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Abstract

In this paper we develop a combinatorial abstraction of tropical linear pro-
gramming. This generalizes the search for a feasible point of a system of min-
plus-inequalities. We obtain an algorithm based on an axiomatic approach to this
generalization. It builds on the introduction of signed tropical matroids based on
the polyhedral properties of triangulations of the product of two simplices and the
combinatorics of the associated set of bipartite graphs with an additional sign infor-
mation. Finally, we establish an upper bound for our feasibility algorithm applied
to a system of min-plus-inequalities in terms of the secondary fan of a product of
two simplices. The appropriate complexity measure is a shortest integer vector in
a cone of the secondary fan associated to the system.

Mathematics Subject Classifications: 14T05, 90C05 (52C40, 91A50, 05E45)

1 Introduction

Tropical linear programming is a method to determine a feasible solution of a linear in-
equality system, where addition is replaced by minimum and multiplication is replaced by
usual addition. It is intimately connected to the classical version of linear programming
as tropical polyhedra are essentially projections of classical polyhedra [21]. Formulating
linear programming over an appropriate valued field, one obtains tropical linear program-
ming as a shadow through the valuation map. Even more, there is a tropical simplex
method for which the sequence of bases is in bijection with the sequence of bases in a run
of the classical simplex method [5].

The study of tropical linear programming is motivated by the connection with the
following two major open problems. The first is Smale’s 9th problem which asks for a
strongly polynomial algorithm in linear programming. The connection of tropical and
classical linear programming already resulted in the disproval of the continuous Hirsch-
conjecture for the central path and a proof that log-barrier interior point methods are
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not strongly polynomial, both in [6]. Secondly, tropical linear programming is equivalent
to mean payoff games, see [2] and Section A.3. These games are of special interest in
computer science as their complexity lies in NP N co-NP but no polynomial algorithm is
known [69]. This includes the subclass of parity games which lie at the heart of several
hard instances for the classical simplex method [29, 39] but which have recently shown to
be at least quasipolynomial solvable [17].

In the history of linear programming, it was a conceptual breakthrough to formulate
the simplex method in the more abstract language of oriented matroids. After the devel-
opment of the simplex method by Dantzig [18], the sign vectors occurring in the pivoting
steps were studied in a more axiomatic way. This abstraction was initiated by Rockafel-
lar [59] and it led to the work of Bland [12], Fukuda [30] and Todd [65, 66] on oriented
matroid programming. Furthermore, it motivated the development of crisscross methods
[64].

In this paper we formulate an abstract version of tropical linear programming. This is
based on signed tropical matroids, a tropical analogue of oriented matroids. An axiomatic
study of “tropical oriented matroids” originated in the work by Ardila and Develin [8]
to describe and generalize the combinatorics of tropical point configurations. It was
further developed by Oh and Yoo [54] and Horn [43]. The latter established a realizability
result with “tropical pseudohyperplanes”, that also proved the bijection of this concept
of tropical oriented matroids with not necessarily regular subdivisions of the product of
two simplices A, 1 X Agz_1. Recall from [19, §2.2.3] that a subdivision is regular if it is
induced by a height function but not all subdivisions are of this form.

1.1 Our results

The abstraction of a tropical linear inequality system by a signed tropical matroid is
described in terms of a well-structured set of bipartite graphs on the node set [d] L [n]
where each edge is labeled by ‘4’ or ‘—’. Building on an axiomatic way for defining the
set of these covector graphs, we extend the notion of feasibility and infeasibility to signed
tropical matroids using the signs on the edges. These graphs are the analogue of the sign
vectors of an oriented matroid, but contain primal and dual information.

The overall structure of our algorithm is motivated by the simplex method, which we
recall in Appendix A.1. We adapt the scheme of iterating over bases with local exchanges.
The role of basic solutions is taken by the important concept of a basic covector (graph),
see Section 3.3. We iterate as long as the current basic covector contains a negative edge
connecting a leaf in [n] and a certain subset of [d], which is motivated by the greedy
approach of successively satisfying violated inequality.

While the correctness and termination of the simplex method can be shown by the
increase in an objective function, we mimic this by distinguishing one particular node in
[d] of each basic covector and consider paths emerging from it. The arguments leading to
the combinatorial analogue of an increase rely on the parity, even or odd, of the distance of
an edge from the distinguished node. Together with the particular structure of matchings
in basic covectors, this allows us to deduce a process which is guaranteed to terminate
with a certificate of feasibility or infeasibility (Theorem 41). Note that our scheme has a
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lot of freedom in the actual choice of the pivot element. The abstract pivoting allows us
to deduce a generalized tropical duality theorem (Theorem 44) and a new algorithm for
tropical inequality systems (Algorithm 6).

Our definition of signed tropical matroids is motivated by the correspondence with
subdivisions of A,,_1 X Agz_1. We use the axiomatic description of polyhedral subdivisions
[19] and enrich it with an additional sign information. Using the equivalence shown in [43]
of tropical oriented matroids and subdivisions of A,,_;1 x Ay_; one could also use the
axioms in [8] and equip it with an additional sign information. However, as our arguments
mainly rely on the characterization of triangulations in [7], going back to [60], we restrict
ourselves to these purely polyhedral notions.

To keep the exposition of the algorithm as simple as possible, we start with a generic
subclass of signed tropical matroids given by a short list of axioms in Definition 12.
To make the algorithm applicable to general signed tropical matroids, we employ the
concepts of extension and refinement from polyhedral geometry in our setting. We mainly
translate the polyhedral constructions to operations on the set of bipartite graphs. Similar
techniques have been used in related works by Allamigeon et al. [4] and Horn [43].

We use global geometric properties of the occurring polyhedral subdivisions related to
generalized permutohedra [56] to ensure the existence of basic covectors by an abstract
Cramer theorem in Section 3.2. This can be seen as a polyhedral generalization of [1,
Theorem 6.1], as well as [58, Corollary 5.4], and it is related to the linkage trees in [63,
Theorem 2.4].

The running time of our algorithm applied to tropical linear inequality systems (Al-
gorithm 6) is related to the minimal length of integer vectors in the secondary fan of
A,_1 X Agz_q1. This follows as we show that the number of iterations can be bounded
by a polynomial in the coefficients of the inequality system. Furthermore, the behaviour
of the algorithm only depends on the triangulation. Hence, a minimal representative of a
coefficient matrix in the containing cone of the secondary fan of A,,_; x Ay_; yields an
upper bound.

Through this result one obtains a connection between the complexity of a simplex-like
algorithm for (tropical) linear programming and the length of a minimal lattice vector
in a cone. In particular, this establishes the length of a minimal lattice vector as a
natural complexity measure of a subdivision and of an algorithm. The secondary fan of
A, _1 X Agz_1 can be seen as the tropical analogue of the realization space of polytopes for
fixed parameters, cf. [57]. In this vein, finding a minimal realization of the combinatorial
type of a tropical point configuration is related to the determination of a shortest non-zero
lattice vector which was tackled in the pioneering work [50].

The exposition is complemented by the formal relations between tropical linear pro-
gramming and some other algorithmic problems. We formulate a tropical inequality sys-
tem which is equivalent to a given AND-OR-network [52]. Furthermore, we show how our
results tie in with the equivalence of the feasibility problem for tropical linear inequality
systems and finding winning states of a mean payoff game.
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1.2 Organization of the paper

Section 2 is dedicated to the introduction of the main concepts for describing the combina-
torics of tropical linear inequality systems. Our main algorithm is presented in Section 3.
Note that the algorithms are rather simple in the required terminology, however, we need
the technical tools to prove the correctness. We move on to define general signed tropical
matroids, the abstraction of tropical linear inequality systems, in Section 4. Building on
polyhedral methods, we show in Section 5 how one can reduce signed tropical matroids to
the subclass for which we formulate our algorithm. This is followed by an application to
the special case of tropical linear inequality systems in Section 6. For this, we can drop
some requirements on the input and deduce upper bounds on the number of iterations.

We give an overview of related algorithmic problems, the simplex method, AND-OR-
networks and mean payoff games, in Appendix A. The main polyhedral prerequisites are
collected in Appendix B. We finish in Appendix C with applications of our algorithm to
analyze mean payoff games and tropical linear inequality systems, in particular for finding
the maximal support of a feasible point.

1.3 Related algorithms

The tropical linear feasibility problem has connections to several other problems as further
described in Section A. Therefore, algorithms for scheduling with AND-OR-networks [52],
mean payoff games [24, 69, 38] and classical linear programming [5, 4, 10] are applicable to
this problem. Furthermore, beside the algorithms for tropical inequality systems [14, 15],
one can also use algorithms for tropical equality systems [35, 16] which are equivalent
via the reformulation a < b < a = min(a,b). The algorithms with the currently fastest
runtime for mean payoff games are [23] and [26]. We consider mean payoff games on a
bipartite game graph with (n + d) nodes, m edges and maximal weight w. The algorithm
presented in [23] has a provable runtime of O(min (m(n + d)w, m(n + d)2" /2 logw)
and [26] takes O (m(n + d)((n + d)w)'~/@*9) Theorem 75 gives a rough upper bound
for our algorithm in the realizable case of O(d*(n + d*)w). However, as discussed above,
the runtime depends on a potentially smaller pseudo-polynomial parameter than w. We
note that, in the realizable case, our algorithm is similar to the method developed in [11]
as the latter is also combinatorial and pseudopolynomial. The precise relation is subject
to further work.
The presented results are part of the dissertation of the author [51].

2 Basic definitions for tropical linear inequality systems

We start with the definitions for a tropical semiring and introduce covector graphs in
different flavors as they will be our main tool. They were first defined by Develin and
Sturmfels under the name of types in [20] and further studied as covectors in [27], as well
as in [45].
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2.1 Covector graphs for signed systems

The tropical numbers consist of the set Ty, = RU{oo}. Equipped with the two operations
@ and ®, where z @ y := min(z,y) and @y := z + y for x,y € Ty, they form the
tropical semiring. Just as well, we could consider & = max as tropical addition. The
operations extend to vectors and matrices componentwise and we can define a matrix
product analogously to the classical case.

We use the notation [d] = {1,...,d} and define the sum over an empty set to be oo.
Furthermore, the symbol U denotes the disjoint union of the two (color) classes of nodes
of a bipartite graph.

We define a (tropical) signed system as a pair (A,%) with (a;;) = A € T and
(o)) = X € {+, —, o} where a;; = 00 < 0;; = . It defines a homogeneous tropical
linear inequality system by

@ Qj; ®x; < @ Qjj ®x; for ] S [TL] . (].)

’iE[dL oji=+ ’iE[d}, Oji=—

A point @ € T, is feasible for (A,X) if it fulfills all the inequalities, otherwise we call
it infeasible. A signed system is feasible if there is a feasible point in TA? = T¢. \
{(c0,...,00)}; otherwise it is infeasible. The set of feasible points in TA® is the feasible
region. Such a feasible region is a tropical cone, which means that it is closed under
tropical addition and scalar multiplication. A tropical halfspace is the feasible region of a
single tropical linear inequality.

Note that the sign information which we encode in the sign matrix ¥ occurs in the
patchworking method of Viro [67] and is, alternatively, added to the tropical semiring to
form the “symmetrized tropical semiring” [1].

Definition 1. The (tropical) covector (graph) Ga(z) of a finite point z € R? is the
bipartite graph on the node set [d] U [n] containing an edge (7, j) € [d] x [n] if and only if
aji+x; =min{aj; + x5 | k € [d],ajx # co}. This means that the covector graph encodes
those entries in each row of the product A ® x where the minimum is attained.

Note that we label the entries of A by pairs (j,i) € [n] x [d] and choose the reverse
order to denote the edges (7, 7) € [d] x [n] of a covector graph. We will write pairs for the
edges even if we consider it as an undirected graph. Often, we will call tropical covector
graphs just covectors.

The nodes in [d] are coordinate nodes and in [n| are the apex nodes. Coordinate nodes
correspond to the variables and are visualized by square nodes. Apex nodes correspond to
the rows and the inequalities, respectively. They are depicted by circle nodes. Depending
on the sign given by X, we call an edge in a covector graph negative or positive.

Example 2. Consider the signed system (A, %) = ((0,0,0),(+,—,+)). For each point
x € R3 with pairwise distinct coordinates, the decomposition in Figure 1 shows where the
minimum is attained in the product (0,0,0) ® z = min(zy, x9, 3).

On the left of Figure 1, we put the plain covector graphs whereas, on the right, we
add the sign information given by .

ot
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Figure 1: We dehomogenize by setting 7 = 0. We depict the covector graphs of the
points, where the minimum is attained only once, for A = (0,0,0) and ¥ = (+, —, +), see
Example 2. Negative edges are red, positive edges are blue.

Directly from the definition, we obtain a characterization of finite feasible points.

Proposition 3. A point x € R? is feasible for the signed system (A,X) if and only if no
apex node is only incident with negative edges in G a(x).

Proof. By definition, a point is infeasible if and only if there is a j € [n] with

@ aj; ©x; > @ aj; ©x; .

oji=+i€[d] oji=—,i€[d]

This means that the minimum is attained only for entries with a minus sign. From this
follows the claim with Definition 1. O

The cells {z € R? ‘ Ga(z) const} define a covector decomposition of R?. This is the
same polyhedral subdivision of R? as in [45] if we replace max by min.

Notice that the covector graphs are homogeneous in the sense that adding an element
of R-1 =R-(1,...,1) to a cell yields the same covector graph and the cells in the covector
decomposition all contain R - 1 as lineality.

We fix a matrix A € T%¢ for which every row contains a finite entry, and denote
by I' the complete bipartite graph K, on the node set [d] Ul [n] with the entries of A as
weights on its edges. A matching on D U N with D C [d] and N C [n] is a subgraph
of K, in which each node has degree 1. The value of a matching p with respect to a
matrix A is the sum Z en G- A matching is minimal if all the other matchings in the
induced subgraph of Kdn on D U N have a bigger value.

Combining [45, Proposition 30] and [45, Proposition 38| yields the following charac-
terization which is similar to [44, Theorem 6.1].
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Proposition 4. A bipartite graph G on [d] U [n] is a covector graph of a point x € R?
with respect to A if and only if the following three conditions hold:

1. No apez node j € [n] is isolated in G.

2. Let i be a matching in G on a subset D U N of the nodes with D C [d], N C [n]
and |D| = |N|. Then p is a minimal matching in T.

3. Let p and n be minimal matchings in U'. If p is contained in G, so is .

2.2 Generalized covector graphs

To make use of covector graphs also for points in T, with oo coordinates, we introduce

a generalized notion that is slightly different from the approach chosen in [45, §3.5].

Definition 5. The support supp(z) of a point x € T¢, is the set {i € [d] | z; # oo}.

Furthermore, the generalized covector graph of x is the bipartite graph on the node set
[d] U [n] containing an edge (i,j) € [d] x [n] if and only if

aj; +x; = min{a;, + z; | k € supp(x), aj; # oo} # oo .

We denote it by G 4(z), like the covector graphs from Definition 1. In contrast to covector
graphs of points in R? the generalized covector graphs possibly have isolated apex nodes.
A (generalized) covector graph without an isolated apex node is called proper.

Note that a generalized covector graph can also be the empty graph and the corre-
sponding point is feasible. The empty graph is the covector graph of (oo, ..., 00) but also
for (0,00, 00) with respect to (00,0,0). This happens, if the support of all the rows is
contained in a common proper subset of [d].

Definition 6. A (generalized) covector graph G is infeasible if there is an apex node
which is only incident with negative edges. If G is not infeasible we call it feasible.

We obtain the following more general version of Proposition 3. It assures that the
two notions of feasibility agree for points with finite components and it is the suitable
formulation for defining the feasibility in signed tropical matroids, see Section 4.
Proposition 7. A point x € T2, s feasible for the signed system (A,X) if and only if

no apez node is only incident with negative edges in the generalized covector graph G a(zx).

Proof. Fix j € [n] and consider the corresponding inequality Equation 1. If j is only
incident to negative edges the right hand side is surely smaller and the inequality is not
fulfilled. If j has no neighbors in G4(x) then both sides of the inequality are oo and the
inequality is fulfilled. Otherwise, it is also a valid inequality. O

This allows us to examine the feasibility of general tropical inequality systems via
generalized covector graphs.
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Figure 2: As always, we set 1 = 0 to cancel out the lineality R - 1. The shaded area
is the feasible region of a signed system formed by the four inequalities from Example 8.
The crooked lines are the boundaries of the tropical halfspaces. The bipartite graph is the
covector graph of (0,2,4.5), where the negative edge is red.

Example 8. The left part of Figure 2 depicts the feasible region of the signed system
(A, X)) with

0O 0 0 + - -
10 -1 =2 o+ -+
A=lo 2 4| ™ ==
0 oo —6 — & 4
This gives rise to the inequality system

0427 < min(0+ x9,0 + x3)

min(0 + 1, z3—2) < 23—1

min(0 + z1, x3—4) < x9—2

5(13—6 < O—I—l’l .

The covector graph of the point (0,2,4.5) is shown in the right part of Figure 2. It is
feasible since each apex node is incident with a positive edge.

The covector graph of the point (oo, 0, 00) has the edges (2,1), (2,2) and (2,3). It is
not proper and infeasible.

2.3 Computations for realizable covector graphs

Starting from a proper covector graph, the next lemma allows us to compute a point with
given covector graph.
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Let G be a connected covector graph with respect to A € T"*% and § € [d] a coordinate

node. For any other coordinate i € [d], let 0 = iy, ji1,4a,...,1s,Js, 9541 = ¢ be any path
from ¢ to ¢ in G. By the definition of a covector graph, we obtain the sequence of equations
Qji, + Tiy = Qjip,, + @iy, for all the tuples (i, ji, 441) with ¢ € [s]. Summing up these
equations yields Y ;_, (aj.i, + i) = Y11 (@jiry, + T, ). Equivalently, we obtain

s s s s
§ Liyq — E Ly = § Ajyiy — § Ajyigq
t=1 t=1 t=1 t=1

and hence, x; — 5 = Ti, — Ty, = D,y Gy — Dy Gjriss,- Lhese equations define
2 uniquely up to adding multiples of the all ones vector. Since we assumed G to be
a covector graph, these necessary conditions are also sufficient. This construction is
visualized in Figure 3. It proves the following.

Lemma 9. The covector graph of x with respect to A is G.

Figure 3: The computation of the point (0,1,3) for a prescribed covector graph from
Example 8.

oddo

For subsets I C [d] and J C [n] with |J| = |I| — 1 we define the tropical Cramer
solution A[J|I] € T? by

tdet(Ayngy) foreachie ]

00 else

AlJ|I; = { (2)

To cover the case J = @&, we set tdet(Ag ) = 0. These vectors occur as solutions
to homogeneous tropical equality systems, see, e.g., [31, Theorem 18], [58, Corollary 5.4],
in analogy to Cramer’s rule in linear algebra. That means, a Cramer solution has the
property that the minimum in the computation of each entry of A;; ® A[J|I] is attained
at least twice. We mention the computational problem in Section 6, for an extensive
study see [3].

We denote the generalized covector graph of A[J|I] by Ca(J,I).

Example 10. Consider again the matrix A from Example 8. The point (0, 1, 3) has the
covector graph depicted on the left of Figure 3. On the right is the auxiliary weighted
directed graph for computing the point from the covector graph.

It is the Cramer solution C4({2,3},{1,2,3}).
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Lemma 11. Let A € TW=Y%4 with d € N and = the Cramer solution for this matriz.
Then |x; — xp| < 2-d - max{|a;| | ai; # 00, (4,5) € [d] x [n]} for any i,k € [d] with
xT; # 00 # T.

Proof. This follows from the definition of Cramer solution with the triangle inequality. [

3 Abstract tropical linear programming

The generalization of the simplex method to oriented matroids in [12, 30, 66, 64], was a
powerful step in the understanding of linear programming. The basic idea of the simplex
method, considered as a feasibility algorithm, is taking a finite walk along edges and
vertices in an arrangements of halfspaces as depicted in Figure 4. This is further explained
in the Appendix A.1.

4

Figure 4: An affine halfspace arrangement in R?. The sign vectors denote in which
halfspace of 1,2, 3,4 the vertex of the arrangement lies. These signs form the sets J, K+
and K~ in the explanation before Theorem 77.

In this section, we present an algorithm which finds a feasible cell in a tropical analogue
of an oriented matroid and does not cycle. This is an abstraction of the feasibility problem
for signed systems. We already saw in Proposition 3 and Proposition 7 that the feasibility
of a point can be characterized by its covector graph with the signs on its edges. Hence,
we will use an abstract version of covector graphs.

A purely axiomatic approach to grasp the crucial properties of the collection of covector
graphs was started by Ardila and Develin in [8]. They introduced the name tropical ori-
ented matroid. This approach was further developed in [54] and [43]. Finally, Horn proved
in [43] that tropical oriented matroids encode exactly all subdivisions of A,,_; x Ay 1,
not only regular ones, and also the so called tropical pseudo-hyperplane arrangements.
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In this section, we introduce a special class of signed tropical matroids and postpone
their general introduction to Section 4. The class of signed tropical matroids treated here
is the generalization of the set of covector graphs arising from generic matrices with only
finite entries. In Section 5, we describe how one can reduce the general case to this. It
follows from Lemma 54, Proposition 57 and Proposition 62.

3.1 Generic full signed tropical matroids

The following definition is based on the axioms for the maximal simplices in a triangulation
of a product of two simplices given in [7, Proposition 7.2]. This is discussed further in
Section 4.1.

Definition 12. A generic full signed tropical matroid (GFSTM) is a pair (7, Z). Here, =
is a (d x n)-matrix in {+, —}¥*". Moreover, T is a set of spanning trees of the complete
bipartite graph K, on [d|U[n] together with all subgraphs of the trees without an isolated
node in [n], where the trees fulfill the following two properties.

1. For each tree GG and each edge e of GG either G — e has an isolated node or there is
another tree G containing G' — e.

2. There do not exist two distinct trees G and H, and a cycle of K, which alternates
between edges of G and H,

One can equivalently just consider the collection of trees without their subgraphs. We
will refer to the last condition as comparability. Equivalently, one could require, that for
all D C [d] and N C [n]| with |D| = |N| there is at most one matching on D LU N which
is contained in a tree in 7.

Remark 13. The covector graphs of a signed system with a generic coefficient matrix and
finite entries gives rise to a GFSTM. Such a GFSTM is realizable.

Extending the terminology for signed systems, we call the elements of T covector
graphs. The nodes in [d] are coordinate nodes and the nodes in [n| are the apex nodes.
Depending on the corresponding sign in the sign matrix, we say that an edge of a covector
graph is negative or positive.

Example 14. Let

0 0 0 -+ +
A=10 -2 1| and Z= [+ - +
0 -1 —2 + + -

That signed system (A, Y) gives rise to the GFSTM depicted in Figure 5. The bipartite
trees are just the maximal covector graphs as defined in Definition 1.

We give examples of GFSTMs, which do not come from signed systems, at the end of
the section in Examples 45 and 46.
Proposition 7 justifies the following definition.
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Figure 5: A realizable GFSTM for the signed system in Example 14. Negative edges are
red, positive edges are blue.

Definition 15. A covector graph G is infeasible if and only if there is an apex node in
GG which is only incident with negative edges. If G is not infeasible we call it feasible.

A covector graph G is totally infeasible, if it is infeasible and every coordinate node is
incident with a negative edge.

A GFSTM is feasible, if it contains a feasible covector graph; otherwise we call it
infeasible.

The property ‘totally infeasible’ is far stronger than just infeasible. In Lemma 17, we
see that it forms a certificate that there is no feasible covector graph in the GFSTM and,
hence, that the GFSTM is infeasible. It is in some sense dual to the notion of a feasible
covector graph via the duality between the two parts of the node set of the bipartite
graphs. In the generic case, the infeasibility of a totally infeasible covector graph already
follows from the second condition.

The following operation corresponds to the treatment of points with infinite entries.
We will treat this in more generality in Section 4.2.

Definition 16 (Contraction). For a coordinate node i € [d], the contraction S; is the
set of graphs which arise from those graphs of S, for which i is isolated, by deleting the
node 7. We delete the 7th column in the sign matrix.

For the contraction S\ py, where S is defined on [d] and D # @, we will also write
S|p- In the realizable case, these are the covectors of the points with support D. We only
consider points in TA? = T, \ {(oo0, ..., 00} which corresponds to D # @.

If (§,%) is induced by a signed system (A,3) then the operation corresponds to
deleting the ith column of A. By construction, a contraction of a GFSTM is again a
GFSTM.

With the latter notion we can now formulate an important consequence of the existence
of a totally infeasible covector in a GFSTM. This is visualized in Figure 6.

Lemma 17 (Infeasibility certificate). If a covector graph G in a generic full STM (T, =)
is totally infeasible, then in every covector graph H of any contraction of (T,Z) there is
a node in [n] which is only incident with a negative edge.

Proof. Notice that each covector graph in a contraction is constructed from a covector
graph of (7, ). Since one only removes isolated coordinate nodes to obtain the contrac-
tion, all covectors in every contraction is infeasible if so are all covector graphs in the
original GFSTM.
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By definition, G is infeasible and there is a set  of negative edges on [d] LU N for some
subset NV C [n], such that each node in [d] is incident with exactly one edge in p and each
node in N is incident with at least one edge in p.

Now, let H be any covector graph in (7,=Z). Assume H is feasible. This implies that
each apex node j € N is incident with a positive edge, which therefore does not lie in p.
Pick for each node in N one incident positive edge from H. This forms a cover n of N.
Moreover, let D be the subset of the coordinate nodes [d] which is covered by 7. Then
the graph on D U N with edge set p|p Un, where pu|p are those edges in p incident with
D, has |D| + |N| nodes and |u|p|+ |n| = |D| + |N| edges. This implies that it contains a
cycle C. Since every node in D is only incident with one edge from p|p and every node
in N is only incident with one edge from 7, the cycle C' has to be alternating between u
and 1. However, this contradicts the comparability in Definition 12. O

\ ®
\ 2
\‘ @
\ B ®
‘\
' N
A Y
@/g‘\ @
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B—0 .
e e -
®  TTeeel :
..... 1
D
2/ ®
®

Figure 6: The configuration for the signed system from Example 14. The corresponding
GFSTM contains a totally infeasible covector. The shaded bars indicate the infeasible
regions. The dashed lines denote the boundary strata of the tropical projective space.
The covectors on the boundary stratum corresponding to the contraction 7 |2 3; are also
depicted and infeasible.

3.2 Existence of particular covector graphs

We start with a Menger-type lemma; see [13, §3] for similar results. It is purely graph
theoretic but contains an important property for covector graphs.
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Lemma 18. Let G be a bipartite tree on the node set D LU N for arbitrary sets D and
N with |D| = k+ 1 and |N| = k with a positive integer k. If the nodes in N all have
degree 2 then, for each i € D, the graph G with i deleted contains a perfect matching.
Furthermore, G is the union of these matchings.

Proof. Fix an arbitrary iqg € D. Since G is a tree, it has at least two leafs. In particular,
thereis an i € D\ {ip} which is a leaf in G. Let j € N be the node adjacent to i. Deleting
i and j yields a graph H on (D \ {i}) U (VN \ {j}) for which each node in N \ {j} has
degree 2.

Proceeding by induction implies the claim about the containment of the matchings.

Furthermore, each edge is contained in such a perfect matching. For this, pick an
arbitrary edge (i,7) € G. Let £ € D be the node distinct from ¢ which is adjacent to j.
Then (i, 7) is contained in the perfect matching on (D \ {¢}) U N. O

The following result guarantees the existence of covector graphs with specific degree
conditions. It can be seen as the theoretical justification of an oracle which provides us
with the next covector graph in the iteration later on. Let T be a collection of spanning
trees on [d] U [n] fulfilling the two properties listed in Definition 12.

Proposition 19 ([54, Proposition 2.5]). Let (di,...,d,) € [d]" with 37 d; =n+d—1.
There is exactly one tree in T for which each node j € [n| has degree d;.

The origin and a proof of the last statements are further discussed in the Appendix.

Our algorithm presented in Section 3.3 relies on the idea of pivoting between basic
points similar to the simplex method. As further elaborated in Section A.1 the simplex
method iterates over basic points. These are solutions of linear equality systems which
can be computed by Cramer’s rule. The next definition is motivated by the properties of
the covector graph of a tropical Cramer solution as defined in (2).

We define Cramer covectors C(N, D U {d}), where 6 € [d], D C [d] \ {0} and N C [n]
with |D| = |N|, as the covector graphs in the contraction 7 |{pusy for which each node
in NV has degree 2. The former lemma guarantees the existence of Cramer covectors in a
GFSTM. Note that it is also valid for D = N = &.

Cramer covectors are similar to linkage trees in the sense of [63] which were defined for
the study of matching fields. Linkage trees are spanning trees on k+ 1 nodes for which the
k edges are bijectively labeled by the numbers in [k]. We replace each edge connecting jo
with j; for jo, j1 € [k+ 1] with label i for ¢ € [k] by a new node with label ¢ and two edges
connecting jo with ¢, respectively j; with 2. This yields a bipartite graph as in Lemma 18
which is essentially a Cramer covector.

Remark 20. [3, Theorem 4.18] implies that the covector graph of A[J|I] for a generic,
finite A is just the Cramer covector C(J, ) since there is a unique covector graph with
the prescribed degree sequence. We will determine the covector graph for the non-generic
case in Lemma 56.

We saw already in Lemma 19 and Lemma 18 that Cramer covectors have a particu-
larly useful structure. We exploit this to construct Cramer covectors in a fixed GFSTM
inductively.
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Example 21 (Example 14 continued). The sequence of degrees of the nodes on the right
of each tree in Figure 5 has the sum 3+ 3 — 1 = 5. We have exactly the degree sequences
(3,1,1), (2,2,1),(1,3,1), (1,2,2), (1,1,3), (2,1,2). This demonstrates Proposition 19.
The second, fourth and sixth covector graph in Figure 5 is a Cramer covector.

3.3 Description of the algorithm

We introduce an algorithm which either finds a feasible or a totally infeasible covector
graph in a GFSTM. By Lemma 17, a totally infeasible covector is a certificate that such
a GFSTM does not contain a feasible covector.

Like the variant of the simplex method presented in Subsection A.1, the algorithm
constructs a sequence of subsets (a basis) of apex nodes (which correspond to inequalities).
In each step, we consider a covector which is defined by this sequence and check if it is
feasible. Here, we assume that we have an oracle which gives us a basic covector defined by
a basis formed of apex nodes. If it is not feasible yet, there is an apex node which is only
incident with negative edges (corresponding to a violated inequality). This determines
which apex (variable) will enter the basis. For classical oriented matroid programming,
this is described in, e.g., [12, Theorem 4.5].

Now, our approach diverges. While in the simplex method, one has to compute which
variable leaves the basis, we deduce from Lemma 23 with the properties of a basic covector
which apex leaves the basis. This can already be seen in Figure 7. To arrive at this insight,
we will prove in Subsection 3.4 that moving along abstract tropical lines yields a basic
covector if we start from one.

Furthermore, the termination of the simplex method is guaranteed by the increase of
a linear functional. As we are working in a setting without weights such an argument
is not at hand. However, again the special structure, in particular the preservation of
the distinguished direction, of the basic covectors yields a purely combinatorial tool to
measure the progress of the algorithm. The distinguished direction corresponds to the
coordinate with respect to which one would dehomogenize the tropical linear inequality
system.

The powerful definition of a basic covector comes with the additional difficulty to find

one. We will solve this in Subsection 3.5 by an inductive construction via contractions of
a GFSTM.

To emphasize that covector graphs take the role of vectors in the classical simplex
method we denote them by y.

A basic covector (graph) y with distinguished direction § and support (DU {é}) C [d]
with D C [d] \ {0} is a covector graph on [d] LI [n] such that

1. it is a spanning tree on (D U {0}) U N,
2. each coordinate node in [d] \ (D U {d}) is isolated,

3. there is a |D|-set of apex nodes N C [n], called basis, so that each node in N has
degree 2 in y,
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4. 0 is not adjacent to an apex node in N via a negative edge,
5. each apex node in N is incident with a positive and a negative edge,
6. no two negative edges, each of which is incident with some node in N, are adjacent.

The apex nodes in the basis are called basic apices, the others non-basic apices. If ¥ has
a '—’ at position i € [d] in row j € [n], we say that the apex node j has shape i resp. it
is i-shaped.

Later on, we will construct a sequence of basic covectors. If there are apex nodes
p # q € [n] so that N and N \ {p} U {q} are bases, we say that p is the leaving apex and
q is the entering apex.

Ys

Y2

=
[=]
=

S

Figure 7: A path (dashed) along points with basic covectors (the four red points). The
infeasible region is marked. In each step, a negative edge is removed from the covector
graph. The bases are {1,2}, {2,3} and {3,4}.
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Example 22. The graphs at the bottom of Figure 7 are the covector graphs of the points
Py, P, and Pj in the top part. They are all basic covectors. The distinguished direction

is 0 = 1. The corresponding bases are {1,2}, {2,3} and {3,4}. The apices 2 and 4 are
2-shaped, the apices 1 and 3 are 3-shaped.

We start with the nice structural property of basic covectors which connects the sign
structure with the matching structure.
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Lemma 23. The negative edges which are incident with a basic apex form a perfect
matching on D LI N in y. Furthermore, the edges in a path emerging from o to another
coordinate node are alternatingly positive and negative.

Proof. Consider the induced subgraph ¢ of y on (DU{d})UUN. Each apex node is incident
with a negative edge. By (5) and (6) in the definition, no two negative edges are incident,
and by (4), 0 is not incident with a negative edge. Hence, the negative edges define an
injective function from N to D. Because of |N| = | D|, this function is also bijective. This
yields the required matching.

Since each node in N has degree 2 and the nodes in [d] \ (D U{d}) are isolated, 7 is a
tree. Fix an arbitrary i € D and let p = (e, ¢!, ..., e¥) be the edge sequence from & to i in
g. Since €° is positive and incident with the same apex node as e! we conclude that e! is
negative. Therefore, €2 has to be positive again as it is incident with the same coordinate
node as e'. Iterating this argument, we obtain that the edges in p are alternatingly

positive and negative. O]

The former lemma tells us that there is exactly one i-shaped apex node for each ¢ € D
in the basis N. From Proposition 19, we know that there is at most one basic covector
defined by (DU {d}) and N. If the Cramer covector C(N, D U {d}) fulfills the conditions
4, 5 and 6, it is the basic covector with these parameters and we denote it by B(N, D, ).

Corollary 24. The Cramer covector C(N,(D U {d})) is the basic covector B(N, D, d) if
and only if the negative edges, which are incident with the basic apices, form a perfect
matching on D L N.

3.4 Pivoting between basic covectors

The crucial piece for our feasibility algorithm is a method to find a new basic covector
which is ‘in the right direction’” and ‘similar to the old one’. In particular, the new basic
covector should have the same distinguished direction. We present two variants for this
in Algorithm 1 and Algorithm 2. The second one will evolve as an iteration over the first
one. We need the first one for technical reasons in the proofs.

Assumption 1. The GFSTM is trimmed which means that = has exactly one ‘—’ entry in
each row.

We discuss in Section 5.3 how one can make sure that this assumption is fulfilled.

Now, the idea for the pivoting is the following. If we remove a negative edge e which is
incident to a basic apex p in a basic covector y with basis N then we obtain the covector
graph y — e having two trees as connected components and p leaves the basis. In this
context, — denotes set difference of the edge sets. We know from Definition 12 that there
is exactly one other tree w containing this graph. Hence, there is an edge f such that
w =1y — e+ f where + denotes union.

Now, three cases can occur. If w is again a basic covector graph with distinguished
direction o, we are done. Otherwise, either an apex node in N has degree 3 or another
apex node has degree 2. We continue the iteration by removing an edge. This edge is
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chosen such that no node becomes isolated and all nodes in N \ {p} have degree > 2 as
well as one negative incident edge. This ensures that J remains the distinguished direction
and yields the case distinction of Algorithm 1. A closer inspection reveals that we do not
need to iterate over all these covectors to find another basic covector but can construct
it directly which results in Algorithm 2. For the proof of this, we assigned the variable
completed in Line 11 of Algorithm 1. The latter algorithm is merely a technical tool to
show that the other algorithms building on it behave correctly.

Remark 25. The iteration in Algorithm 1 moves along an abstract version of a “tropical
line”. A tropical line is a sequence of ordinary lines as explained in [20, Proposition 3]. A
more refined version for this is given in [5, §4]. Note that their description in terms of the
“tangent digraph” is essentially the same as in terms of covector graphs in the realizable
case. However, our approach also works in the non-realizable case.

Algorithm 1 Finding the next basic covector; see also Algorithm 2
Input: Basic covector graph y = B(N, D, ) and a non-basic apex r that is adjacent to
D via a negative edge in y
Output: Basic covector graph with support D U and distinguished direction §
1: procedure NEXTBASICCOVECTOR(y,r)

2: 1 <—coordinate node adjacent to r
3: p <basic apex adjacent to ¢ via a negative edge > the i-shaped basic apex of the
basis N. It leaves the basis.

4 e <—edge connecting ¢ and p

5: do

6: w <— unique covector # y in T|pugsy containing y — e > see Def. 12
7 f—w—(y—e)

8 q < the apex node incident with f

9: if ¢ is adjacent to 7 via a negative edge then
10: > w is the basic covector B(N \ pUgq, D,0).
11: completed« (¢ =)
12: else if ¢ has degree 3 in w then
13: e < the positive edge incident with ¢ in y —e =w — f.
14: else > In this case, q is incident with two edges.
15: e < the edge incident with ¢ in y —e =w — f.
16: end if
17: Y<—w
18: while y is no basic covector
19: return y

20: end procedure

We build our arguments for the correctness of the algorithms on properties of the
paths in basic covectors. Let the length of a path in a graph be the number of nodes
contained in the path. Define the d-distance of an edge e in the covector graph y as the
minimum of the two lengths of the paths from a fixed coordinate node 0 to the nodes
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which are incident with e. Note that the path between two nodes in a tree is unique. We
call the edge e even in y if the distance to the coordinate node ¢ is even, otherwise odd.
We call this property the d-parity of an edge in y.

3.4.1 Finding the next basic covector

Let 4/° be the input covector, r the input basic apex and p the leaving basic apex of shape i.
We consider the sequence y', 32, . . . of covectors which arise in Algorithm 1 in Line 6. Such
a sequence is depicted in Figure 8. Then we can write y! = ¢®—el+ f1, y? =yl —el +f2, ...
for appropriate edges e and f¢ with ¢ € N. Furthermore, let ¢ be the apex node, which
is incident with f* in 7*.

Figure 8: A possible sequence of covector graphs starting with an infeasible and ending
with a feasible basic covector. Negative edges are light red, coordinate nodes left, apex
nodes right, 6 = 4. The intermediate covectors are not basic.

Example 26. Figure 8 depicts a possible sequence of covectors arising in Algorithm 1
Line 6. The first and the last covector are basic with basis {2, 3,4} resp. {2,3,5}. The
distinguished direction is 6 = 4.

In the realizable case, the two apices 2 and 3 would define a tropical line which
eventually has to hit the halfspace defined by the apex node 5.

Lemma 27. The covector graph y* — e’ has two connected components for all ¢ > 0. Each
node in N\ {p} has degree 2 and is incident with a positive and a negative edge. All other
apez nodes have degree 1. The negative edges, which are incident with a node in N \ {p},
are pairwise not adjacent.

Proof. By construction, 3 is always a tree, hence y’ — e’ has two connected components.
Line 13 ensures the properties of the nodes in N \ {p}. Line 15 guarantees that the other
apex nodes have degree 1. The last claim follows as the negative edges, which are incident
with a node in N \ {p}, are the same as in y°. O

Since we started the iteration with a basic covector, we obtain a nice invariant which
is fulfilled by the edges which are removed and added.
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Lemma 28. Let y' and y*™' = y* — e’ + 7 be two consecutive covector graphs for € > 0.

Then €' is even in y* and f is odd in y*+'.

Proof. We proceed by induction. The first covector graph y° in the iteration is a basic
covector.

From Lemma 23, we know that the paths from ¢ to another coordinate node are
alternatingly positive and negative. We conclude that all the negative edges which are
incident with a basic apex are even. Hence, line 4 in Algorithm 1 yields that € is even
as it is negative.

Now fix an ¢ > 1 and consider the union Y* := ¢! + f¢ = y* + e~ of y*! and
y’. There is a unique fundamental cycle in Y* which contains f* and e/~!. An example
for this is depicted in Figure 9. Consider the path p in Y* that contains e/~! and goes
from & to the first node incident with f*. By the induction hypothesis, e‘~! is even in
y'~'. By the comparability condition in Definition 12, the fundamental cycle must not
be alternating between edges of y*~! and y‘. Therefore, with the evenness of e/~!, the
number of nodes in p must be even as well. Since the number of edges forming a cycle in
a bipartite graph is even, this implies that the other path from § to the first node incident
with f¢ in Y* contains an odd number of nodes. This is exactly the path defining the
d-distance of f* in y*, hence, this d-distance is odd.

To show that f* and e’ have different parity in y* we consider the two cases in Algo-
rithm 1 lines 13 and 15. The first case occurs if ¢* is a basic apex. Consider the path
from § to ¢*. By Lemma 27, the apex nodes along this path are only nodes in N\ {p} and
analogously to Lemma 23, we get that the path is alternatingly positive and negative.
In particular, the path to the positive edge incident with ¢’ with the higher §-distance
contains the other positive edge. Therefore, these two edges have different parity.

The second case occurs if ¢¢ is an apex node in [n]\ (N \ {p}) which has degree 2 in y*
but is not of shape 4. In this case, f* and e are again incident with the same apex node
¢*. There is a unique path from J to ¢°. Since it has to contain one of the two edges the
claim follows. O

Now, we have the tools to prove a first lemma which guarantees termination.

Lemma 29. For ¢ > 1, let C*~' be the set of nodes in the connected component of the
distinguished direction & in y*~!' — et Then ¢ € C* 1, ¢* € C* and C; C Cy C .. ..

Proof. Fix an arbitrary ¢ > 1 indexing an element of the sequence (¢°).

Not both endpoints of f* can be contained in C*~! as f* connects the two components
of =1 — e~1. The path from § to the endpoint of f* in y* has to be odd, by Lemma 28.
Since such a path has to alternate between coordinate and apex nodes, this endpoint has
to be a coordinate node. Hence, ¢* is not contained in C*~!.

By the choice of e in Line 13 or Line 15 of Algorithm 1, e’ is incident with ¢*. Since
e’ is contained in y*~! — e’~!, the endpoint of e’ different from ¢ must not lie in C*~1,
otherwise ¢ would lie in C*~!. Subsuming, no endpoint of e’ lies in C*~!. Therefore, ¢*

and the nodes in C*~!' cannot be disconnected from J in y* — ef. Hence, ¢/ € C* and
ctlc ot O
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Figure 9: The fundamental cycle for ' and 3? in Figure 8. The two graphs coincide in
the black edges and differ in the green edges. The dashed edge connects the cycle with
0 =4.

Example 30. The connected components of d in the covector graphs in Figure 8 are
{4,4}, {1,4,1,2,4}, {1,2,4,1,2,3,4}, where the numbers with the line on top denote
apex nodes.

Theorem 31. Algorithm 1 does not cycle and yields a new basic covector with distin-
guished direction 6 and support (D U &) after less than n iterations.

Proof. Note that the condition in Line 9 is fulfilled if ¢ equals r. By Lemma 29, the set
C* is increased by at least one apex node. Since there are only n apex nodes and the set
fulfilling the condition in Line 9 is not empty, the algorithm terminates after less than n
iterations.

Furthermore, the condition that w € T|pyusy ensures that each coordinate node in
[d] \ (D U{d}) is isolated. The condition in Line 9 together with Lemma 27 yields that
the resulting covector graph is indeed a basic covector with distinguished direction §. [J

If r does not enter the basis to form the new basic covector in Algorithm 1, it is still
a non-basic apex, which is incident with a negative edge. Therefore, the following block
yields the basic covector y = B(N \ pUr, D, J) where p is the leaving basic variable which
has the same shape as r.

completed<— FALSE
while not completed do

NEXTBASICCOVECTOR(y,7) > see Algorithm 1
end while > If r does not become a basic apex it can be used again.

This implies that C(N \ pUr, D U {d}) is indeed a basic covector.
The former observations imply the following.

Corollary 32. Algorithm 2 is correct and has the same result as an iterative application
of Algorithm 1.
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Algorithm 2 Simplified variant of Algorithm 1 for finding the next basic covector
Input: Basic covector graph y = B(N, D, ) and a non-basic apex r that is adjacent to
D via a negative edge in y
Output: The basic covector graph B(N \ pUr, D,§) where p is of the same shape as r
1: procedure NEXTBASICCOVECTOR(y,r)
2: 1 <—coordinate node adjacent to r
3: p <i-shaped basic apex of the basis N
4: return C(N \pUr,DU{d})
5: end procedure

Example 33. Observe that y° is the basic covector B({2,3,4},{1,2,3},4) and y? is the
basic covector B({2,3,5},{1,2,3},4) in Figure 8. That illustrates Corollary 32 as the
apex nodes 4 and 5 are both 3-shaped and 5 is a non-basic apex node incident with a
negative edge in 1°.

3.4.2 Finding an extreme basic covector

Eventually, we want to determine a feasible or totally infeasible basic covector. A feasible
covector cannot have an apex node of degree one which is incident with a negative edge.
Therefore, we want to construct a new basic covector if there is such an edge. We know
from the former section how this can be achieved. Iterating this approach yields Algo-
rithm 4. To check if we reached a feasible or totally infeasible basic covector we need the
subroutine CHECKFEASIBLE from Algorithm 3. It is just the algorithmic manifestation
of Definition 15.

Remark 34. We are left with some freedom of choice for the entering apex at each basic
covector. We do not specify a rule to choose the apex, the algorithms work for any choice.
For an implementation we suggest to use the smallest index, like in Bland’s rule for the
simplex method.

Lemma 35. Algorithm 3 correctly determines if y = B(N, D, ) is feasible, infeasible or
totally infeasible in the sense of Definition 15.

Proof. 1f the condition in Line 2 is fulfilled, the covector y is surely infeasible. Since, in
a basic covector graph, all the coordinate nodes in D are incident to a basic apex via
a negative edge, the condition in Line 3 implies that y is totally infeasible. The claim
follows as feasible is the opposite of infeasible. O

Algorithm 4 successively constructs basic covector graphs with Algorithm 2 until the
result is feasible or totally infeasible.

At first, it is not clear that this terminates. We consider a run of this algorithm
starting with the arbitrary basic covector 4°. Let y* be a basic covector which is assigned
in Line 5 of Algorithm 4 during this run. By Corollary 32, there is a sequence of covectors
y°,yt, ..., y* (most of them not basic) which would occur as intermediate results by using
Algorithm 1 instead of Algorithm 2.

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(2) (2020), #P2.51 22



Algorithm 3 Checking feasibility of a basic covector

Input: Basic covector graph y = B(N, D, 0)

Output: A classification of y based on the signs of the edges
1: procedure CHECKFEASIBLE(y,0)

2 if there is a non-basic apex node only incident with a negative edge then
3 if there is a negative edge incident with § then

4: return TOTALLY-INFEASIBLE

5: else
6:
7

8

9

return INFEASIBLE
end if
else
: return FEASIBLE
10: end if
11: end procedure

Algorithm 4 Iterating over basic covectors
Input: Basic covector graph y = B(N, D, 0)
Output: A basic covector with support (D U ) and distinguished direction § which is
either totally infeasible or feasible
1: procedure FINDEXTREMECOVECTOR(Y)
2: while (CHECKFEASIBLE(y, §) = INFEASIBLE) do
3: r <—non-basic apex in y which is incident to D via a negative edge > such an
r exists if y is infeasible, see Algorithm 3 Line 2 and 3
p <basic apex of y of the same shape as r
Yy« C(N\pUr,DU{d})
end while
return y
end procedure
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Let £ be the graph on (D U {d}) U [n] whose set of edges are exactly those which
are contained in all the graphs 3°,...,¢y*. Denote by £(§) the connected component in &€
containing § and by I(9) the subset of the coordinate nodes in £(9).

Proposition 36. There is an apex node j € [n] and an h € [k] such that j has degree 2
in y° and degree 1 in y* for £ > h. In particular, y* # °.

Proof. Since 3° is connected there is an apex node j in y" which is connected to (d) and
to (DU {d}) \ I(d). The covector y° is basic and j has degree 2. Therefore, j is a basic
apex.

If both edges incident with j are contained in £ this would contradict the definition of
I(6). Therefore, there is an h so that the edge e, which is removed in step h, is incident
with j. Since the edges of £ are contained in all the graphs 3°,. .., y*, the edge " has the
same J-distance in y" as in y°. With Lemma 23 and 28, the edge e" is even and negative
in y". Furthermore, the positive edge incident with j is incident with I(4).

For £ > h, no edge in £(J) is removed. Assume there would be an ¢y > h so that f*
is incident with j. Then f% would be even in y%. However, this contradicts Lemma 28.
Subsuming, j has degree 1 in y¢ for £ > h. O]

Remark 37. Geometrically, for the realizable case the set £(J) defines a lower dimensional
tropical hyperplane, which contains all the points vy, ..., yx1. It is given by the inter-
section of the boundaries of the tropical halfspaces which correspond to the apex nodes
which are internal nodes of £(9).

For the non-realizable case, we only give the following rough upper bound. It is just the
number of | D|-tuples analogously to the number of possible bases for the classical simplex
method. We will give a better upper bound for the realizable case in Theorem 75.

Theorem 38. Algorithm /J terminates after less than (|g|) iterations.

Proof. By Proposition 36, any two basic covectors arising in Line 5 are distinct. Further-
more, the assignment of y as Cramer covector in that line yields an injective function
from the | D|-subsets of [n] to the basic covectors. This implies the claim. O

Remark 39. In Algorithm 4, we could continue the iteration until only ¢ is incident
with non-basic apices via negative edges. For other basic covectors, one still can apply
Algorithm 2 to construct a new basic covector.

3.5 Finding a basic covector and even more

Until now, we assumed a basic covector to be given. Indeed, one easily finds a basic
covector for each ¢ € [d], namely the Cramer covector C(&,{d}). Algorithm 4 allows us
to determine a feasible or totally infeasible covector, which is even a basic covector. This
covector lives in T (pugsy- If it is feasible then we are finished as we are only looking for a
feasible covector in a contraction. However, a totally infeasible covector in T pu{s} 18 not
enough to guarantee the infeasibility of 7. On the other hand, we demonstrate how one
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can construct a new basic covector in a contraction with a bigger support from a totally
infeasible basic covector y = B(N, D, J).
This is based on the following proposition.

Proposition 40. Let D C [d]|, 6 € [d]\ D and N C [n| with |N| = |D|. Furthermore, let
y be a covector graph in the contraction T |p containing a perfect matching p on D LI N.
Then C(N,D U {d}) contains .

Proof. Applying Proposition 19 to 7T|pugsy) vields the existence of the covector graph
C(N,D U {d}) which has degree 2 for every node in N and degree 1 for the nodes in
[n] \ N. By Lemma 18, the induced subgraph of C(N, DU{é}) on (DU{d}) U N contains
a matching on D'UN for every | D|-element subset D’ of (DU{0}). Especially, it contains
a perfect matching on D LI N.

By the definition of the contraction 7|p, there is a covector graph ¥ in T|pugsy)
extending y. The comparability condition yields that the two graphs 3 and C(N, DU{d})
must contain the same matching o on DU N. O]

By Definition 15 resp. Algorithm 3, there is a non-basic apex j in y which is incident to
J via a negative edge. Therefore, y contains a perfect matching p on (DU{d})U(NU{j})
which consists of negative edges. Consider an additional element ¢’ € [n]\ (DU {¢}). By
Proposition 40, the covector y' = C((N U {j}), (DU {0} U {d'})) also contains u. With
Corollary 24, we conclude that ' is the basic covector B((N U {j}), (D U{d}),d’). Note
that this argument works for any covector y which contains a matching of negative edges
on (DU{d}) U (NU{}).

Theorem 41. Algorithm 5 correctly determines a totally infeasible basic covector in T
or a feasible covector in a contraction of T in at most d — 1 iterations of Algorithm 4.

Proof. From the discussion above the theorem, we know that the covector in Line 20
is indeed a basic covector. By Theorem 38, y is a feasible or totally infeasible basic
covector after Line 9, and Lemma 35 shows that CHECKFEASIBLE correctly determines
the feasibility status of a basic covector. In each iteration of the while-loop in Line 4, the
algorithm either terminates or D is increased by one element.

Since D is a subset of [d] with at most d — 1 elements, the claim follows. O

Remark 42. The only passages in the algorithm where the data of the GFSTM is needed
are the assignments of the Cramer covectors. In the realizable case, the input for Algo-
rithm 5 is supposed to be given as a signed system (A,Y). We discuss this further in
Section 6.1.

In the non-realizable case, we assume to have an oracle which returns a Cramer cov-
ector for each fixed §, D and N. Recall their guaranteed existence by Proposition 19.
The requirements on this oracle should be further investigated in the context of matching
ensembles [55].

Corollary 43. Algorithm 5 needs at most ZZ:1 (V) calls to the oracle that encodes (T, X)
and returns Cramer covectors.
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Algorithm 5 Finding a feasible or totally infeasible covector graph

Input: A full generic trimmed STM (7, )

Output: A totally infeasible basic covector or a feasible covector in a contraction of 7

1: 0 < an element of [d]

2D+, N+—g

3.y« C(@,{6})

4: while TRUE do

5 check <~ CHECKFEASIBLE(y, 0)

6: if check = INFEASIBLE then

7 y < FINDEXTREMECOVECTOR(Y)
8 check <— CHECKFEASIBLE(y, 0)

9

> see Algorithm 3

> see Algorithm 4

: end if D> at this point y is guaranteed to be feasible or totally infeasible
10: if check = FEASIBLE then
11: return “feasible” .y
12: end if > at this point y is gquaranteed to be totally infeasible
13 if DU{0}=][d] then
14: return “infeasible” )y
15: else
16: j <—non-basic apex incident with § via a negative edge > exists by
Algorithm 3 Line 3
17: D+ DU {(5}
18: d <= node in [d] \ D.
19: N+ NuU{j}
20: y <+ C(N,DU{d})
21: end if
22: end while
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Figure 10: Constructing a basic covector with bigger support from a totally infeasible
basic covector

Furthermore, the algorithm yields a partial generalization of [37, Lemma 11]. It is a
theorem of alternatives for the feasibility of an STM. It covers a slightly different aspect
than the “Tropical Farkas Lemma” [20, Proposition 9.

Theorem 44 (Tropical Farkas Lemma for GFSTM). A full generic STM contains
e cither a feasible covector in a contraction,
e or a totally infeasible covector,

but not both.

Proof. By Theorem 41, Algorithm 5 returns a feasible or a totally infeasible covector. If
the result is totally infeasible, Lemma 17 implies that the STM does not contain a feasible
covector. This implies the claim. O

We demonstrate the course of the algorithms on two Examples from [42, 19] which
are listed in Table 1. They are derived from two non-regular triangulations of A5 x A,
and Az x Ags; the connection between the covector graphs and triangulations is further
described in Section 4.

The rows contain the covectors corresponding to the maximal simplices. The jth entry
of a tuple contains the coordinate nodes which are adjacent to the apex node j. This is
the compact form to write a covector, which was also used in, e.g., [20, 8].

Example 45. Figure 11 shows a sequence of basic covector graphs from the GFSTM
given by the non-regular triangulation on the left of Table 1 and the sign matrix

b
_l’_
|

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(2) (2020), #P2.51 27



Figure 11: A sequence of basic covector graphs produced by a run of Algorithm 4, see
Example 45. The first one is infeasible, the last one is feasible.

If we start Algorithm 5 with § = 2 then a possible sequence is given by the following
table.

0 | Cramer covector label | possible entering apex

21 C(2,{2}) =(2,2,2,2,2,2) y? 2,4,6

31C({6},{2,3}) =(3,3,3,3,3,123) y> 1,3,5

1{C({3,6},{1,2,3}) =(3,3,13,2,1,12) | 33 1,4
C({1,6},{1,2,3}) = (23,2,1,2,1,12) | o* 2,4
C({1,2},{1,2,3}) = (13,23,1,2,1,1) | ¢° 4
C({1,4},{1,2,3}) = (13,3,1,12,1,1) | ¢°

The last four covectors are depicted in Figure 11.

The non-regular subdivision is visualized in Figure 12 as a mixed subdivision via the
Cayley trick. The black lines form “tropical pseudohyperplanes” in the sense of [8, §5]
and [43, Theorem 4.2] which are dual to the mixed subdivision. The red points mark the
cells which correspond to the basic covector graphs shown in Figure 11.

Example 46. Furthermore, we demonstrate a run of Algorithm 5 on the GFSTM given
by the non-regular triangulation 7 on the right of Table 1 and the sign matrix

-+ + +
+ - 4+ +
+ + - +
+ + 4+ -

We start the algorithm with 0 = 1. The maximal covectors in the contractions are found
by removing the nodes in [d] \ (D U {d}) and taking only those resulting graphs without
isolated apex nodes.

The only covector in 7|y is (1,1,1,1). It is a totally infeasible basic covector and,
with the new 0 = 2, we construct the basic covector C({1},{1,2}). The list of maximal
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Figure 12: The non-regular subdivision from Example 45 represented as mixed subdivision
of 6 - Ay which is possible through the Cayley trick. The black lines are tropical pseudo-
hyperplanes in the sense of [43, Theorem 4.2]. The red intersection points correspond to
basic covectors. This figure is basically the same as [40, Figure 3].

covectors in the contraction T|({1}u{2}) is
(1,12,1,1),(12,2,2,2),(1,2,12,1),(1,2,2,12) .

So, the next basic covector is (12,2,2,2). It is already totally infeasible and no call to
FINDEXTREME is necessary. With the new 0 = 4, we get C({1, 2}, {1,2,4}), which yields
the covector (14,24,4,4).

Finally, the algorithm results in the totally infeasible basic covector C({1,2,4},[4]).
The just constructed sequence of basic covector graphs is depicted in Figure 13.

4 Signed tropical matroids

We considered a special class of signed tropical matroids to describe the algorithm in the
previous section. Now, we introduce general signed tropical matroids. This relies on the
notion of polyhedral subdivisions. We give a short introduction to the necessary polyhedral
notions in the Appendix B.1 and refer to [68, 19] for further reading.
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(1, 123, 1, 1, 1, 1)

(1, 23, 1, 12, 1, 1) 21234’ f§34 27 i;
(123, 2, 1, 2, 1, 1) (1’ o 1oa K
(23, 2, 1, 2, 1, 12 (1’ 5 s 1234)
(23, 2, 1, 2, 12, 2 (1’ 0 0 14)
(13, 23, 1, 2, 1, 1) (15 S 24)
(13, 3, 1, 12, 1, 1) (13’ o 5 34)
(23, 2, 13, 2, 2 2 (14’ o 31 0
(2, 2, 123, 2, 2, 2 (125 5 5 21)
(3, 2, 13, 2, 12, 2 03 by ) 231)
3, 2, 13, 2, 1, 12 (132 - ) "
(3, 23, 13, 2, 1, 1) (i C o 3 K
(3, 3, 13, 12, 1, 1) a C s 3 31)
(3, 3, 3, 123, 1, 1) (1’ b 3 134)
(3, 3, 3 23 1, 12 (1’ or 13 2
(3, 3, 3, 23 13, 2 (1’ or 131 5
(3, 23, 3, 2 1, 12 (1’ 5 193 14)
(3, 23, 3, 2 13, 2 (1’ 5 03 124)
(3, 2, 3, 2 123, 2 (15 5 534 2
(3, 3, 3 3 3 123 (12& 5 e 5
(3, 3, 3, 3 13, 12 o :

Table 1: Non-regular triangulations of A5 x Ay and Az x Ajg from [42, 19]. The rows
contain the covectors of the maximal simplices. The jth entry of a tuple contains the
coordinate nodes which are adjacent to the apex node j.

For a matrix A € R™*¢ it was shown in [20, Theorem 1] that the collection of covectors
is in bijection with the cells in the regular subdivision of A,,_; x Ay_; with height function
A. This was generalized in [27] and in [45] to matrices with oo entries. For those, the
collection of covectors defines a regular subdivision of a subpolytope of A,,_1 x Ay_q,
see [45, Corollary 34].

While regular subdivisions are not characterized by purely combinatorial axioms, one
can use the defining properties of a polyhedral complex to describe not necessarily regular
subdivisions. Hence, we start with a not necessarily regular subdivision of a subpolytope
of A,_1 X Ay_1 and derive a signed tropical matroid from this. Note that non-regular
triangulations of A,_; x Ay exist if and only if (n — 2)(d — 2) > 4, see [19, Theorem
6.2.19].

4.1 Axiom systems

Let R be a subdivision of a subpolytope F of A,_1 x Agz_;. We identify subpolytopes
of A,_1 x Ay and therefore the cells in R with subgraphs of the complete bipartite
graph K, via the identification of the vertex (e;,e;) with the edge (4, ) € [d] x [n]. In
this spirit, we define conv(G) = conv {(e;,e;) | (i,7) € G} for each subgraph G of Kg,,.
Since all these graphs share the same node set [d] U [n], we will often even identify them
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Figure 13: A sequence of basic covector graphs produced by a run of Algorithm 5, see
Example 46.

with their set of edges.

Let ¥ be a sign matrix (o;;) € {+,—, #}"*? for which 0;; = e if and only if (¢,5) ¢
F. Moreover, let S be the set of bipartite graphs without isolated nodes in [n], which
correspond to cells in ‘R.

We summarize the required properties which mostly are just adaptions of the definition
of a polyhedral subdivision, see [19, Definition 2.3.1].

Definition 47. A signed tropical matroid (STM) is a pair (S,) where S is a set of
subgraphs of K, and (0;;) = X is a matrix in {4, —, }"*%. It has an associated finity
graph F = |Jges G, which represents the union over all the edges occurring in the graphs
in S. Additionally, ¥ fulfills 0, = e < (i, j) ¢ F. We require:

1. No graph in S has an isolated node in [n].

2. If H is contained in S then so are all the subgraphs GG of H that do not have an
isolated node in [n] and for which conv(G) is a face of conv(H).

3. For each point = € conv(F) there is an H € S such that x € conv(H).

4. For all H and G in § with H # G, the intersection conv(H) N conv(G) is a face of
conv(H) and conv(G) or empty.

To emphasize the dependence on n and d we also say that (S, Y) is a signed tropical
(n,d)-matroid. We will often identify S with the subdivision corresponding to the set
of bipartite graphs. The bipartite graphs are the covector graphs or just covectors in
analogy with classical oriented matroids. An STM is realizable if it is induced by a matrix
A, which means that the covector graphs are generalized covector graphs in the sense of
Definition 5 or, equivalently, that the polyhedral subdivision corresponding to S is regular.
In this case, we will also use the notation S(A). Note that the collection of generalized
covectors graphs in the realizable case fulfills all the properties which are listed in the last
definition.

As in the realizable case, we consider the entries of X as signs on the edges; we call an
edge with + a positive edge and with — a negative edge. Apex nodes are the nodes in [n]
and coordinate nodes are those in [d].
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Remark 48. For each apex node j € [n], the set of covector graphs, in which j is only
incident with negative edges, and the set of covector graphs, in which j is only incident
with positive edges, form complementary pseudohalfspaces in the sense of [42, Definition
5.5.8].

Example 49. The three full-dimensional simplices in the regular subdivision of A; x A,
in Figure 14 correspond to the three trees on [2] L [3] with edge sets

{(1,1),(1,2),(1,3),(2,3) 1, {(1,1),(1,2),(2,2),(2,3)},{(1,1), (2, 1), (2,2), (2,3)} .

The vertex of A; x Ay with label (2,1) is hidden in the figure.

On the other hand, Figure 15 depicts a non-regular mixed subdivision of 4 - Az. By
the Cayley trick ([61, §1]), triangulations of A, ; X Ay ; are in bijection with fine
mixed subdivisions of nA,_;. In particular, the full-dimensional cells in the subdivision
in Figure 15 are in bijection with the full-dimensional cells in a subdivision of Az x Ag
and furthermore, the trees in an STM on [4] U [4].

(1,2)

(2,2)
(2,3)

Figure 14: A regular subdivision of A; x A,. The vertices are labeled by the corre-
sponding edges in Kj35. This picture was created with polymake [32].

Definition 50. An STM (S, ) is full if the finity graph is K4,,. In this case, ¥ contains
only — and +. For the realizable case, the definition means that all the entries of the
coefficient matrix are finite. The STM is generic if the subdivision is a triangulation or
equivalently by [19, Lemma 6.2.8], all the graphs are forests.

In Section 5, we describe a way to modify a given signed tropical matroid (S,Y) to
obtain a generic full signed tropical matroid (7,Z) which is trimmed in the sense of
Assumption 1.

In the generic full case, we have a particularly nice characterization of the bipartite
graphs which are trees and correspond to the maximal cells in the subdivision. Then
Definition 47 boils down to the conditions of [7, Proposition 7.2]. This was used for
introducing a GFSTM in Definition 12 and justifies the terminology.

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(2) (2020), #P2.51 32



Figure 15: A non-regular subdivision of Az x As. It is visualized as a non-regular mixed
subdivision of 4A3. This picture was created with the polymake extension tropmat by
Silke Horn [41].

4.2 Matroid operations and feasibility

The following operations are useful for inductive arguments and yield the polyhedral
methods to examine the boundary strata of the tropical projective space.

Analogously to classical oriented matroids one can define a tropical variant of the
operations deletion and contraction, like in [8]. In the following, let (S,X) be a signed
tropical (n, d)-matroid

For an apex node j € [n], the deletion S\; is the set of graphs which arise from the
graphs of § by deleting the node j and the incident edges. These graphs describe the cells
on the face {e, | £ € [n]\ j} X Ag1 of A1 x Ay 1. We delete the jth row in the sign
matrix. If (§,3) is induced by a signed system (A, ) then the operation corresponds to
deleting the jth row of A.

For a coordinate node i € [d], the contraction Sy; is the set of graphs which arise from
those graphs of § for which i is isolated by deleting the node i. These graphs describe
the cells on the face A,y x {e, | £ € [d]\ i} of A,_1 X Ay_1. We delete the ith column
in the sign matrix. If (S,%) is induced by a signed system (A,X) then the operation
corresponds to deleting the ith column of A.

By construction, a deletion and a contraction of an STM is again an STM.

Remark 51. Note that the formerly described operations are also related to classical
matroid operations since products of simplices are matroid polytopes in the classical
sense; see [33]. However, there is no direct translation and one should be careful not to
confuse the tropical with the classical operation.

For the contraction S\ py, where S is defined on [d] and D # @, we will also write
S|p-. In the realizable case, these are the covectors of the points with support D. We only
consider points in TA? = T, \ {(o0, ..., 00} which corresponds to D # @.

Lemma 52. For the finite matriv A € R™ %, the covector graphs in the contraction
S(A)|p for any non-empty D C [d] are exactly the generalized covectors of the points with
support D.
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Proof. Fix a point = € TA? with support D C [d] and let
w > 2-max (max {z, | ¢ €supp(z)},max{|a;| | (i,)) € [d] x [n]})

Then the generalized covector graph of x is the same as the proper covector graph of the
point z € R? with

x;  for i € supp(x)
Z; =
w else

The other inclusion follows by setting the coordinates of isolated coordinate nodes to oco.
O

Recall that a signed system (A, X)), with coefficient matrix A € T"X?  is feasible if and
only if there is a point z € TA? which fulfills the corresponding homogeneous tropical
inequality system. Otherwise, we call it infeasible.

With Lemma 52, this translates to the following for systems with finite coefficients.

Corollary 53. A signed system (A,X), with finite coefficients A € R"™4, is infeasible if
and only if every covector graph in every contraction is infeasible.

This motivates the definition of the feasibility of a full STM as generalization of the
feasibility of a tropical linear inequality system. A full STM (7, X) is feasible if there is
a contraction which contains a feasible covector graph, otherwise we call it infeasible.

We do not give the definition of feasibility for a general non-full STM, as a more
axiomatic approach for collections of generalized covectors would be necessary. Our sug-
gestion is the following: An STM is feasible if there is an extension that is feasible. For
this, it would be nice to show that this is indeed the case if and only if all extensions are
feasible.

5 Polyhedral constructions

In the last section, we introduced the concept of signed tropical matroids as a natural
generalization of tropical linear inequality systems. To make the algorithm developed
in Section 3 applicable to all signed tropical matroids, we provide the three concepts
refinement, extension and splitting. As infinite coordinates and genericity often impose
additional obstacles in tropical geometry, our techniques resemble those used in [4] and [43]

5.1 Refinement

The graphs in an STM (S, X) have a particularly simple form if S is a triangulation.
Recall from Definition 50 that, in this case, we call the STM generic and [19, Lemma
6.2.8] tells us that all the graphs are forests and, especially, that the maximal polytopes
in the subdivision are represented by trees. A method to construct a generic STM is by
refining our subdivision §. This means that we construct a triangulation 7 such that
each polytope in S is the union of simplices in 7. Hence, every covector graph of T is a
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forest and contained in a covector graph of S. This idea is implicitly used in [4] in the
perturbation of tropical linear inequality systems.

Since we want to preserve the feasibility of our system, we choose to refine our sub-
division with heights defining a lexicographic triangulation. By [19, Definition 4.3.8], the
lexicographic triangulation for a point configuration with & € N points is the regular
triangulation with heights 1); - ¢’ for i € [k] where (¢1,...,v) € {—, +}* is a sign vector
and c is a sufficiently big positive number.

Now, let the matrix (m;;) = M € R™? contain the heights for a lexicographic trian-
gulation of A,,_; x Ay_; for which we only require that the sign pattern of M is the
negative of the sign pattern of ¥ and that mj; = oo & 0j; = e.

By [19, Lemma 2.3.16 & Corollary 2.3.18], we obtain a refinement of S with respect
to M by taking the union of the subdivisions arising by restricting M to the cells of S.
Formally this means: Restricting M to the vertices of a cell C' in § induces a regular
subdivision of C' which we denote by C|3;. The union (J..g C|a of the simplices in each
triangulation C|y; is a triangulation of F which refines S.

In the realizable case, [19, Lemma 2.3.16] implies that the height matrix corresponding
to the refined subdivision is obtained by adding a small multiple of the perturbation matrix
M.

The refinement 7 of the subdivision S with the matrix M fulfills the following;:

Lemma 54. Let G be a maximal covector graph of S and G+, . .., Gy the mazximal covector
graphs of T contained in G. Then G s infeasible if and only if G, is infeasible for every
0 e [kl

Proof. If G is infeasible, there is an apex node which is only incident with negative edges.
Since each (G4 is a connected subgraph of GG without isolated nodes it also contains an
apex node which is only incident to negative edges. Hence, it is infeasible.

Now, let G be feasible. For the covector graph G we define the matrix M|q by replacing
every entry my; of M by oo for which (i, ) is not an edge of G. By construction, the
polytope in the subdivision S corresponding to the covector graph G is split up in those
polytopes whose corresponding graphs occur as maximal covector graphs in the covector
decomposition with respect to M|q. Since no apex node in G is only incident with negative
arcs, the signed system (M|, X) has the feasible point 0 by the choice of M. Then the
maximal covector graphs which contain the covector of 0 are feasible. This implies the
existence of a feasible covector. O

Figure 16: The perturbation of the signed system for the left picture yields the middle
one which locally looks like the right one. See Example 55.
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Example 55. Consider the signed system (A, ) with

0 0 0 + + -
A‘(o —2 o) and 2_(+ - +)
For a sufficiently big ¢ > 1 we construct the matrix
—ct - &
M = <—c4 ] _CG>

with the negative of the sign pattern of ¥. For the covector graph G of the point (0,2, 0)
on the left of Figure 17 this yields (with M|s as in the proof of Lemma 54)

2 3

1 1
—ec —ecC ec —c o cC
A4+e- M= (—864 GNP, —806) and  M|g = (—04 5 _Cﬁ) )

where € > 0 is sufficiently small. Figure 16 shows the original configuration for A, the
perturbed configuration for A + ¢ - M and the local configuration for M|g. The points
are u = (0,2,0), v = (e(® + ¢°),2 — e(c! + F),e(=c' + ), w = (ec*,2 — ec®,ec?),
V= (A +E —ct — b —ct + P) and w' = (ct, =5, P). Figure 17 depicts their covector
graphs. The left one is the covector graph of u, the middle one of v and v’, the right one
of w and w'.

Figure 17: The covector graph is replaced by two trees in the refinement.

We also apply the perturbation technique to get a description of a Cramer solution in
the non-generic case.

Lemma 56. For a finite matriv A € R™*? which is not necessarily generic, the Cramer
covector Ca(J, 1) is the union of all minimal matchings on (I '\ {i})U J for alli € I and
on IU(JU{j}) foralljen]\ J.

Proof. Let A be any matrix which induces a triangulation that refines the subdivision
induced by A in the sense of [19, Lemma 2.3.16]. Then there is a covector graph H with
respect to A, which contains G = C3(J, I).

By Proposition 4, each matching in H is a minimal matching. Since H contains
matchings on ([ \ {i})U J foralli e [ and I U (JU{j}) for all j € [n]\ J, it contains all
minimal matchings on these vertex sets by the same Proposition. Therefore, we have to
show that H = C4(J, I).
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Since G is connected, so is H, and we can apply Lemma 9 to construct a point x € R?
which has H as covector graph with respect to A.

Fix a coordinate node § € I. For any i € I\ {6}, the path from ¢ to i is the
symmetric sum of the perfect matchings in G on (/ \ {d}) U J and (I \ {i}) L J. With
Lemma 9, we obtain that z; — x5 is the difference of the values of the two matchings. As
these are minimal matchings, the values equal the determinants. This implies x; — x5 =
tdet (A y)) — tdet(Ayngsy))- As x is defined by its covector graph only up to addition
of multiples of 1, the claim follows. m

5.2 Extension from a subpolytope to A,,_1 X Ag_1

We introduce a construction which allows us to reduce the general case, where the finity
graph is a subgraph of K, to the complete bipartite graph. This is particularly impor-
tant as we define the algorithms in Section 3 only for a full STM. We give the justification
for why we do not lose generality, and provide technical details for later reductions. We
achieve this again by polyhedral means. The following technique was also applied to
tropical oriented matroids in [43].

Let F be a subpolytope of A,,_1 x Ay 1 and S a subdivision of F. An extension of
S is a subdivision 7 of A,_; x A,_; which coincides with § on F.

Placing triangulations provide a tool to construct an extension of a subdivision, see
[19, Lemma 4.3.2]. In particular, for each subdivision of a subpolytope of A, 1 X Ay g
there is always an extension. To resolve the e entries of the sign matrix, we just replace
them by +. We denote the modified sign matrix by =. Note that the (in)feasibility of the
covector graphs in § is preserved in T .

We summarize these considerations.

Proposition 57. The set of covectors in the STM defined by (S,%) is contained in the
set of covectors defined by (T,Z).

We study in more detail how an extension can be produced in the realizable case.

[19, Lemma 4.3.4] shows that a placing triangulation can be obtained by taking a
rapidly increasing height function. Namely, if there are £k < n - d entries with oo in
Ae T let Q= (Qy,...,Q) be a vector of “big” numbers. We require that

min ’

0
Q> Y agl and Qe > Y apl+ Y @ foralllek—1] . (3)

aji7é00 ajﬁéoo h=1

We will calculate with the entries of €2 just formally and denote the resulting matrix
by A(Q).
Remark 58. One can think of these €2, as artificial infinities. One approach to formalize
this is by successively adjoining elements to R. Here, the order extends the natural order
on R such that € is the biggest element in each extension step. In [4, §3.2], a similar
technique with “infinitely small” values is used to reduce the case with —oo to the finite
case.
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To show that the matrix A(f2) induces an extension of the subdivision of F by A,
we iteratively replace the oo entries by the entries of Q). Let A! be obtained from A by
replacing one oo entry, which belongs to the edge e, with a positive number €2; which
is bigger than the sum of the absolute values of the finite entries of A. Consider an
arbitrary maximal covector graph G with respect to A and let p be a perfect matching
on DUN C [d]U]n] in G. By Proposition 4, the matching p is minimal with respect
to the coefficients of A'. Hence, by definition of ;, the edge e cannot be contained in
p. Since this is true for any matching in G, again by Proposition 4, the graph G is also
a covector with respect to A'. By iteratively inserting €, s, ..., for the co entries,
this implies that the subdivision induced by A(2) extends the subdivision induced by A,
since a polyhedral complex is given by its maximal cells. Furthermore, if A induces a
triangulation, so does A(2).

We say that the signed system (A(f2),Z) extends the signed system (A, X).

Lemma 59. For the matriz A € T™X?, let (A(Q),Z) be an extension of the signed sys-

tem (A,X). For any x € TA?, the generalized covector graph Ga(z) is infeasible, if the
generalized covector graph G a)(x) is infeasible.

Proof. Within the proof, we denote A(f2) by (a;;) = A. Fix an arbitrary € TA?. If the
generalized covector graph G ;(z) is infeasible, there is a jy € [n], which is only incident
with negative edges in G 3(x). Let I be the set of coordinate nodes adjacent to jy. Since
the entries of A are finite, G'3(x) is a proper covector graph on the support of z. Hence,
using the definition of the covector graph, we see that x fulfills the inequalities

Qjoi + T < Gjor + T4 for all i € I and ¢ € supp(x) \ I .

Each entry a;,; with ¢ € I equals a;,; # oo because (jo, ) is negative. With a;,¢ < aj,¢ for
¢ € supp(z) \ I, we obtain

Qjoi + Ti < Qoo + ¢ for all ¢ € supp(x) \ {i} .

This implies that G4(x) is infeasible. O

]

g%

Q
b
—
2

Figure 18: Three covector graphs for Example 60.
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Example 60. Consider the signed systems (A4, ¥) and (A4, =) with

0 0 oo — 4+ o o

1 1 oo o + — e o

A oo 1 0 0 ’ X = o + - —
0O 0 0 1 + - + +

0 0 € € - 4+ 4+ +

o AR R
19 1 0 0 ’ -+ + - -
0O 0 0 1 + - + +

They yield the Cramer solutions s = Ca([3],[4]) = (00,00,1,1) and r = C3([3],[4]) =
(241,91 4+ 1,1,1). The corresponding covector graphs are left and right in Figure 18.
The relation between the left and middle covector illustrates Lemma 59.

5.3 Splitting apex nodes

To apply the algorithms that will be presented in Section 3 and 6 to an STM (A, X), we
require that each row of ¥ contains at most one negative entry. We call this property
trimmed.

In the realizable case, this can be obtained very easily. Through the conversion

CO<@6g & (o< Vlem]) (4)
Lelm]
for arbitrary cg, cy, . . ., ¢ € T each tropical inequality system is equivalent to a system

for which the minimum on the bigger side of the new inequalities contains only one term.
Here, the number of inequalities is increased by a factor which is at most the number of
coordinates, see Figure 19.

(<]

Figure 19: An apex node whose corresponding row in the sign matrix has three negative
entries is replaced by three apex nodes.

This splitting of apex nodes was similarly used in [52, §7.4].

For the non-realizable case, we use a more complicated polyhedral construction, which
uses local changes. In two steps, we obtain a bigger STM which mimics a splitting of the
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inequalities in its covector graphs. A similar technique was used in [43, §7.2]. We know
how to extend a non-full STM, by Subsection 5.2, and can assume that the STM is full.
Let k£ > 1 entries of the nth row of ¥ be —.
Define the projection 7: R*71** x R? — R” x R? as

k—1
(y17 e Yn—1Yns - - oy Yndk—15 215 - - "Zd) = (ylv ey Yn—1, § Yn+e, 21,5 - - - 7Zd) .
/=0

This defines a surjective mapping from A, 1,41 X Az onto A, ; X Ay and fur-
thermore, a surjective mapping from the subgraphs of K, 15— to the subgraphs of K ,,.

Lemma 61. The preimage under w of a simplex in A,_1 X Ag_1, given by the bipartite
graph G, is G U {(i,n+ ) | (i,n) € G,{ € [k —1]}.

Proof. Let H be any spanning subgraph of Ky, r—1. This defines a subpolytope of
A,_14k—1 X Ag_1. A convex combination of its vertices is given by z(m)eH Nij(€j,€)
with Z(m)eH Aij = 1. With the linearity of 7, the projection of this point is

Yo Agmllepe))+ D Aigmllege))

(i,5)€H, j<n—1 (i,5)€H,j2n

which evaluates to

Z )\i7j(6j, 61') + Z )\i,j(ena ei) )

(i,)€H,j<n—1 (i,7)EH,j>n

Such a point lies in conv { (e;,e;) | (i,7) € G} if and only if, for A;; # 0,

(i,j)e G forj<n—1
(i,n)e G forj>n—1.

(z’,j)eH<:>{

With the linearity of 7, the claim follows. O

Fix an arbitrary € > 0 and let 7y,..., 7 be the indices where the nth row of ¥ is '—’.
We define the matrix (m;;) = M € RMHh=Lxd by
e forj=n,i=1,
mjz- =
0 else
We refine the subdivision of An_lik_l X Ay 1, which we just constructed, with this
matrix M to obtain a subdivision S.
Additionally, we replace the nth row of ¥ with k copies of this row, where we replace
all the — entries in every row j for j > n —1 by + except for (j,4;_(,—1)), where we keep
the —.

Finally, the following is similar to Lemma 54 and justifies the construction. Let (S, )

be the original and (S, 3) the modified STM.
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Proposition 62. Let G be a mazimal covector graph of S and Gh, ..., Gy, the mazimal
covector graphs of S which is mapped to G by w. Then G is infeasible if and only if Gy is
infeasible for every ( € [k].

Proof. Let G be the covector graph from Lemma 61 which is obtained by adding k copies
of the apex node n. We define the matrix M |5 by replacing every entry mj; of M by oo

for which (4, j) is not an edge of G.

By construction, G4, ..., G, are exactly the maximal covector graphs with respect to
Since feasibility is a property which can be checked independently for all apex nodes,
it suffices to consider the apex node n in G resp. n,...,n+k—1in Gy,...,G,,.

Hence, the rows n,...,n+k —1 of M|5 are, up to reordering of columns, of the form

0 ¢ el0 0

e . ¢ 0 0

e . ¢l]0 0

€ e 010 0

where each 0 entry in the left part of the matrix is assigned a — in S

If GG is infeasible, the right part of the matrix does not contain any columns and the
corresponding inequality system is infeasible.

Otherwise, 0 is a feasible point. Therefore, at least one of the covectors G, ..., G, is
feasible. O

In this way, we can construct a signed tropical matroid (§ , i\]) such that the number
of apex nodes is bounded by n - d and every row of ¥ contains exactly one negative entry.
In the realizable case, this translates to the following.

Corollary 63. Let I C N be a finite index set, by,b; € Ty fori € I and € > 0 an
arbitrary positive number. Then by < @, bi if and only if by & Dy 14y (bi +€) < by for
all ¢ € 1.

Example 64. The left picture of Figure 20 visualizes the inequality x; < x9 @ x3 where
again the infeasible region is marked. The middle one depicts the replacement by the two
inequalities 1 @ (e ®x3) < x3 and x1 ® (¢ © z3) < 75 as in Corollary 63. Finally, the right
one illustrates the conversion from Equation 4. The resulting inequalities are x; < x5 and
T < T3.

6 Feasibility of signed systems

We developed an algorithm to examine if a signed tropical matroid contains a feasible
covector. The clearest form of the algorithm is given in Section 3 for a trimmed GFSTM.
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(0,0,0)) | |

Figure 20: Starting from the left depiction, the middle one illustrates the construction of
Corollary 63 and the right one illustrates Equation 4 applied to the left configuration, see
Example 64.

We saw in Section 5 that each STM can be transformed into a trimmed GFSTM with the
same feasibility status.

In this section, we demonstrate that the modifications are not necessary under the
assumption of realizability. Furthermore, we derive a stronger upper bound on the runtime
of the algorithm. As the algorithm terminates with an arbitrary solution, not necessarily
the one with maximal support, we discuss how this can be determined in Appendix C.
There, we also relate the outcome of the algorithm to the associated mean payoff game
as explained in Appendix A.3.

In this section we assume that (A,>) is a trimmed signed system. We can always
transform a general signed system to a trimmed one with Equation 4. Note that this is
not a restriction on the corresponding inequality system but merely a requirement on the
representation.

6.1 Solving general signed systems

The part in Algorithm 5, where the data of the STM is invoked, is the computation
of a Cramer covector. For a general non-full STM, the Cramer covectors can be quite
degenerated as one can see in Figure 18. However, Proposition 70 will ensure that it
carries all the necessary information. While we invoked an oracle based on the existence
of a Cramer covector following from Proposition 19 in the non-realizable case, we can
explicitly determine a Cramer covector as the covector graph of a Cramer solution (2) in
the realizable case.

Remark 65. For the realizable case, it is interesting to know the complexity of the com-
putation of the Cramer covectors. The Cramer solution can be computed in O(d*) by
[3, Remark 8.2]. One derives the covector by evaluating the minimum in each row which
needs O(dn) steps. Note that not all the edges of the covector graph are needed and there-
fore, this computation could be reduced. Subsuming, a Cramer covector C4(N, (DU{d}))
can be computed in O(d® + dn).

Furthermore, the role of a “totally infeasible” covector is not so clear as Lemma 17
shows the infeasibility implication only under the condition, that the STM is generic and
full. However, we will see that this termination criterion can be replaced by a similar
condition. Note that we modify the iteration slightly in the spirit of Remark 39. We
continue the iteration until no node in D is incident with a negative leaf.
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Again, we start with an element § € [d], D = @ and N = &. As long as there is an
apex node in [n]\ IV of degree 1 in y incident to D via a negative edge this apex enters the
basis N and the apex of the same shape is removed from N. Note that in the non-generic
case there can be non-basic apex nodes of degree > 2. However, since we assume that the
STM is trimmed they cannot be incident with more than one negative edge. After this
iteration two cases can occur. If the result is already feasible, we terminate and return this
feasible point. Otherwise, there is still an apex node of degree 1 incident with a negative
edge. By construction, it cannot be adjacent to D and hence it is adjacent to o. If the
Cramer covector is already defined on the whole of [d] this yields a point which certifies
infeasibility. If this is not the case, we can add 6 to D and obtain a covector graph which
is defined on a bigger set of coordinates. Due to infinite entries of A, its coordinates in
D U {6} can be infinite, though.

Remark 66. An alternative way to start the algorithm in the realizable case is by adding
d inequalities of the form x; > M; for sufficiently small numbers M, ..., My € R Here,
one can pick numbers with are smaller than d times the minimal entries of A. The
intersection if these special inequalities also yield a starting basis.

To deduce the correctness of Algorithm 6, we relate the sequence of points in the
iteration in the non-generic non-full situation with a run of Algorithm 5.

6.2 Correctness and implications of the algorithm

To show the correctness of Algorithm 6, we reduce it to the correctness for full generic

signed systems by exploiting the techniques established in Section 5. For this, fix an

arbitrary trimmed signed system (A, X)) and subsets J C [n] and I C [d] with |J| = |I|—1.
Let (A(Q2),Z) be an extension of (A,Y) in the sense of Subsection 5.2.

Lemma 67. Each apex node of degree 1 in Ca(J, 1) also has degree 1 in Caqy(J, 1) and
15 incident with the same coordinate node.

Proof. Let (i,7) be an edge in Co(N,D U {6}) so that j has degree 1. For all ¢ € I,
the choice of ) in Equation 3 implies that tdet(A(€2) s\ () either equals tdet(Aj o))
or it contains an €2 summand and tdet(A; ) = 0o. The definition of a generalized
covector graph yields aj; < oo and tdet(A (1)) < oo. Hence, aj; + tdet(A(Q)n i) is
the minimum in row j and (¢, j) € Caq)(N, D U {6}). O

Example 68. Lemma 67 is illustrated in Figure 18. The covectors on the left and on the
right both contain the edge (3,4).

—

Let (A(€2), =) by a refinement of the signed system (A(€2),=Z) in the sense of Subsec-
tion 5.1.

Lemma 69. The covector graph Caq)(J,I) contains the covector graph C@(J, I). Fur-
thermore, each apex node of degree 1 in Caqy(J, 1) also has degree 1 in CA/(E)(J’ I) and is
incident with the same coordinate node.
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Algorithm 6 Determine the feasibility of a signed system

Input: A signed system (A, X) so that each row of ¥ contains at most one — entry.
Output: A feasible point or a point which guarantees the infeasibility of the signed
system.
1: procedure FINDWITNESS((A, X))
2: d < an element of [d]
3: D+ 3 N<+go
£y CalN, (DU{o})
5: while TRUE do
6 while there is a non-basic apex node of degree 1 in y incident to D via a
negative edge do

7: r <—the apex fulfilling the while-condition

8: p <basic apex of y of the same shape as r > p is an element of N.
9: N+ N\ {p}u{r}

10: y < C4(N,(DU{6}))

11: end while D> at this point, § is the only coordinate node which can be

incident with an apex node of degree 1 via a negative edge

12: if 0 is incident with an apex node of degree 1 via a negative edge then

13: if |D|=d—1 then

14: return “infeasible”, A[N|(D U {d})]

15: else

16: j <—non-basic apex of degree 1 incident with ¢ via a negative edge

17: N+ NU{j}

18: D+ DuU{d}

19: d < node in [d] \ D.
20: y < Ca(N,(DU{d}))
21: end if
22: else
23: return “feasible”, A[N|(D U {6})]
24: end if

25: end while
26: end procedure
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Proof. The containment follows from Lemma 56. The fact that C—= A(Q)(J, I) is a spanning

tree implies the second claim. O

Combining these two lemmata yields the desired relation between the covector in the
original and the modified signed system.

Proposition 70. Each apex node of degree 1 in Ca(J,I) also has degree 1 in C (J I)
and is incident with the same coordinate node.

Proof. By Lemma 67, the edge is also an edge of C4(q)(J, I). Furthermore, by Lemma 69,
it is an edge of C (J I). O

Now, we gathered the necessary tools to prove termination and correctness.

Theorem 71. Algorithm 6 computes a covector graph, which certifies the feasibility or
infeasibility of the signed system (A,3).

Proof. Fix a § € [d] and a subset D C [d] \ {d}. Assume that N!' C [n] is a subset of
the apex nodes for which C (N 1. D U {d}) is a basic covector (whlch is the case for

D=N=2). Let k € Nso that N1 N2 ... NF¥is the sequence of the set N in Line 9
for the first k iterations of the while—loop starting in Line 6, beginning with N*. Then for
all £ € [k — 1] there are ¢, p* € [n] so that N1 = N¢\ {p‘} U {r‘}.

By the iteration condition of the while-loop in Line 6, the apex node r* is not
in N, it is of degree 1, and it is incident with a negative edge (i*,7¢) in C4(N*, D U
{6}). Proposition 70 implies that r* also has degree 1 and is incident with (i, %) in
C/\(NZJrl D U {6}). Now, Corollary 32 implies that CA/(Q\)(NZH,D U {d}) is a basic
covector if so is CA/(Q\)(NK D U {6}), since p is chosen just to match the shape of r‘,
independent of the covector graph.

Hence by induction, C (N £, D U {6}) is a basic covector for all £ € [k]. By The-

orem 38 and Remark 39, there is an h € N so that in C (Nh D U {6}) no non-basic

apex node is incident with D via a negative edge. Proposmon 70 yields that no non-basic
apex node of degree 1 is of degree 1 in C4(N", D U {6}). Therefore, this covector graph
is either feasible, which means that we are finished, or ¢ is incident with an apex node j
of degree 1 via a negative edge. In the latter case, again with Proposition 70, this also
holds in C (Nh D uU{é}).

If Du {(5} [d], then C (Nh D U {0}) is totally infeasible. By Lemma 17, all
covector graphs in all contractlons for (A/(ﬁ), E) are infeasible. Combining Lemma 54 and

Lemma 59 implies the infeasibility of the signed system (A, X).
Otherwise, for any ¢’ € [d]\ (DU{¢}), the Cramer covector Cm(Nh u{j},Du{é}tu

{¢'}) is the basic covector BA(Q)(Nh U{j}t, DU{é},d’) and we can continue the iteration
of the while-loop in Line 5. The termination is guaranteed as D grows in each iteration
of this while-loop. O

Corollary 72. The following statements are equivalent:
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) is feasible.
b) (A(Q),Z) is feasible.
)

18 feasible.

Proof. The equivalence of all statements follows from the equivalence of the feasibility of
(A,3) and (A/(a), Z). Now, if (A, X) is feasible, there is a point = € TA? so that G 4(z)
is feasible. By Lemma 59, G 4(q)(x) is feasible as well. Lemma 54 implies that (A/(a), =)
contains a feasible covector. If (A,Y) is infeasible, Algorithm 6 implicitly computes a

—_— —

totally infeasible covector graph in (A(2),=Z). That ensures the infeasibility of (A(f2),Z).
O]

Example 73. Consider the signed system (A, ) with

0 1 1 0 + - + +
oo 0 0 oo e + — o
oo 4 2 oo — 4+ e
A=11 -5 oo 0 and Y=|— + e -+
4 0 -7 3 + 4+ + -
0 oo =9 o + o — e
0 o0 oo 3 L e e —

Note that the last two rows are obtained by splitting the inequality z; < (=9) ® x3 @
3® x4 into 21 < (—9) ©® 23 and 1 < 3 © 24.

We want to execute Algorithm 6 for (A, ) and start with § = 2. The iterations are
shown in the table. We choose j = 1 as first entering apex.

0 | Cramer solution violated inequalities
2 | A[@]{2}] = (00,0, 00, 0) j=13
1| A{1}{1,2}] = (1,0, 00, 00) r=3
A[{3}{1,2}] = (4, 00, 00,00) j=4
31 A[{3,4}{1,2,3}] = (—3,3,5,00) j=6
4| A[{3,4,6}|{1,2,3,4}] = (5,2, 4, —4)

The final result (—5,2,4, —4) is a feasible point for the signed system.

6.3 Refined analysis of the runtime

For the abstract setting in Section 3, we gave only a rough upper bound on the number of
iterations. For the realizable case, we obtain a better bound by combining Lemma 11 with
the following Lemma. We show that Algorithm 6 is pseudopolynomial and only depends
on the combinatorial structure of a triangulation of A, _; x Ag_;.
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Lemma 74. Let 2° € T, such that y* is the covector graph of x*, which can be con-

min

structed from A by Lemma 9. For each { € [k], we get the inequalities
R foralli e (DU{d}) .

7
Proof. Lemma 9 allows us to express xf‘l — xf;_l resp. xt —
from d to i in y*~! resp. vy, with the weights given by A.
For each 7 in the connected component C*~1 of § in y*~! —e’~!, there is exactly one path
from § to i and it is the same in y*~' and y¢. Therefore, we obtain z! ¢

r§ as a sum along the path

i = xﬁ_l <zt —ab

Now, let i be a node in [d] \ C*~1. Then the path from § to 4 in y*~! contains e‘~! and
the one in 3 contains f*. Denote the paths by p~! and p’. Their symmetric sum is a
subgraph of y*~' 4 f¢ and is a union of cycles. Since y*~! is a tree, y*~' + f* contains only
the elementary cycle formed by f¢. It decomposes into two matchings o and p; where
one of them, without loss of generality pg, contains both the edges e/~! and f’ by the
comparability condition in Definition 12.

In the formula for Lemma 9, odd edges ge;; a pos;tive sign and even edges a negative
—1 —1

sign. Furthermore, we see that (zf — 2%) — (z;~' — 25~") is given by the difference of the

sums over the two matchings 119 and j;. By Lemma 28, f¢ is odd in y*. This implies
¢

(xf —af) — (@ =2 ) = > a— Y ay

(j:i)eﬂo (jvi)e.u‘l
Finally, Proposition 4 yields that the difference Z( ii)epo @i — Z( ji)em (i 18 positive, since
p1 is contained in the covector graph v’ and hence minimal. O

Let A be any matrix which induces the same triangulation as A/(ﬁ) Recall the
sequence N', N2 ... N" from the proof of Theorem 71. Then C;(N',D U {&}),...,
Ci(N" DU{d}) is a sequence of basic covector graphs. With Corollary 32, we can apply
Lemma 74 to the associated points A[NY|D U {6}],..., A[N*|D U {6}]. Let z*,...,2" be
the representatives of this sequence modulo R-1 with z§ = 0. In this way, for all £ € [h—1]
this yields the inequalities

2E < for alli € (DU {d}) ,

7

where at least one inequality is strict for each .

If A is an integer matrix, then the points 2’ have only integer entries. Hence, for all
¢ € [h — 1], the difference 2T! — 2 is a non-negative integer vector with at least one
non-zero entry. We deduce Zie(DU{é})(zih -2 > h.

Furthermore, defining w = max{|a;;| | (¢,j) € [d] x [n]}, Lemma 11 yields the in-
equality

D =)= Yl G-t )<

1e(DU{é}) ie(DU{é})

Sk Y s 20d 2 w=4ddw .
1€(DU{d}) ie(DU{8})

We conclude the following.
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Theorem 75. The mazimal number of iterations h of the while loop in Line 6 of Algo-
rithm 6 fulfills h < 4dw.

We deduce the following by combining the theorem with Remark 65 and the obser-
vation that D is increased by one element at each step of the while-loop in Line 65 of
Algorithm 6.

Corollary 76. Algorithm 6 determines a certificate of feasibility or infeasibility of a
tropical linear inequality system in O(d*(n + d?*)w) iterations.

Note that a similar idea is used to give bounds on the runtime in [10, §5.2] by using
28, Theorem 3.3].

To examine the parameter w further, recall that each matrix in R"*¢ defines a height
function for a regular subdivision of A,,_; x Ay 4.

The set of all matrices which induce the same regular subdivision defines an open
polyhedral cone. The collection of these cones is a complete fan, the secondary fan. For
an introduction to secondary fans see [19, §5].

Since the secondary fan is the normal fan of the secondary polytope, see [34, §7] or
[19, §5], which is a rational polytope for A,_; x A1, every cone contains a rational
and, hence, an integer vector.

Inspired by Theorem 75, we leave it as future work to give bounds on the minimal
integer vectors in the cones of the secondary fan of A,,_; x Agz_;. This might reveal either
a good upper bound on the runtime of Algorithm 6 or special classes of instances which
are particularly hard. Furthermore, it is interesting to consider the cones in the secondary
fan which contain the weight functions describing parity games, see Subsection A.3.

6.4 Further questions

In the last section, we came up with an upper bound for the number of iterations in
terms of integer vectors in the secondary fan of A,,_; x Ag_;. This raises the question
to determine lower or upper bounds on the maximal entry of minimal representatives in
each cone of the secondary fan; such a study was started in [9]. Upper bounds that are
polynomial in n and d would imply a polynomial runtime of Algorithm 6. In general,
we propose the length of such a shortest vector as complexity measure for subdivisions.
In this sense, our analysis connects the geometric complexity with the algorithmic com-
plexity. Considering the secondary fan of A, ; x Ay ; as an analogue of the space of
all realizations of a tropical oriented matroids, cf. [57], it is an interesting question to
examine the complexity to determine a minimal realization. The latter problem could
be solved through an adaptation of the famous algorithm in [50] for the shortest vector
problem.

To justify this complexity measure, one should be able to show that cones without
‘short’ integer vectors correspond to hard instances for parity games, respectively the
simplex method provided e.g. in [29].

It needs to be clarified how the complexity of Algorithm 5 can be measured for non-
regular subdivisions. Considering non-regular subdivisions which can be constructed from
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a regular subdivision by a finite sequence of flips, one can ask for the running time of the
algorithm in terms of a weight matrix of the regular subdivision and the encoding of the
flips. This gives a notion of the complexity of a subdivision in the non-regular case.

Furthermore, we remark that the algorithm defines a direction on the cells of the
subdivision of a product of two simplices. This orientation is independent of an objective
vector and also defined for non-regular subdivisions. It would be interesting to see how
the orientation provides a tool to study the topological and geometric properties of this
polyhedral complex in a similar vein as a discrete Morse function.

Finally, one should study the similarity between the presented algorithm and the
tropicalized simplex method in [5]. This allows one to exploit the combinatorics of a
product of two simplices to study the complexity of the classical simplex method. In this
vein, we wonder if there is a direct connection between the diameter of a polytope and
the length of integer vectors in cones of the secondary fan of A,,_; x Ag_1.
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A Related algorithmic problems

The feasibility problem for tropical linear inequality systems is the problem of finding
a feasible point of the system. We highlight the relation of this problem to scheduling,
mean payoff games and classical linear programming.

The complexity of the decision problems for scheduling AND-OR-networks with arbi-
trary coefficients and mean payoff games is known to be in NP N co-NP and even more in
UP N co-UP, see [46, 69, 24, 52], but there is no polynomial time algorithm known. This
was also unclear for classical linear programming while the containment in the complexity
class NP N co-NP follows easily from linear programming duality. Finally, Khachiyan [48]
and, not long after, also Karmarkar [47] provided polynomial-time algorithms. However,
it is still unclear if there is a pivoting rule for the simplex method for which it runs in
weakly or even strongly polynomial time, see, e. g., [18, 12, 49]. The close relations be-
tween tropical linear programming, mean payoff games and classical linear programming,
in particular the simplex method, are demonstrated in [62, 2, 5, 4].

A.1 The simplex method

In [5], it was shown how a run of the classical simplex method translates to a run of a
tropical simplex method under some technical assumptions on the input and the require-
ment that the pivoting rule is combinatorial. This led to a new algorithm for solving mean
payoff games presented in [4] which is polynomial time equivalent to the simplex method
with the given pivoting rule. A reduction from mean payoff games to linear programming
was already given in [62]. However, this approach requires exponentially large coefficients
which results in a pseudopolynomial running time due to cost of the arithmetic opera-
tions. This is resolved in the approach in [5] by considering only the signs determining
the pivoting which can be computed directly from the input data.

We give a short introduction to the classical simplex method [18]. We present it
as an algorithm to determine the feasibility of a classical linear inequality system. Our
exposition is inspired by [53, §4.5].

It is important to observe the similarity between this variant of the simplex method
and the algorithms in Section 3, in particular Algorithm 2. To obtain that algorithm as a
tropicalization of the following variant of the simplex method, one would have to ensure
that x > 0.

The feasibility problem is the task to find an = € R% which fulfills the system

A-x<b for Ae R4 beR" .

The following is meant to highlight that we can consider it as a method which traverses
the vertex-edge graph of the affine hyperplane arrangement given by the equations a;-x =
b; for j € [n]. Here, a; is the jth row of A. At each vertex, one is given a rule for choosing
the consecutive vertex in a way that guarantees termination.

We assume that the system (A|b) is generic by which we mean that the d-sets J C
[n] are in bijection with the points z which fulfill the subsystem A;z = b; with row

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(2) (2020), #P2.51 54



indices in J. Start with an arbitrary d-set Jy from [n] and define z° := Ajolb Jo- Then
[n] is partitioned into three sets, namely Jy, K = {j € [n] | a;2° < b;} and K; =
{j €n]| a;z° > b;}. The set Jy denotes the basic variables and [n] \ Jo = K U K the
non-basic variables.

Fix an arbitrary vector 4 € R" with 4 > 0 whose support is Jy, e.g. the characteristic
vector of Jy and define

c=A"y eR? .
In this way, we obtain a primal linear program (P) and its dual linear program (D)

maxc' x minb'y

P D
(P) Ar < b (D) Aly=c, y=0
By construction, 3" is a feasible point of the dual linear program. Therefore, we can apply
“Phase II” of the simplex method as we are already equipped with a feasible point. We
want to consider it as a feasibility algorithm for (P). In particular, we want to reach a
point x, where K, = &.

First, pick an index 1y € K;. We want to change 2" such that the index rq of the
violated inequality enters the basis. This means that ry becomes a basic variable.

((Ag "))

Define
((AJOT)ilaTOT% -~ ‘e [d]} ’

and A\g as the value of this minimum. In the generic case, this minimum is attained at
most once. If this minimum does not exist, the inequality system of (P) is infeasible.
Note that the existence of this minimum is independent of the choice of ¢ since the
occurring numerators are the positive components of y°. Let jy be the ip-th element of .J;
considered as an ordered index tuple for the rows of A;,. Then j, is the leaving variable
and J; = Jy \ {jo} U {ro} becomes the new basis. Now, we can restart the iteration.
However, we keep ¢ fixed and for £ > 1 choose 3° iteratively in the following way:

= ((A;,")tc); for je J,
! 0 for j € [n]\ J; .

19 = arg min {

(5)

Theorem 77. The vector y' € R fulfills y* >0, c= ATy' and bTy' < b™°.
Proof. Consider the linear equality system
Cc = AJQUTQTZ .

For z411 = 0 we get the solution yj = (A 7o)~ 'e and for z;, = 0 we obtain the solution
yh = (A, ")~'e (up to relabeling of the coordinates).

ot
t
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Furthermore, by multiplying both sides with A}OI from the left, we obtain

1 0 0
0O . 0 0 -
. . (AJOT)_laroT TR = (AJ0T> lc .
0 0
o --- 0 1
This is equivalent to
Al = ((AJOT)_IC) — Zd+1 ((AJOT)_ICLTOT) : (6)

Choosing zg441 as g, we obtain z;, = 0 and hence, y}l = Z[4)\ip- Moreover, Equation 6
implies y* > 0 and ¢ = A"y'. Finally, we obtain the difference

0 (A, )1 eg, T 0
bT'yl—bT'yOZbJoUmT((yjo o ){3 ) ' )) - <y6]0>)

This simplifies to
)‘0 (bTO - bJoT(AJOT)il : aroT)

With 2° = A7 by, ar, - 2° > by, and A > 0, the claim follows. O

If we continue the iteration with y! we obtain a sequence of d-subsets Jy, Ji, ..., Jom, of
[n]. The sets in this sequence are pairwise disjoint since the sequence of the values b' - y/*,
which is defined by .J, via Equation 5, is strictly decreasing. This implies the termination
of the iteration as there are only finitely many subsets of [n].

Remark 78. We could change y* after each iteration in a way that preserves the objective
function value b" - 3* and the support. This would require a new computation of c. All
the statements, in particular the ones concerning the termination of the algorithm, would
remain valid.

A.2 Scheduling with AND-OR-networks

Scheduling is concerned with the task of putting several jobs into an order in which
they are worked through such that certain constraints are fulfilled. We give a short
introduction to a special class of scheduling problems, namely AND-OR-networks. They
occur in project management with particular temporal dependencies and can be used to
model resource constraints. They were extensively studied in, e.g., [52]. In particular,
that work contains a formulation of the precedence relations for the starting times with
min- and max-inequalities. It also shows the polynomial time equivalence with a decision
problem associated to a mean payoff game. We display a tropical geometric relation
between the formulation of the set of vectors of starting times and the feasible region of
a suitable tropical signed system. For other instances of scheduling problems which can
be expressed in terms of tropical inequalities or equations see, e. g., [14, §1].

To explain an AND-OR-network we consider the planning of a project. The single
jobs depend on each other and are in some precedence relation. We assume that a started
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job may not be interrupted. If a job can only start if all its predecessor jobs are finished,
we call this an AND-constraint. If a job can start if at least one of its predecessors is
finished, we call this an OR-constraint.

In Figure 21, one can see the Gantt chart of an AND-constraint and of an OR-
constraint visualizing the dependence of the start and finish dates of jobs in these prede-
cessor relations. Here, the dashed line denotes the starting time of the next job which is
represented by the bottom bar, its predecessors forming the top three. The lengths of the
bars illustrate the processing times.

== -

Figure 21: Two types of constraints, OR left, AND right.

Notice that usually one requires the special starting condition that every job has to
begin after some given point in time. In our model, this is covered by the fact that
the expressions are additively homogeneous and hence, one can just mark one node and
dehomogenize with respect to this coordinate.

For a broader introduction of scheduling with AND-OR-constraints see [52]. We give
a formal definition to work with.

Definition 79. An AND-OR-network is given by a set of states V' and a set of waiting
conditions U. The waiting conditions are pairs (X, J) with J CV and X C V \ {J}.

The pair (V,U) can be construed to be a directed bipartite graph B with node set
V U U. Each waiting condition (X, J) is expressed by the arcs (z, (X, J)) for € X and
(X, J),7) for j € J. Because of X C V'\ {J}, for each pair v € V and u € U there exists
at most one of the arcs (u,v) or (v,u). We denote the arc set by A.

Furthermore, we have a weight function w: A — Q on the arcs to encode processing
times, or time lags if the weight is negative.

Then we can describe the precedence constraints for the vector of starting times t €
TYYY by the inequalities

ty = (mz)xécA(tu + w(u,v)) forallveV (AND)

ty, = (m)inA(tv + w(v,u)) forallu e U (OR) .
v,u)e

(7)

The max-inequalities correspond to AND-constraints and the min-inequalities to OR-
constraints.

We can reformulate the first inequality in (7) by splitting the maximization into several
inequalities to obtain

(ty + w(u,v)) for all (u,v) € AwithueUwveV  (8a)

min (¢, + w(v,u)) forallu e U . (8b)
(v,u)eA

v

t
ty

VoWV
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Observe that this already yields a signed system.
We can transform the first kind of inequalities (8a) further into

ty — w(u,v) = t, forall (u,v) e AwithueUnveV & (8a”)
min (t, —w(u,v)) > ty forallueU . (8a”)
(u,w)eA

Combining the two kinds of inequalities (8b) and (8a”) yields

min (t, —w(u,v)) > t, > min (t, + w(v,u)) YueU .
(u,v)EA (v,u)eA

Let |[V| = d and [U| = n. Then we define matrices (aj;;) = A € T:% and (0j;) =
¥ € {+, —, }"*? by identifying each node in V resp. U with indices in [d] resp. [n] and
setting

(wv,u),+)  (v,u) e A
(a(u,v), o(u,v) ) =1 (—w(u,v),—) (u,v) € A

(00, @) else

for v € V and w € U. This defines a signed system (A,3) whose associated inequality
system is
(mi)n (t, + a(u,v)) > (mi)n (t, + a(u,v)) forall welU . 9)
o(u,v)=— o(u,v)=+
Conversely, if we are given a feasible solution (¢,),cv of (9) we can define starting
times t, for u € U by
t, = min (¢, + a(u,v)) (10)

o(u,v)=—

such that (g )kepuy fulfills (7). We summarize our considerations in the following theorem.

Theorem 80. The set of feasible points for (9) is the projection of the set of feasible
starting times for (7) on the coordinates labeled by V. Furthermore, for every feasible
point of (9) we find a feasible point of (7).

Example 81. Figure 22 depicts the AND-OR-network for the signed system from Exam-
ple 8. For this signed system, we know that (0,2,4.5) is a feasible point. This translates
to possible start times for the AND-nodes. With Equation 10, we calculate (2,1,0,0) as
possible starting times for the OR-nodes.

With the dehomogenization x; = 0, the coordinatewise minimal point of the feasible
region amounts to the point (0, 0,0). This yields (0, —1, —2,0) for the resulting start times
of the OR-nodes.

Remark 82. The pseudopolynomial algorithm in [52, §7.2.2] uses the basic idea to make a
violated inequality an equality. If a starting time ¢; violates the inequality ¢; > min;ex (¢;,+
dy) for a waiting condition w = (X, 7), one assigns the new value min;ex (¢; + dj,) to
t;. This yields a pseudopolynomial algorithm as the iteratively computed starting times
only increase and can be bounded from above. Similar ideas will come up later on in
subsection 6.3.
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Figure 22: The scheduling network derived from the signed system of Example 8.

A.3 Mean payoff games

The connection between mean payoff games and tropical linear inequality systems, which
we describe below, was established in [2]. A similar result implicitly occurs in [52, Lemma
7.5] and [62, Lemma 2].

A.3.1 Introduction to mean payoff games

We briefly introduce mean payoff games. Let G be a finite directed bipartite graph with
node set Vo LI'Vi, arc set A and a weight function w: A — Q on the arcs. Without loss of
generality, we can assume that Vj = [d] and V; = [n].

We define a finite two-player game with full information on G, following [69]. At a
node in V,, it is the turn of player p, for p € {0, 1}. Starting from a fixed node k € VU7,
the players alternatingly choose an outgoing arc of the current node and move to the tip
of the arc. If a player cannot move because there is no outgoing are, she looses. As soon
as the directed path formed in this way produces a cycle, the game finishes. The outcome
of the game with starting point k£ is the mean weight of the arcs in that cycle. One player
tries to maximize, while the other player tries to minimize the outcome of the game.

A positional strategy for player p € {0,1} is a subset 7, of the arcs A, such that each
vertex in V,, is either isolated or incident to exactly one outgoing arc in 7,. By [24], a
mean payoff game has an optimal positional strategy.

Following [36, §7], we say that a position ¢ € Vj is non-losing for player 1 if there is a
strategy for player 1 such that the outcome of the game starting with ¢ is non-negative.
As we are only interested in the distinction between losing or non-losing this essentially
amounts to considering energy games instead, see [23].

We construct a signed system from the bipartite graph G with the weights w similar
to Section A.2, but with switched signs.

Let [Vo| = d and |Vi| = n. Then we define matrices (a;;) = A € T" and (0};) =

¥ € {+, —, o}"*4 by identifying each node in V; resp. V; with indices in [d] resp. [n] and
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Figure 23: A bipartite graph G depicting the mean payoff game from Example 84 and a
non-losing strategy 7 for player 1 owning the circle nodes.

setting
(w(vog,v1),—)  (vg,v1) € A
(a(v1,v0),0(v1,00)) = § (w(vr,v0), +)  (v1,00) € A (11)
(00, ) else

for vg € Vg and vy € V4.

Note that the former construction is reversible.

We state the main theorem connecting tropical linear inequality systems and mean
payoff games, see [2, Theorem 3.2].

Theorem 83. The set of non-losing states in Vi for player 1 equals the set of those i € [d]
for which there is a feasible point x for (A, X)) with x; # co.

We sketch one direction of an independent proof to demonstrate how this ties in with
the properties of covector graphs. Let x € TZ. be a feasible point for (A, ¥) with support
D # @. Since its covector graph G is feasible, each node in [n] is either isolated or incident
with a positive edge in G. If an apex node j € [n] is isolated in G, there is no arc between
D and j in G either. For an isolated node, we pick no edge and for a non-isolated apex
node, we pick one incident positive edge in G. This yields a strategy 7 for player 1.

If a run of the game with starting node in D and fixed strategy 7 for player 1 produces
a cycle, it can only be a non-negative cycle by [45, Proposition 38]. This implies the
claim.

Example 84. The signed system for the graph G from Figure 23 is given by
Ty T2 Ty T2
aq —1 0 aq -+ -
as 4 3 a9 — +
The corresponding inequality system is x1 — 1 < z9, 29+ 3 < 21 +4. The non-losing
strategy is obtained from the positive edges of the feasible point (0, —1).

We also relate the example for AND-OR-networks with the corresponding mean payoff
game.
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Example 85. By reversing the arcs and negating the weights in Figure 22, we obtain
the game graph corresponding to the inequality system from Example 8. The blue edges
in the covector graph of the feasible point (0,2,4.5) yield the non-losing strategy formed
by (1,1),(2,1),(3,1),(4,3) (which are directed from circle to square nodes). This, for

example, yields the positive cycle @, , @, 1]

A.3.2 Parity games as special mean payoff games

Parity games [25, 46] also are two player games with perfect information. However, we
have no weights on the edges but on the vertices of the game graph. The vertices are
assigned to the two players, even and odd. Even vertices are labeled by an even integer
weight, odd vertices by an odd integer weight. Player even wins if the maximal number
in the terminating cycle is even, otherwise odd wins.

Let M = d+ n be the number of vertices in the two classes. We can consider a parity
game as a special mean payoff game where the outgoing edges of a vertex with label k € Z
get the weight (—M)*. Then the winning states of the so constructed mean payoff game
for player 0 resp. 1 are exactly the winning states of player even resp. odd in the parity
game. For more details see, e.g., [46].

Recently, it was shown in [17] that parity games can be solved in quasipolynomial time.
Parity games have served as suitable instances to demonstrate the worst-case complexity
of many algorithms, see, e.g., [29, 39].

B Polyhedral prerequisities

B.1 Polytopes and polyhedral subdivisions

The conver hull of a subset V = {vy, ..., v} C R? is defined as

k k
conv(V) = {Z)‘i'vi Z)\izl,)\iER>0}
i=1

i=1
A polytope is the convex hull of finitely many points. A (affine) halfspace is a set of the
form

reR| a-z<b}
{

for some a € R and b € R. A polyhedron is the intersection of finitely many halfspaces.
By the Minkowski-Weyl theorem, polytopes are exactly the bounded polyhedra. The face
of a polyhedron P is the intersection of P with a halfspace that does not contain an
interior point of P.

A subpolytope of a polytope P is the convex hull of a subset of the vertices of P. The
convex hull of k affinely independent points, for k € N, is a (k—1)-simplex and is denoted
by Ax_1. In the following, A,_; stands for the convex hull of the k standard basis vectors
e1, e, ...,e, in R* which is an instance of a (k—1)-simplex. The product of two polytopes
P CR?and Q C R" is the convex hull of the pairs (p,q) € R4™™ where p resp. ¢ ranges
over all the vertices of P resp. Q.
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A polyhedral complez is a finite set C of polyhedra such that
1. each face of a polyhedron is also contained in C,
2. the intersection of two polyhedra in C is empty or a face of both.

A polyhedral complex C is a (polyhedral) subdivision of a polyhedron P if the union of
the polyhedra in C is P. If all polyhedra in a subdivision of a polytope P are simplices,
than this comprises a triangulation of P. For constructing A subdivision of a polytope
P C R? is regular if it is the orthogonal projection, omitting the last coordinate, of the
bounded cells of the polyhedron

conv { (z, h(x) | = vertex of P} +Rs¢ - e4.1

for some height function h: R? — R. Note that not all subdivisions of a polytope are
regular as Example 45 shows.

B.2 An application

The deduction of Proposition 19 from [54, Proposition 2.5] relies on the Cayley trick
([19, §9]). The latter states that triangulations of A,_; X A,_; are in bijection with
fine mixed subdivisions of nA,_;. The claim follows as the collection of bipartite graphs
corresponds to the full-dimensional simplices in a triangulation of A,, 1 x A, ;. Note
that a similar statement was proven in [22, Proposition 4.2]. Because of the importance to
us, we give a proof independently of [54], highlighting the connection between geometry
and combinatorics.

Proof of Proposition 19. Let the right degree sequence (RDS) be the sequence of degrees
of the apex nodes.

By [19, Theorem 6.2.13], which uses the unimodularity, respectively the equidecom-
posability, of A,_1 x Ay_1, the number of full-dimensional simplices in a triangulation
is (",0)7).

Furthermore, the number of compositions of n +d — 1 in n parts is (”:if

Hence, it suffices to prove that each sequence (di,...,d,) € [d]* with 3°7  d; =
n+d — 1 occurs at most once as an RDS. We describe a construction to find a canonical
form for a covector graph with a given RDS which will imply the claim. This approach
is depicted in Figure 24.

Next, note that we can omit apex nodes of degree 1 as the graph remaining after

this removal is still a tree. So, consider two distinct trees tg and t; with the same RDS

(dy,...,d,) for which each degree is bigger than 1. From these trees, we construct trees
so and s; for which each apex node has degree 2. For this, we replace each apex node
j € [n] of degree d; > 2 with d; — 1 nodes ki, ..., kj ;. Furthermore, if i;, <... <1y,

are the neighbors of 7, we add the edges

(ijlv k{)? (ij2? k{)a (7;]'27 k%)? BRI (ijdk_1a k‘{lj—l)a (ijdka kjéj—l) :
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Hence, so and s; are trees on the vertices [d] U R, where R is the d-set formed by the old
apex nodes of degree 2 and the new apex nodes which arose from replacing apex nodes
of degree > 2. By Lemma 18, these trees are the union of (d — 1) x (d — 1)-matchings on
[d] \ {i} U R for all i € [d]. From the uniqueness of the construction of sq resp. s; from
to resp. t; we deduce that sg and s; are also distinct. Therefore, there is an i € [d] for
which the perfect matching o in sp on [d] \ {i} U R and the perfect matching p; in s; on
[d] \ {i} U R disagree. We conclude that their symmetric difference contains a non-trivial
simple cycle C. If we contract the nodes k{, ey kij_l back to the single node j for each
apex node j € [n] of degree d; > 2, then C' becomes a cycle (where a node can appear
multiple times). Since ¢y and t; are distinct, the cycle has to contain more than 1 apex
node. Such a cycle is an alternating cycle in the sense of the comparability. This implies
that tg and ¢; cannot both occur in the same triangulation. O

o] [=]

<]

[+]

o] =] [o

@
®
(3)

(=] [eo]

El

Figure 24: The construction to find an alternating cycle from the proof of Proposition 19.

C DMaximal support and partial strategies

Since the tropical sum of two feasible vectors is feasible again, the union of the supports
of the feasible points is the support of a feasible point, see also [2, Theorem 3.2]. We call
this the feasible support.
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Algorithm 6 determines a feasible point of a signed system or certifies that there is
none. However, a resulting feasible point does not need to have the full feasible support.
We show how one can use Algorithm 6 to determine the feasible support. The interest
to determine this is motivated by the interpretation of the feasible points as vectors of
feasible starting times or winning positions in a mean payoff game presented in Section A.

We need some technical observations to achieve this.

Lemma 86. Let (A,X) be a signed system for which the ith column of ¥ only contains
“+7 entries. Then for any point (z1,...,2q) € T%. there is a number & € R for which
(Zl, ceey Ri—1, f, Zidly - - - ,Zd> 18 feasible.

Proof. We can assume, without loss of generality, that ¢ = 1. Now, let k; € [d] be the
index in row j € [n] for which o, = —. For & < min {2, +aj, —a;1 | j € [n]} we
obtain

(ajg ©& @ @ aje®ze < §+ajn <z +ag, forall jen] .
CEld) bk 1

Hence, (&, 29, ..., zq) is feasible. O

Observation 87. If w and z are feasible solutions with supp(w) N supp(z) = {k} for
some k € [d], then the point v = (—wy) © w®d (—zx) © z has the same pairwise coordinate
differences as w and z on its support. By this we mean that v; — vy = w; — wy for
i, € supp(w) and v; — vy, = z; — 2z for i,{ € supp(z).

Observation 88. The inequality xo@x1 < (x10a) is tautological for a > 0 and equivalent
to r9 < 1 ®a for a < 0. Furthermore, x1 ® (1 ® a) equals x1 for a > 0 and x; ® a for
a<0.

To determine the feasible support, we run Algorithm 6 several times with a successively
reduced input. As long as the algorithm terminates with a feasible point z we modify the
system and restart with the reduced system.

If the support of z consists only of one element 7, we omit all the inequalities which
contain the variable x;. By Lemma 86, these inequalities are fulfilled for every point for
which the ith component is sufficiently small.

Now, assume that the support of z consists of the indices i1, ...,4; with k& > 2. We
replace z;, in each inequality of the signed system by means of the equation

X, = Tgy, + Zip T Ry, - (12)

With Observation 88, we can restore the property that each variable occurs on at most
one side of each inequality. Furthermore, the reduced system has a feasible solution if and
only if the original system has one since we can construct a solution, which fulfills all the
Equations 12, by Observation 87.

As soon as we reach a totally infeasible point in a reduced system we can deduce that
the complement of the current coordinate nodes forms the feasible support of the original
system.
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Example 89. Algorithm 6 behaves pairwise differently on the examples depicted in Fig-
ure 25 concerning the determination of the feasible support.

For the top left one, it finds a feasible point with support {3} but needs a second run
to find the certificate that this is already the feasible support.

For the top right one, it finds a feasible point whose support has 2 elements and needs
a second run to determine the feasible support {1,2,3}.

For the bottom left one, it needs only one run to determine that the support is just
the empty set.

For the bottom right one, starting with 6 = 1 and continuing with 6 = 2 or § = 3
yields feasible points with different supports. In the former case, we arrive at a basic
point with support {1,2,3}. For the latter, the resulting basic point only has support

(1,3}
YA

> 19 7 > L9

3 A 3 A

xs

A

in
v v i

/ > L2 / / > L2

Figure 25: The bars indicate the infeasible regions. The supports of the feasible sets
defined by the tropical halfspaces are different.

Moreover, we can use the former considerations to find a point, whose support is the
feasible support, and a point which certifies that the feasible support cannot be bigger.

Definition 90. A covector graph G in (S(A),X) is sufficiently infeasible and negatively
covers D C [d] if there is a subset N C [n] with [N| = [D], for which D = [, supp(a;.)
and the induced subgraph of G on D U N is a perfect matching consisting of negative
edges.

The sufficiently infeasible covector graphs correspond to the generalized cycles with
negative weight in [52]. We show how one can construct a sufficiently infeasible covector
graph for a signed system.
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Theorem 91. If F is the feasible support of the signed system (A,X) then there is a
sufficiently infeasible covector graph G which negatively covers ([d] \ F).

Proof. We discussed how an iterative application of Algorithm 6 can be used to determine
the feasible support of a signed system. For F' = [d] there is nothing to show. Otherwise,
let (R, T) be last reduced system in the sequence of successively reduced signed systems;

by construction, it is infeasible. Furthermore, let (R(£2), Z) be a refinement of an extension

of (R,Y). -
Since (R, Y) is infeasible, there is a totally infeasible covector graph H for (R(2),Z).

By the genericity of this system, there is a point x whose covector graph is contained in

H and for which each basic apex of H is only incident with the negative edge.

We embed x into T%, by setting the coordinates in F' to co. Then by the construction

of the extension and the refinement, = has the same covector graph with respect to A. Its

covector graph G is sufficiently infeasible.
]

Example 92. Consider the following four matrices:

0 0 oo o™ — 4+ o o
0 2 11 oo + — + e
A= o o 0 0 and X; = . B

co oo 2 0 ° + —

0 0 Ql QQ + - L4

0o 2 11 Q + °

AQ) = Q0 Qs 0 03 and 3y = .« _ 4

QG Q7 2 0 o + —

At first, we examine the signed system (A, Y;). Starting with 6 = 1 we obtain:

) ‘ Cramer solution ‘ violated inequalities
1 Al@|{1}] = (0,00, 00, 00)
2| A[{1}[{1,2}] = (0,0, 00, 00)

J=1

The point (0,0, 00,00) is feasible and the algorithm stops. We reduce the system by
replacing z; with x5 and, by using Observation 88, arrive at the system

w==((30)-(0 1)

The Cramer solution Cyu({3},{3,4}) = (0,0) certifies the infeasibility of this reduced
system. The point = (00, 00,0, 1) has a sufficiently infeasible covector graph.

As a second example, we consider the signed system (A,>5). We construct = by
replacing the e entries in 3 by +. Then (A(2), Z) is a generic extension of (A, 3;). The
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Cramer solution Cac)({1,3,4},[4]) = (0,0,Q4,4 + 2) has a totally infeasible covector
graph. From this, we can obtain the point = = (1,0, €y, Q4 + 1) which has a sufficiently
infeasible covector graph. This point also yields a sufficiently infeasible covector graph
for the signed system (A, 3,).

@
Figure 26: Graph for the mean payoff game corresponding to (A, ;) from Example 92.

We conclude by interpreting a sufficiently infeasible covector graph in terms of mean
payoff games. Recall the connection from Theorem 83. Extending the notions from
Subsection A.3, we say that a coordinate node or an apex node is winning for the player
on the coordinate nodes if there is a winning strategy meaning that the value of the game
is negative when we start from such a position and this strategy is used on the coordinate
nodes.

Let H be a sufficiently infeasible covector graph for the signed system (A,3) which
negatively covers D C [d].

Theorem 93. The coordinate nodes in D and the apex nodes, whose support is contained
m D, are winning positions for the strategy formed by the perfect matching p consisting
of negative edges contained in H.

Proof. Let N be the set of the apex nodes, whose support is contained in . Then the
player on the apex nodes is forced to go back to D on N. Furthermore, the arcs formed
from p only go to N by the properties of H. Since H is a covector graph, Proposition 4
implies with the construction of the mean payoff graph in Equation 11 that all cycles
reachable from N and from D through p are negative. O

With Theorem 83, we deduce an extension of Lemma 17 for the realizable case.

Corollary 94. If (S§(A),Y) contains a sufficiently infeasible covector graph G which neg-
atively covers D, then supp(z) C [d] \ D for every feasible point z of (A, X).

Proof. Theorem 93 implies that the player on the coordinate nodes has a winning strategy
which secures a negative value. Therefore, there cannot be a feasible point z with supp(z)Nn
D # @ since this would imply a non-losing strategy for the player on the apex nodes with
starting positions supp(z) by Theorem 83. O
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Example 95. Figure 26 shows winning strategies in the mean payoff game corresponding
to the signed system (A, ;) from Example 92. The blue arcs form a non-loosing strategy
for the player on the circle nodes. They are the positive edges in the covector graph of
the feasible point (0,0, 00, 00). The purple arcs form a winning strategy for the player on
the square nodes. They are the edges in the sufficiently infeasible covector graph of the
point (00, 00,0, 1).
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