s') is a parking function, we know for any v € 7", we have |[{j : s €
Ry/(v)}| < |Rp/(v)]. We now check the vertices of T' to determine if (7', s) is a parking
function.

Case 1: i — 1 <7 v. We have

{j:s5 € Re(v)}| = {j: 55 € R (v)| < Ry (v)] = |Rr(v)].
Case 2: v <7 ¢. Then,
{j:s; € Rr(v)} ={j:s € Rr(v)[+ 1< |Rp(v)| +1=|Rr(v)].
Case 3: v =1 gives
{j:sj € Re(i)} =Hj:sj € Reo(i = D[+ 1< |Rp(i = 1) + 1= [Rr(d)].
Case 4: v =1 — 1. Using the fact that —a; < —V;, we know
|{] 185 € RT(Z — 1)}| = |{j 185 € RT/(i — 1)| +1— 0«
<|Rp(i—D|+1-V
= (|Re(i =) +Vi—1)+1-V,
— [Re(i — 1),
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s=(1,1,2,2,3,3,3) s =(1,1,2,2,2,2)

) OO

Figure 5: Identifying a deletable edge e by contracting (3, 2).

Case 5: all other v. Since v is not a cycle vertex in M ¢ and s is a parking function
on My, the deleting of e does not affect the reachable set of v. Thus,

{785 € Re(v)} = {7+ 55 € By (0)} < [Ryg, (v)] = [Rer(v)].

So (T, s) is indeed a parking function and we know the edge e is not necessary for parking

—~

on M;y. O

Figure 5 gives an example of the contraction to M’ with ¢ = 3. We identify a deletable
e on M', which gives a deletable e on M.
We now use Lemma 14 to prove

Theorem 15. For n > 1, we have the relationship

n-Fyn=M,,.

Construction of the bijection. Let (T, s) be a parking function for source tree T, and
pick v € V(T). We define a bijection ¥ such that ((f,s,v)) = (Mf,s) for some

appropriate inverse mapping digraph M #, constructed by identifying edges in T that can
be manipulated without affecting the ability of the cars to park. The sequence s will not
change. B B B

Let (u,w) be an edge in T. If |{i : s; € T,y }| = |Tw|, then for any successful parking,
no car may cross (u,w) as otherwise too many cars would attempt to park in the subtree
T, w- Additionally, at least one driver must prefer w, as one driver must park in w and no
driver may use the edge (u,w). These two observations will allow us to select edges to
manipulate in T. B

Consider the path root(7) = vy — vy — ... — v, = v for some k > 1. We first
identify the edges that are freely manipulatable, then we use the order of s to choose
a subset of those. For 1 < i < k, let v; € A if and only if |{j : s; € To,,}| = |Th,
Since Tvl = T, A is nonempty. By the second observation above, all v; € A appear as
preferences in s. The edge (v;_1,v;) is not used by any driver, so we may manipulate
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it (even delete it) without affecting parking. Next, for the v; € A, we define the rank
d(v;) to be the index of the first appearance of v; in s. We now let B C A be given by
the elements {v; : Vj < i,d(v;) < d(v;)}. That is, the elements of B are those in A that
appear in s after their ancestors from A. Note that B # () as root(f) = € B.
Consider the unique sequence {v; }Lill such that v;;, € B and i; < 7;41. For j > 1,
remove the edge (v;;-1,v;;) and add the edge (v;;—1,v;,_,,). Finally, add the edge (v, v; )
(if v is the root, this will be a loop as then v = v;). The resulting graph is an inverse
mapping digraph, Mf, where f(i) is the unique j such that (j,4) is an edge. In particular,
the edges that were manipulated and the one that was added are {(f(v;;), UZJ)}‘B‘ O

=(2,3,4,1,3,5,1),v =5

By -

Figure 6: Turning a source tree into an inverse mapping digraph.

Figure 6 gives an example of ¢. In it, A = {1,3,4,5} and B = {1,3,5}, with v;, = 3,
v, = 1, and v;; = 5.

Remark 16. In each component, the cycle vertex appearing in B has the highest rank of
all other cycle vertices in that component. Further, if an edge was necessary for parking
on T, it is still necessary for parking on M.

For the inverse, we know by Lemma 14 that at least one edge in each cycle of the
graph is not necessary for parking. We let the set A be the set of vertices in the cycles
of M f that are the terminal vertices of an edge that is not necessary for parking. Define
B C A as the set of vertices which have the highest rank in each cycle. By Remark 16, if

(Mf, s) =1 ((T, s,v)) we know B = B. Label these elements of B by {b; } _ such that
d(bi) < d(bs) <...<d(bp). Forl< < |B| — 1, remove the edge (f(b;),b;) and add the
edge (f(b;),b;+1). Finally, delete the edge (f(b“g'),b‘m) and mark f(b‘é‘). The resulting

tree is 7', so 1~ ((Mf, S)) = (i s, f(byp)))-

As promised, we can extend this result to (n, m)-parking functions.

Theorem 17. Letn € N and 0 <m < n. Then

n- oy = My
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Proof. Let s € [n]™ be a parking function on T €T, and let v € V(T) Our goal is to
extend s to s’ € [n|” in a reversible manner, then apply ). We must do so in a way that
is not affected by the change in edges caused by 1, which suggests we avoid using edges
along the path root(T") — v.

To this end, drivers choose to park as follows. We recursively define {A4;}", so that
A; = {s1} and in general A; are the spots that driver ¢ could park at so that the remaining
drivers may successfully park, given the first ¢ — 1 drivers are parked. Let B; C A; be
the vertices of A; that are reachable from s; by utilizing a minimal number of edges in
the path root(7") — v. From there, driver i parks at the vertex with label min(B;). Once
driver ¢ is parked, we construct A;,; and continue until all drivers have parked.

Let {x;}-]" be the unoccupied spaces after the drivers have parked in this manner,
ordered in an increasing manner. We then define s" as follows:

s; ifi<m
x; ifi=m+j

Then, we apply ¥ to (f ,8',v). Since s does not change under ¢ and is a parking
function, s is also a parking function on the resulting mapping digraph M;. In order to
reverse, we must be able to extend s to s’ on M. Because the edges on the path between

root(7) and v become the cycle edges, drivers park as defined in the first paragraph, but
instead of utilizing a minimal number of path edges, they use a minimal number of cycle
edges. O

5 Concluding Remarks and Future Research

In this paper, we gave several equivalent characterizations of an extension of the “drivers
searching for a parking space” description of parking functions to digraphs. Additionally,
we follow the work of Lackner and Panholzer to show many of their results on trees with
edges oriented towards a root still hold when the edge orientation is reversed. Further-
more, we showed that source trees never had fewer (n,n)-parking functions than sink
trees.

We propose here some generalizations of on other notions of classical parking functions.
Prime parking functions were defined by Gessel [12] and can be understood as classical
parking functions for which every edge in the path is necessary for parking. More formally,

Definition 18. A classical parking function s € [n]" is prime if, for all 2 < i < n, we
have
Hj:s; =i} <n—i+1.

So let us say

Definition 19. A parking function (D, s) is called prime if, for every A C [n] such that
Rp(A) # [n], we have
|{CYZ 1S € RD(A)}l < |RD(A)|
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In fact, the parking functions for which every edge is used by a driver after failing to
park at her desired spot described in the proof of Theorem 11 are prime parking functions.
See [7] for more about prime parking functions on sink trees.

Another type of interesting parking function are the increasing parking functions,
those for which s; < s;41 for all 7. For the classical case, the set of increasing parking
functions is counted by the famous Catalan numbers and is easily shown to be in bijection
with Dyck paths of semilength n. We follow the terminology of [2] and call the general-
ization on digraphs parking distributions, to focus on the distribution of driver preference
rather than the ordering of the sequence. Here, f(i) may be understood as the number
of drivers preferring vertex i.

Definition 20. Let f : [n] — [m]o such that > | f(i) = m. Then we say (D, f) is a
parking distribution if for all A C [n], we have

Y ) <|Rp(A).

i€Rp (A)
We present several avenues for future research:

1. We are interested in exact counts of P(D,m) on specific digraphs or sums over
families of digraphs. In particular, we do not know £}, ,.

2. We are also interested in a formula more specific than that given in Theorem 11,
describing the relationship between P(T,n) and P(T,n).

3. As noted, it is possible for some m < n and T to have P(T,m) > P(T,m). We ask
for a characterization of when this occurs.

4. Both the path that classical parking functions are defined on and sink trees as a
family support interesting numbers of parking functions. Are there other digraphs or
families of digraphs which are associated with particularly nice numbers of (prime)
parking functions or parking distributions?

5. We ask how one may extend several of the statistics defined on classical parking
functions, such as the number of “lucky” drivers, those who park in their preferred
spot, or the “total displacement”, the distance driven by all drivers. In general, the
locations in which drivers park is not well-defined, but perhaps we could get around
this by considering a maximum or minimum over all successful parking outcomes.

The authors note that between submission for review and acceptance, Tian obtained
some preliminary results towards 3. when the tree is either a star or the number of drivers
is significantly less than the number of vertices [13].
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