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Abstract

We present an algorithm that computes the number of realizations of a Laman
graph on a sphere for a general choice of the angles between the vertices. The
algorithm is based on the interpretation of such a realization as a point in the
moduli space of stable curves of genus zero with marked points, and on the explicit
description, due to Keel, of the Chow ring of this space.
Mathematics Subject Classifications: 05C99, 51F99, 52C25

1 Introduction

Maybe the most important open problem in rigidity theory is the characterization and
study of rigid structures in three dimensional space. On the other side, planar structures
∗Supported by the Austrian Science Fund (FWF): Erwin Schrödinger Fellowship J4253.
†Supported by the Austrian Science Fund (FWF): P31888 and W1214-N15, Project DK9.
‡Supported by the Austrian Science Fund (FWF): P31061.
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are reasonably well-understood, in the sense that, for example, we have a characterization
of graphs that are generically minimally rigid in the plane. These are the graphs that, once
a general assignment for the edge lengths is prescribed, admit only finitely many ways of
realizing them in the plane respecting the assignment, if we consider equivalent realizations
that differ by an isometry. Pollaczek-Geiringer [Pol27] and Laman [Lam70] described these
graphs in terms of their combinatorics, and so they also go under the name of Laman
graphs. In [CGG+18], using ideas from tropical geometry, the authors provide a recursive
algorithm that computes the number of realizations of a Laman graph for a general
assignment of edge lengths, up to plane isometries, if one allows complex coordinates
for the points of the realization. It has been proven (see [Pog73, SW07, Izm09, EJN+19])
that Laman graphs are generically minimally rigid also when we consider realizations on
the sphere, so as before one can ask in how many different ways one can realize a Laman
graph on the sphere. In this paper, we provide a recursive algorithm that computes this
number (again, under the assumption that complex coordinates for the points are allowed)
based on a completely different technique from the one used in the planar case. We hope
that, although we still work on a surface, moving from the plane to the sphere could be a
first step towards determining the number of realizations for generically minimally rigid
graphs in three dimensions. For a related work on this topic, discussing real realizations
of graphs on the sphere (in addition to the plane and the space), see the recent paper
by Bartzos et al. [BELT19]. Among other things, the latter paper proves that for some
graphs one can achieve all possible complex realizations via real instances.

Figure 1: Realizations of graphs on the sphere.

Our result. The main result of this paper is an algorithm that computes the num-
ber of realizations of a Laman graph on the (complex) sphere, up to the action of the
group SO3(C) (recall that the real analogue of this group, SO3(R), is the group of isome-
tries of the real sphere). The key idea is to interpret realizations on the sphere up
to SO3(C) as elements of a moduli space, the so-called moduli space of rational curves with
marked points, where each point of the realization corresponds to two marked points. In
this interpretation, assigning the distance between two points on the sphere corresponds
to prescribing the cross-ratio of the 4 related marked points. By using the properties of
the moduli space, in particular the description of its Chow ring and the geometry of some
of its divisors, we compute the cardinality of those elements for which the cross-ratios of
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the points corresponding to the edges of a Laman graph are assigned; this provides the
answer to our original problem. Remarkably, we have been informed by Gaiane Panina
that the moduli space of rational curves with marked points appears also in investigations
of flexible polygons, see [NP19].

Structure of the paper. Section 2 describes the problem we want to address in
this paper. Section 3 provides the translation from realizations of a graph on the sphere
to points of a moduli space of points on the projective line. Section 4 describes, follow-
ing [Kee92], the moduli space of points on the projective line, and its compactification as
moduli space of stable curves of genus zero with marked points; in particular, we recall
the description by Keel of the Chow rings of the latter, which plays a key role in the
algorithm. Section 5 describes the algorithm. Section 6 reports some computational data
obtained using the algorithm.

2 Realizations of graphs

A Laman graph is a graph G = (V,E) such that |E| = 2|V | − 3 and |E ′| 6 2|V ′| − 3 for
every subgraph G′ = (V ′, E ′). Geiringer [Pol27] and Laman [Lam70] proved that these
graphs are generically infinitesimally rigid in the plane. This means the following. A
realization of G is a tuple (Pv)v∈V of points in the plane indexed by the vertices of G.
By applying a Euclidean isometry, we can always suppose that one of the points is the
origin O of the plane, and another one lies on the x-axis. The set of all possible realizations
satisfying the previous two requirements is then given by {O}×A1

R×
(
A2

R)n−2, where n is
the number of vertices. We can now consider the function that computes, for every edge
{a, b} ∈ E, the distance dA2

R
(Pa, Pb) of the corresponding points in a realization. In this

way we get a map:

ΨA2
R

: {O} × A1
R ×

(
A2

R)n−2 −→ R|E|

(Pv)v∈V 7→
(
dA2

R
(Pa, Pb)2

)
{a,b}∈E

Notice that the map ΨA2
R

is a smooth map (better, an algebraic one) between smooth
manifolds (better, algebraic varieties) of the same dimension. Laman proved that, if we
pick a general point ~P of the domain (namely, if we remove a finite number of “bad”
subvarieties from the domain), then the Jacobian of ΨA2

R
at ~P is invertible, i.e., the

map ΨA2
R

is an isomorphism locally around P . Notice that the fibers of ΨA2
R
, namely

the sets Ψ−1
A2
R
(λ) for some λ ∈ R|E|, are the sets of realizations of G where the distances

between points, whose corresponding vertices are connected by an edge, are prescribed
by λ. We give a name to these sets:

Definition 1. Let G = (V,E) be a Laman graph and let λ : E −→ R. A realization of G
compatible with λ is a function ρ : V −→ A2

R such that

dA2
R

(
ρ(a), ρ(b)

)2
= λ({a, b}) for every {a, b} ∈ E .
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When a fiber of ΨA2
R

is finite—namely when the number of realizations of G compatible
with given edge lengths is finite—one may be interested in counting its cardinality, namely
the number of ways of realizing a Laman graph with a specified assignment of edge
lengths; however, over the real numbers, the cardinality of such fibers may depend on
the point in the codomain. Since the result of Laman proves also that the map ΨA2

R
is dominant, if we pass to the complex numbers we have that, for a general element λ
in the codomain, the fiber Ψ−1

A2
C
(λ) is finite and its cardinality does not depend on the

point (see [Bum98, Exercise 9.14]1). In recent years, there has been some interest in
providing lower and upper bounds for this number (see [BS04, ST10, ETV13, GKT18,
JO19, BELT19]), and in [CGG+18] the authors provide an iterative formula to compute
it, based on tropical geometry. A fully tropical proof of the Geiringer-Laman theorem has
recently been provided in [BK19].

One can consider the notion of being generically infinitesimally rigid also on the sphere.
It is known that, also on the sphere, the class of generically infinitesimally rigid graphs
coincides with the class of Laman graphs (see [Pog73, SW07, Izm09, EJN+19]). On the
sphere, the distance between two points can be taken to be the angle they form (viewed
from the origin of the sphere). In this paper we adopt a slightly different definition, which
involves the cosine of that angle, because it fits better in the algebraic framework we are
going to use. Adopting this definition has no impact as the matter of computing the
number of realizations of a graph is concerned. The advantage of this choice is that it
provides an algebraic function, which hence allows extensions of fields (in particular, from
the real to the complex numbers).

Definition 2. Given two points P,Q ∈ S2, we define their spherical distance as

dS2(P,Q) := 1− 〈P,Q〉
2 ,

where 〈P,Q〉 = ∑3
i=1 PiQi. In particular, if P and Q are antipodal, their spherical distance

is 1.

In this context, we can repeat the same considerations as before: given a config-
uration ~P on the sphere of a Laman graph G = (V,E), we can always suppose, by
applying rotations, that one of the points is (1, 0, 0) and another lies on a great circle
through (1, 0, 0). We then pass to the complex setting and have that, as in the plane, if
G is a Laman graph, then the map

ΨS2
C

: {(1, 0, 0)} × S1
C ×

(
S2
C)n−2 −→ C|E|

(Pv)v∈V 7→
(
dS2(Pa, Pb)

)
{a,b}∈E

is dominant and its fibers over general points are finite and of constant cardinality. Here,
we denoted by S2

C the set {(x, y, z) ∈ C3 : x2 + y2 + z2 = 1}, namely the complexification
1See also the discussion at https://math.stackexchange.com/questions/341281/

number-of-points-in-the-fibre-and-the-degree-of-field-extension
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of the sphere, and similarly for the circle S1
C. As we remarked, since the function dS2

describing the spherical distance is algebraic, we can apply it also to pairs of complex
points in S2

C. Notice that in the real setting we consider realizations of the graph up to
rotations, namely elements of SO3(R); when we pass to the complex numbers, we consider
realizations up to SO3(C), where

SO3(C) :=
{
R ∈ C3×3 : RRt = RtR = id, det(R) = 1

}
.

In this paper, the elements of SO3(C) will also be (improperly) referred as rotations, or
isometries of S2

C.
This is the main goal of our paper:
Goal. Compute the cardinality of a general fiber of the map ΨS2

C
. In other words,

compute the number of realizations of a Laman graph on the sphere compatible with a
general assignment of spherical distances for its edges, up to SO3(C).

We are going to achieve this goal by interpreting realizations up to SO3(C) as collec-
tions of points on the projective complex line P1

C, up to the action of PGL2(C), namely
the group of automorphisms of P1

C. These objects can be interpreted as points in a moduli
space, and the explicit description of the intersection theory on that moduli space provides
the answer to our question.

3 Realizations on the sphere as points on a moduli space

The aim of this section is to show how we can interpret a realization of a graph on the
sphere, up to sphere isometries, as a point of the moduli space of stable curves of genus
zero with marked points. This provides the theoretical background on which the algorithm
presented in Section 5 is based.

We would like to express the spherical distance between two points in S2
C as the cross-

ratio of four points in P1
C. To do so, we associate to each point in S2

C two points in P1
C via

the following construction.

Definition 3. Let

S2
C =

{
(x : y : z : w) ∈ P3

C : x2 + y2 + z2 − w2 = 0
}

be the projective closure of S2
C in P3

C. Let A be the intersection of S2
C with the plane at

infinity {w = 0}. The conic A is called the absolute conic. Since S2
C is a smooth quadric

in P3
C there are exactly two families of lines on S2

C; we denote them by F1 and F2. Every
point P ∈ S2

C is contained in exactly one line L1 of F1 and exactly one line L2 of F2.
The union of these two lines can be obtained by intersecting S2

C with the tangent plane
of S2

C at P . We define the left and the right lifts of P as the intersections of L1 and L2
with A, respectively. We denote them by P l and P r, respectively.

Remark 4. Notice that the absolute conic A is a rational curve. This means that, given
four points on A (for example, the left and right lifts of two points in S2

C), we can speak
about their cross-ratio.
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Lemma 5. Let P,Q ∈ S2
C. Let P l, P r be the left and right lifts of P , and Ql, Qr be the

left and right lifts of Q. Then

dS2(P,Q) =
cr
(
P l, P r, Ql, Qr

)
cr
(
P l, P r, Ql, Qr

)
− 1

= cr
(
P l, Qr, Ql, P r

)
,

where cr stands for cross-ratio.

Proof. Recall that isometries of S2
C are projective automorphisms of P3

C leaving the abso-
lute conic A invariant. Hence applying an isometry to P and Q corresponds to applying
an automorphism of P1

C to their lifts, so the cross-ratio of the latter does not change.
Hence we can suppose that P = (1, 0, 0) and Q = (c, s, 0), where c2 + s2 = 1. With this
choice, we have

dS2(P,Q) = 1− c
2 .

A direct computation shows that, since the tangent planes at P and Q have equations
x− w = 0 and c x+ s y − w = 0, respectively:

P l = (0 : i : 1 : 0) , P r = (0 : −i : 1 : 0) ,
Ql = (−is : ic : 1 : 0) , Qr = (is : −ic : 1 : 0) .

In order to compute the cross-ratio, we take an isomorphism between A and P1
C, for

example the one given by the projection of A from the point (i : 0 : 1 : 0) to the line
{z = w = 0}. The projections of the previous four points are

(−1 : 1 : 0 : 0), (1 : 1 : 0 : 0), (−1− s : c : 0 : 0), (1− s : c : 0 : 0) .

Their cross-ratio is(−1− s
c

+ 1
)(1− s

c
− 1

)/((−1− s
c

− 1
)(1− s

c
+ 1

))
.

A direct computation then proves the statement.

Proposition 6. Let ~P = (P1, . . . , Pn) and ~Q = (Q1, . . . , Qn) be two n-tuples of points
in S2

C. Denote by P l
i , P

r
i and Ql

i, Q
r
i the left and right lifts of Pi and Qi, respectively, for

all i ∈ {1, . . . , n}. Then ~P and ~Q differ by an isometry of S2
C if and only if ( ~P l, ~P r)

and ( ~Ql, ~Qr) differ by an element of PGL2(C).

Proof. Every isometry of S2
C is a projective automorphism of P3

C leaving the absolute
conic A invariant. This means that every isometry of S2

C determines an automorphism
of A. In this way we get a map

SO3(C) −→ PGL2(C) ,

which is a homomorphism of Lie groups. Our statement is proven if we can show that this
is an isomorphism. Suppose that we have an isometry of S2

C that induces the identity on A.
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Then the corresponding projective automorphism of P3
C fixes the whole plane at infinity,

and also the center of S2
C: the only element in SO3(C) satisfying these requirements is

the identity. Hence, the homomorphism is injective. Since the two Lie groups have the
same dimension and are both connected, then the homomorphism is also surjective. This
concludes the proof.

Remark 7. Notice that, in general, it is not true that n distinct points on S2
C determine

2n-tuples of distinct points on the absolute conic via the lift operation. In fact, this fails
precisely when two points on S2

C belong to the same line. If P,Q ∈ S2
C with P = (α, β, γ)

and Q = (α′, β′, γ′), then P and Q belong to the same line when, considered as points
in P3

C, they are orthogonal with respect to the quadratic form determined by the equation
of S2

C, namely if:

(
α β γ 1

)
1

1
1
−1



α′

β′

γ′

1

 = 0 ⇔
〈αβ

γ

 ,
α
′

β′

γ′

〉− 1 = 0 .

Hence, if we suppose that ~P is a realization of a Laman graph G compatible with a general
assignment of spherical distances for its edges, then ~P determines a 2n-tuple of distinct
points ( ~P l, ~P r) on the absolute conic A.

The combination of Lemma 5, Proposition 6, and Remark 7 shows that, instead of
considering n-tuples ~P that are realizations of a Laman graph compatible with a general
assignment of spherical distances for its edges, up to the action of SO3(C), we can consider
2n-tuples ( ~P l, ~P r) of points on P1

C for which some cross-ratios are assigned, up to the
action of PGL2(C). The latter are elements of a so-called moduli space of curves of genus
zero with marked points. In the next section we describe this object and its properties
concerning intersection theory. Afterwards, we come back to our original problem and
cast it into this theoretical framework.

4 The moduli space of stable curves of genus zero with marked
points

In this section we describe for the reader’s convenience the well-known moduli space of
stable curves of genus zero with marked points and its Chow ring, following [Kee92]. No
new results are presented in this section.

Let us start by recalling a basic and fundamental result in projective geometry: every
triple of distinct points P , Q, and R in P1

C can be mapped to the triple (1 : 0), (0 : 1),
and (1 : 1) via a unique automorphism of P1

C, namely an element of PGL2(C). Hence, any
triple of distinct points in P1

C is projectively equivalent to any other one, namely there
always exists an automorphism mapping one to the other. If we consider a 4-tuple of
distinct points P , Q, R, S, then there is a unique element that takes it to the 4-tuple
(1 : 0), (0 : 1), (1 : 1), and (1 : λ): the number λ is called the cross-ratio of the tuple
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(P,Q,R, S). Two 4-tuples of distinct points are then projectively equivalent if and only if
their cross-ratios are the same. Hence, each equivalence class of 4-tuples of distinct points
modulo PGL2(C) is represented by its cross-ratio, namely by an element in C \ {0, 1}, or
equivalently in P1

C \ {(1 : 0), (0 : 1), (1 : 1)}. We then say that P1
C \ {(1 : 0), (0 : 1), (1 : 1)}

is the moduli space of 4-tuples of distinct points in P1
C.

We can consider, for every m > 4, the space of equivalence classes of m-tuples of
distinct points under the action of PGL2(C): each such equivalence class is uniquely
determined by an element in the quasi-projective variety

(
P1
C \ {(1 : 0), (0 : 1), (1 : 1)}

)m−3
\
{

(m− 3)-tuples having at least
two equal components

}
.

This space is called the moduli space of m-tuples of distinct points in P1
C, and is denoted

by M0,m. One may notice that this space is not compact under the Euclidean topology
(in more algebro-geometric terms, it is not complete), and this may be a problem when
dealing with enumerative questions, as the one we address in this work. Because of this,
researchers focused on finding compactifications of these moduli spaces. A possible smooth
compactification of the space M0,m, denoted M 0,m, was constructed by Knudsen [Knu83]
(see [Mum65, Mum77, Gie82] for a more general account on the topic). This construction
introduces a boundary for M0,m, constituted of particular curves, called stable curves,
which are essentially reducible curves whose irreducible components are rational curves,
intersecting in nodes. More precisely, we have:

Definition 8 ([Kee92, Introduction]). A stable curve of genus zero with m marked points
is a reduced, possibly reducible, curve C with at worst node singularities, together with
m distinct marked points p1, . . . , pm on it such that:

• the points {pi}m
i=1 lie on the smooth locus of C;

• each irreducible component of C is isomorphic to P1
C, and altogether all irreducible

components form a tree;

• for each irreducible component of C, the sum of the numbers of singular points and
of marked points on that component is at least 3.

The geometry of M 0,m is rich and well-studied: we refer to [Kee92, Introduction],
[Kap93], and [KV07, Chapter 1] for a discussion.

As we are going to see in Section 5, our algorithm relies on the understanding of how
subvarieties of M 0,m intersect each other. This piece of information is encoded in the
so-called Chow ring, which is a standard object in intersection theory. For its definition
and properties we refer to the introduction [Ful84], or to the standard book [Ful98].

For the reader’s convenience, we briefly provide in Theorem 11 the description by Keel
of the Chow ring of M 0,m. First, we need to introduce some particular divisors that Keel
calls “vital”.
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Definition 9 ([Kee92, Introduction]). Let (I, J) be a partition of {1, . . . ,m} where |I| > 2
and |J | > 2. We define the divisor DI,J in M 0,m to be the divisor whose general point is
a stable curve with two irreducible components such that the marked points labeled by I
lie on one component, while the marked points labeled by J lie on the other component.

Proposition 10 (Knudsen, [Kee92, Introduction and Fact 2]). Any divisor DI,J as in
Definition 9 is smooth and it is isomorphic to the product M 0,|I|+1 ×M 0,|J |+1; in the
previous isomorphism, the point of intersection of the two components of a general stable
curve in DI,J counts as an extra marked point in each of the two factors of the product.

Theorem 11 ([Kee92, Introduction and Theorem 1]). The Chow ring of M 0,m admits
the following description:

Z
[
DI,J : (I, J) is a partition of {1, . . . ,m} where |I| > 2 and |J | > 2

]/
∼ ,

where the equivalence ∼ is given by the relations:

• DI,J = DJ,I ,

• for any four distinct elements a, b, c, d ∈ {1, . . . ,m} we have∑
a,b∈I
c,d∈J

DI,J =
∑

a,c∈I
b,d∈J

DI,J =
∑

a,d∈I
b,c∈J

DI,J , (4)

• DI,J ·DK,L = 0 unless one of the following holds:

I ⊆ K, or K ⊆ I, or J ⊆ L, or L ⊆ J .

Moreover, the three sums in Equation (4) are the pullbacks of the respective divisors
D{a,b},{c,d}, D{a,c},{b,d}, and D{a,d},{b,c} under the map

πa,b,c,d : M 0,m −→M
a,b,c,d

0,4
∼= P1

C .

Here, the map πa,b,c,d is the map that forgets all the marked points except for the ones
labeled by a, b, c, and d. We put the superscript (·)a,b,c,d on its codomain to denote that
its elements are stable curves with marked points labeled by a, b, c, d.

5 The algorithm

At the end of Section 2 we understood that realizations on the sphere up to SO3(C) can be
considered as elements of a moduli space. In particular, configurations of n points on the
complex sphere up to SO3(C) correspond to configurations of 2n points on a rational curve
up to PGL2(C), i.e., elements in the moduli space of rational curves with marked points.
Moreover, assigning angles between two points on a sphere corresponds to assigning the
cross-ratio of the 4-tuple constituted of the left and right lifts of those two points. The
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elements of the moduli space, for which the cross-ratio of 4 marked points is prescribed,
are fibers of the map

M 0,2n −→M 0,4 ∼= P1
C

that forgets all but the 4 considered marked points (see Theorem 11). Hence, the elements
of the moduli space we are interested in, namely the ones for which the cross-ratios are
specified for the 4-tuples arising from edges of a graph, are fibers of products of these
maps. We give a name to these maps:

Definition 12. Let G = (V,E) be a graph, and suppose that V = {1, . . . , n}. We define
the morphism

ΦG : M 0,2n −→
∏

{a,b}∈E

M
a,b,a+n,b+n

0,4

whose components are the maps πa,b,a+n,b+n : M 0,2n −→M 0,4 forgetting all but 4 marked
points, defined in Theorem 11. The choice for the indices reflects the labeling (P l

1, . . . , P
l
n,

P r
1 , . . . , P

r
n) of the marked points on the rational curves, putting first the points cor-

responding to left lifts, and then the points corresponding to right lifts of points on
the sphere. The interpretation of realizations of a graph in S2

C as points in the moduli
space M 0,2n and of spherical distances as cross ratios we provided in Section 2 tells us that
when G is a Laman graph, the map ΦG is a dominant morphism between smooth varieties
of the same dimension, so its general fibers are constituted of finitely many points. In
fact, the Laman condition implies that

dim M 0,2n = 2n− 3 = dim
∏

{a,b}∈E

M
a,b,a+n,b+n

0,4 ,

so the domain and the codomain of ΦG have the same dimension. Moreover, since a
Laman graph has (complex) realizations for a general choice of edge lengths, we have that
ΦG is dominant. The fact that its general fibers are constituted of finitely many points
follows then from general results about maps between varieties (see [Sha13, Chapter 1,
Section 6, Theorem 1.25]).

Remark 13. For any Laman graph G with n vertices, the image of the boundary of M 0,2n

under ΦG is a proper subvariety of ∏{a,b}∈E M
a,b,a+n,b+n

0,4 . In fact, since the domain and
the codomain of ΦG have the same dimension, and the boundary has codimension 1
in M 0,2n, it follows that its image under ΦG has codimension at least 1 in the codomain
of ΦG. This means that a general fiber of ΦG will not intersect the boundary, and so
it is constituted of classes of rational curves with 2n distinct marked points. Each of
such rational curves is then isomorphic to the absolute conic A, and the 2n marked points
determine a realization of G on the sphere. Moreover, when G is a Laman graph, a general
fiber of ΦG is a complete intersection in M0,2n and it is constituted by reduced points.

The discussion so far proves the following theorem.

Theorem 14. Given a Laman graph G, then the number of realizations of G in S2
C for a

general assignment of spherical distances for its edges, up to SO3(C), equals the cardinality
of a general fiber of the map ΦG as in Definition 12.
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In the light of Theorem 14, our goal becomes, given a Laman graph G, to compute
the cardinality of a general fiber of ΦG.
Remark 15. Let us describe how the class in the Chow ring of a fiber of ΦG looks like.
Since the codomain of ΦG is a product, we can express a fiber as the intersection of
the fibers of the maps to each component of the product. In other words, if we fix
Λ ∈ ∏{a,b}∈E M

a,b,a+n,b+n

0,4 and we denote by Φa,b the composition of ΦG with the projection
to the factor M

a,b,a+n,b+n

0,4 , then we have that

Φ−1
G (Λ) =

⋂
{a,b}∈E

Φ−1
a,b(Λa,b) .

It follows then, using the notation of Theorem 11, that the class of Φ−1
G (Λ) in the Chow

ring of M 0,2n is given by ∏
{a,b}∈E

∑
a,b∈I

a+n,b+n∈J

DI,J .

Since a general fiber of ΦG is a reduced complete intersection in M 0,2n when G is a
Laman graph, its cardinality is the degree of its Chow class. Hence we get:

Proposition 16. Given a Laman graph G = (V,E) with V = {1, . . . , n}, the number of
realizations of G in S2

C for a general assignment of spherical distances for its edges, up
to SO3(C), equals

deg
 ∏
{a,b}∈E

∑
a,b∈I

a+n,b+n∈J

DI,J

 .
Algorithm CountRealizations computes the degree in Proposition 16 using the de-

scription of vital divisors DI,J provided by Proposition 10 and the relations in the Chow
ring stated in Theorem 11.

In fact, if we fix an edge {a0, b0} ∈ E of a Laman graph G = (V,E), then the class we
want to compute is ∑

a0,b0∈I0
a0+n,b0+n∈J0

DI0,J0

 ·
 ∏
{a,b}∈E\{a0,b0}

∑
a,b∈I

a+n,b+n∈J

DI,J


︸ ︷︷ ︸

=:Fa0,b0

. (1)

For every (I0, J0) such that a0, b0 ∈ I0 and a0 +n, b0 +n ∈ J0, the product DI0,J0 ·Fa0,b0 can
be computed by restricting Fa0,b0 to DI0,J0 and using the isomorphism DI0,J0

∼= M 0,|I0|+1×
M 0,|J0|+1. We show that both the restrictions of Fa0,b0 to M 0,|I0|+1 and to M 0,|J0|+1 have
the same structure of the initial class we wanted to compute, and this determines a
recursive procedure to solve our task.

To clarify the recursive procedure, let us start by noticing that the class∏
{a,b}∈E

∑
a,b∈I

a+n,b+n∈J

DI,J (2)
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Algorithm CountRealizations
Input: A pair (N, Q), where N is a set and Q is a list of 4-tuples of elements of N .
Output: A natural number. When, for a Laman graph G = (V, E), with V = {1, . . . , n}, we

have N = {1, . . . , 2n} and Q = {(a, b, a + n, b + n) : {a, b} ∈ E}, then this natural number
represents the number of realizations of G on the complex sphere, up to SO3(C).

1: If (|N | = 4 and |Q| = 1) or (|N | = 3 and |Q| = 0) Then
2: Return 1
3: End If
4: Select any element q̄ ∈ Q and write q̄ = (ā, b̄, c̄, d̄).
5: Set Q′ := Q \ {q̄} and N ′ := N \ {ā, b̄, c̄, d̄}.
6: Compute L := {subsets of N ′}.
7: Set S := ∅.
8: For each subset L ∈ L Do
9: Set Ī := {ā, b̄} ∪ L and J̄ := complement of Ī in N .

10: Append (Ī , J̄) to S.
11: End For
12: Set sum := 0.
13: For each pair (Ī , J̄) in S Do
14: Compute the following five lists:

Q4,0 :=
{
q ∈ Q′ : |q ∩ Ī| = 4

}
=
{
q ∈ Q′ : |q ∩ J̄ | = 0

}
,

Q3,1 :=
{
q ∈ Q′ : |q ∩ Ī| = 3

}
=
{
q ∈ Q′ : |q ∩ J̄ | = 1

}
,

Q2,2 :=
{
q ∈ Q′ : |q ∩ Ī| = 2

}
=
{
q ∈ Q′ : |q ∩ J̄ | = 2

}
,

Q1,3 :=
{
q ∈ Q′ : |q ∩ Ī| = 1

}
=
{
q ∈ Q′ : |q ∩ J̄ | = 3

}
,

Q0,4 :=
{
q ∈ Q′ : |q ∩ Ī| = 0

}
=
{
q ∈ Q′ : |q ∩ J̄ | = 4

}
.

15: If |Q2,2| > 0 Then
16: Continue
17: End If
18: Let ∗ be a new symbol, not belonging to N .
19: Set Q′3,1 := ∅ and Q′1,3 := ∅.
20: For each element q ∈ Q3,1 Do
21: Substitute in q the element q ∩ J̄ with ∗.
22: Append the resulting tuple to Q′3,1.
23: End For
24: Apply the analogous procedure to the elements of Q1,3, obtaining Q′1,3.
25: If |Q4,0 ∪Q′3,1| 6= |Ī ∪ {∗}| − 3 or |Q0,4 ∪Q′1,3| 6= |J̄ ∪ {∗}| − 3 Then
26: Continue
27: End If
28: Update (here CR stands for CountRealizations)

sum := sum + CR
(
Ī ∪ {∗} , Q4,0 ∪Q′3,1

)
· CR

(
J̄ ∪ {∗} , Q0,4 ∪Q′1,3

)
29: End For
30: Return sum.
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from Proposition 16 is a particular instance of a more general construction. The construc-
tion works as follows: we start from a set N , and a set Q of 4-tuples of distinct elements
of N . From now on, we use the notation M 0,N to denote the moduli space of stable
rational curves where the marked points are labeled by N . Then we form the following
class in the Chow ring of M 0,N :

AN,Q :=
∏
q∈Q

q=(a,b,c,d)

∑
a,b∈I
c,d∈J

DI,J . (3)

Notice that if we set N0 := {1, . . . , 2n} and Q0 := {(a, b, a+ n, b+ n) : {a, b} ∈ E}, then
the class from Equation (2) equals AN0,Q0 . In this perspective, also the class Fa0,b0 from
Equation (1) can be seen as a particular case of a general construction: what we do here
is to select some q̄ ∈ Q, with q̄ = (ā, b̄, c̄, d̄), and to define the class

Gq̄ :=
∏

q∈Q\{q̄}
q=(a,b,c,d)

∑
a,b∈I
c,d∈J

DI,J ,

so that we get the factorization

AN,Q =
 ∑

ā,b̄∈Ī
c̄,d̄∈J̄

DĪ,J̄

 · Gq̄ . (4)

With this notation, the class Fa0,b0 equals Gq0 , where q0 = (a0, b0, a0 + n, b0 + n).
We show now that we can set up an iterative procedure for the computation of the

degree of classes of type AN,Q. Notice that, taking into account Equation (4), this can be
achieved once we are able to compute the degree of a product DĪ,J̄ ·Gq̄. We then fix q̄ ∈ Q
with q̄ = (ā, b̄, c̄, d̄) and we select a pair (Ī , J̄) such that ā, b̄ ∈ Ī and c̄, d̄ ∈ J̄ . If there exists
q ∈ Q\{q̄} such that |q∩Ī| = |q∩J̄ | = 2, then the restriction of Gq̄ toDĪ,J̄ is zero by [Kee92,
Fact 2]. Otherwise, the restriction of Gq̄ to DĪ,J̄

∼= M 0,Ī∪{∗} ×M 0,J̄∪{∗} is the product
of two classes G Ī

q̄ and G J̄
q̄ . Recall, in fact, that the Chow ring of M 0,Ī∪{∗} ×M 0,J̄∪{∗} is

the tensor product of the Chow rings of M 0,Ī∪{∗} and M 0,J̄∪{∗} by [Kee92, Theorem 2].
Analyzing the isomorphism making DĪ,J̄ into a product (see [Kee92, Fact 2] and [Knu83,
Theorem 3.7]), one sees that the two classes G Ī

q̄ and G J̄
q̄ admit the following description.

For k ∈ {0, . . . , 4}, define the sets:

Qk,4−k :=
{
q ∈ Q \ {q̄} : |q ∩ Ī| = k

}
=
{
q ∈ Q \ {q̄} : |q ∩ J̄ | = 4− k

}
.

Notice that, by definition, all tuples in Q3,1 have exactly one element in J̄ . Define Q′3,1
to be set obtained by substituting in all 4-tuples of Q3,1 their element in J̄ by the new
symbol ∗. Analogously, define Q′1,3. Then the classes G Ī

q̄ and G J̄
q̄ are∏

q∈Q4,0∪Q′
3,1

q=(a,b,c,d)

∑
a,b∈K
c,d∈L

DK,L and
∏

q∈Q0,4∪Q′
1,3

q=(a,b,c,d)

∑
a,b∈K
c,d∈L

DK,L ,
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where the DK,L are divisors in the appropriate moduli spaces, namely for G Ī
q̄ they are

divisors in M 0,Ī∪{∗}, while for G J̄
q̄ they are divisors in M 0,J̄∪{∗}.

Hence, in the notation of Equation (3), if we set

NĪ := Ī ∪ {∗}, QĪ := Q4,0 ∪Q′3,1,

NJ̄ := J̄ ∪ {∗}, QJ̄ := Q0,4 ∪Q′1,3,

we have
G Ī

q̄ = ANĪ ,QĪ
and G J̄

q̄ = ANJ̄ ,QJ̄
.

Therefore, the degree of a class AN,Q can be computed by fixing an element q̄ ∈ Q,
q̄ = (ā, b̄, c̄, d̄), and using Equation (4), thus obtaining the formula

degAN,Q =
∑

ā,b̄∈Ī
c̄,d̄∈J̄

(
degANĪ ,QĪ

· degANJ̄ ,QJ̄

)
,

where it is intended that a summand is zero if the corresponding set Q2,2 is not empty.
This allows one to set up a recursive procedure for the computation of the degree of a
class AN,Q—so in particular of the class of a fiber of ΦG. The recursion stops if we reach
one of these situations:

• The set Q2,2 is not empty: in this case we can skip the contribution given by this
class, since its degree is zero.

• The set N is composed of four elements, and Q consists of a single tuple: in this
case the degree of the class is 1.

• The cardinality of Q4,0 ∪ Q′3,1 is different from |Ī ∪ {∗}| − 3 or the cardinality
of Q0,4 ∪Q′1,3 is different from |J̄ ∪{∗}|− 3: in this case either G Ī

q̄ or G J̄
q̄ is zero, and

so this contribution can be skipped.

The discussion so far proves the correctness of Algorithm CountRealizations. Termi-
nation is implied by the fact that the size of the sets always decreases and therefore, the
base cases are reached.

6 Computed Data

Using Algorithm CountRealizations we computed the number of realizations on the
sphere of all Laman graphs with up to 10 vertices. Table 1 lists those graphs that have
the maximal number of realizations on the sphere within the class of graphs with the
same number of vertices.
Remark 17. The paper [BELT19] shows that the number of real spherical realizations
matches the number of complex ones for some graphs in Table 1 (all graphs with 6 and 7
vertices, and one of the graphs with 8 vertices).
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Table 1: Graphs with maximal number of complex realizations on the sphere within
graphs of n vertices. Lam2 denotes the number of complex realizations in the plane.

n Graph(s) #realizations Lam2

5 8 8—8—8

6 32 24

7 64 48—48—48—

56—48

8 192 136—128

9 576 320

Note that up till 8 vertices the graph with maximal Laman number (i.e., number of
realizations in the plane) is also in the list of graphs with maximal number of realizations
on the sphere. However, the graph with maximal Laman number with 9 vertices is different
from the one with maximal number of realizations on the sphere. The latter has a very
particular structure (see last row of Table 1).

Our recursive algorithm gives a significant improvement over the naive approach, which
is to determine the number of solutions via a Gröbner basis computation. Furthermore,
the Gröbner basis approach needs randomly fixed edge lengths where CountRealizations
computes the numbers symbolically. For a graph with 9 vertices and maximal number of
realizations (see Table 1) our algorithm needs 5.66s in Mathematica and 3.57s in Python.
The Gröbner basis computation needed 5850s in Mathematica and 27s in Maple.
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