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Abstract

Starting from the two-species partially asymmetric simple exclusion process, we
study a subclass of signed permutations, the partially signed permutations, using
the combinatorics of Laguerre histories. From this physical and bijective point of
view, we obtain a natural descent statistic on partially signed permutations; as well
as partially signed permutations patterns.

Mathematics Subject Classifications: 05A05, 05A19

1 Introduction

The two-species partially asymmetric simple exclusion process (2-PASEP) is a Markov
chain with two types of particles (• and •) and holes (◦). Particles can hop to the right and
to the left and particles of type • can enter and exit the system. If there are no particles
of type •, we recover the classical PASEP. See Section 3 and [27] for a detailed definition.
The classical PASEP has given rise to beautiful combinatorics related to Laguerre histories
[16], permutations [5, 16, 25], permutation tableaux [8, 7, 25], alternative tableaux [20]
and staircase tableaux [9] in its most general case. All these objects are shown to be
connected to the PASEP thanks to the Matrix Ansatz [12] and the fact that the partition
function of the model is related to the moments of the Askey Wilson polynomials [28].
In special cases, we can define a Markov chain on the permutations or the tableaux that
projects to the ASEP chain. See [7] for example. This is classical in Markov chain theory
and is called lumpability [17, 3].

In the case of the 2-PASEP the Matrix Ansatz extends naturally [27]. We shall detail
this in Section 3. The partition function is now related to the mixed moments of the
Askey Wilson polynomials [10]. It is therefore expected (but not at all trivial) to see that
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the combinatorics extends to this generalized model. The alternative tableaux become
rhombic alternative tableaux (RATS) [18] and the permutations become assemblées of
permutations [19]. In the most general case we get rhombic staircase tableaux [6].

In this paper we take a slightly different approach, as some of the statistics coming
from the 2-PASEP are not natural on the assemblées of permutations. We generalize the
results of [5, 16] related to Laguerre histories and permutations. In these cases the states
of the PASEP are in bijection with compositions and the statistic coming from the PASEP
is in bijection with the weight of the paths or equivalently the number of the generalized
patterns (31 − 2) of the permutation. Generalized patterns were first introduced in a
general framework by Babson and Steingŕımsson in [1], but some instances had been
treated previously in various contexts. For example, the pattern (31 − 2) is implicit in
[13] and in [24]. We define some generalization of Laguerre histories : the marked Laguerre
histories. We give a bijection between the marked Laguerre histories and a subclass of
signed permutations where we do not put a sign on 1. We call them partially signed
permutations. For example, the partially signed permutations of size 2 are 12, 21, 12
and 21. The states of the 2-PASEP are in bijection with segmented compositions and
the statistic coming from the 2-PASEP is in bijection with the weight of the paths or
equivalently the number of some generalized patterns of the partially signed permutation.

All the detailed definitions are given in Section 2. In Section 3, we give a new solu-
tion for the interpretation of the probabilities of the 2-PASEP. In Section 4, we use this
solution to interpret these probabilities using marked Laguerre histories. In Section 5,
we use the Françon-Viennot bijection to obtain an interpretation in terms of generalized
permutations. In Section 6, we give another interpretation in terms of large Laguerre
histories and give an explicit involution on these large Laguerre histories that explains
the so-called particle hole symmetry of the process. We end the paper with some final
comments and open problems in Section 7.

2 Notations and definitions

2.1 Signed permutations and segmented compositions

A signed permutation σ of size n is a permutation of n such that each value has a sign
plus or minus. We denote by Bn the set of signed permutations of size n. We overline
negative values and we say that k ∈ σ if the value k has a negative sign in σ. For example,
σ = 25783641 is a signed permutation of size 8.

When we compare two values σi and σj of a signed permutation σ, we use the order
1 < 1 < 2 < 2 < · · · .
Definition 1. A partially signed permutation is a signed permutation where 1 is not
signed. We denote by B′n the set of these permutations.

The overlined values of a partially signed permutation are its negative values. We
denote by Sign(σ) the set of all overlined values of a partially signed permutation σ.

For example, σ = 25783641 is an element of B′n and its set of overlined values is
Sign(25783641) = {2, 4}.
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We define generalized patterns [1] for partially signed permutations.

Definition 2. A 31−2 pattern of a partially signed permutation σ is a pair (σiσi+1, σj)
such that j > i+ 1 and σi > σj > σi+1. We denote this pattern by σiσi+1−σj.

A (31, 2) pattern is a pair (σiσi+1, k) such that k ∈ σ and σi > k > σi+1.
We denote by tw(σ) the number of 31−2 patterns of σ plus its number of (31, 2)

patterns

Note that in the second case the value k can be to the left or to the right of σi. For
example, the 31−2 patterns of σ = 25783641 are 83−6 and 83−4 and the (31, 2) patterns
of σ are (83, 4), (41, 2), and (41, 4).

Definition 3. A segmented composition of an integer n is a finite sequence I of ` positive
integers (i1, . . . , i`) that sum to n separated by vertical bars or commas.

The descent set of I (denoted by Des(I)) is the set of values i1 + i2 + · · ·+ ik where ik
is followed by a comma in I. Similarly, the segmentation set of I (denoted by Seg(I)) is
the set of values i1 + i2 + · · ·+ ik such that ik is followed by a bar in I.

For example,

(Des(1|2|1, 2, 2), Seg(1|2|1, 2, 2)) = ({4, 6}, {1, 3}). (1)

The ADE-word associated with I is the word w of size n− 1 such that

i ∈ Des(I) ⇒ wi = E;
i ∈ Seg(I) ⇒ wi = A;

i /∈ Des(I), i /∈ Seg(I) ⇒ wi = D.
(2)

We denote this word by ADE(I). For example, ADE(1|2|1, 2, 2) = ADAEDED.

Definition 4. The Genocchi descent set of a partially signed permutation σ of size n is
the set of positive values followed by a smaller value. In other words,

GDes(σ) := {i | i /∈ Sign(σ), σj = i⇒ σj > σj+1} (3)

The Genocchi composition of descents of a partially signed permutation (denoted by
GC(σ)) is the segmented composition I whose descent set is {d− 1 | d ∈ GDes(σ)} and
whose segmentation set is {s− 1 | s ∈ Sign(σ)}.

Note that if σ does not have any overlined values, the statistic GC is the composition
of the values of descents minus one and is the same as the one defined in [15]. For
example, if σ = 25783641, we have GDes(σ) = {6, 8}, Sign(σ) = {2, 4} so we have
GC(σ) = (1|2|2, 2, 1).
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2.2 Laguerre histories

Recall that a Motzkin path of size n is a path going from (0, 0) to (n, 0) using increasing
steps, decreasing steps, and horizontal steps that never goes below the horizontal axis.
For any path P , we denote by Pi the i’th step of P . We call the starting (resp. ending)
height of a step, the distance between the beginning (resp. end) of this step and the
horizontal axis. Unless otherwise specified, the height is understood to be the starting
height.

A Laguerre history is a weighted object introduced by Viennot in [29], see also [11].
The Laguerre histories are in bijection with permutations through the Françon-Viennot
bijection [14]. These objects have been used to study some properties of the ASEP [16].

Definition 5. A Laguerre history H of size n is a weighted Motzkin path of size n with
two different horizontal steps such that

• a ↗ or −→ step starting from height h has a weight between 0 and h;

• a ↘ or 99K step starting from height h has a weight between 0 and h− 1.

We denote by tw(H) the total sum of the weights of H.
If wi is the weight of the i’th step of a Laguerre history L of size n, we call w = w1 . . . wn

the weight of L.

An example of a Laguerre history of size 8 is given in Figure 1. To avoid cumbersome
figures, we only represent the non-zero weights of the steps on the figures.

1
1

Figure 1: An example of Laguerre history of size 8 and weight 00010100.

The Françon-Viennot bijection [14] is a bijection between Laguerre histories of size n
and permutations σ in Sn. We denote this map by ψFV . We compare each value of the
permutation σ with its two neighbors. We use the convention σ0 = 0 and σn+1 = n+ 1.

Algorithm 6. [14]

• Input: A permutation σ ∈ Sn.

• Output: A Laguerre history H of size n.

• Execution: For k from 1 to n, let j be such that σj = k. The k’th step of H is

– Hk = ↗ if σj is a valley, i.e., σj−1 > σj < σj+1,
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– Hk = ↘ if σj is a peak, i.e., σj−1 < σj > σj+1,

– Hk = −→ if σj is a double rise, i.e., σj−1 < σj < σj+1,

– Hk = 99K if σj is a double descent, i.e., σj−1 > σj > σj+1.

The weight of k’th step of H is equal to the number of 31−2 patterns such that k
is the number corresponding to 2 in σ.

The Laguerre history in Figure 1 is the image of the permutation σ = 25783641.
Indeed, the valleys of σ are 3 and 1; its peaks are 8 and 6; its double rises are 2, 5, and 7;
and its only double descent is 4. Finally, its 31−2 patterns are 83−4 and 83−6.

We shall also need the reciprocal map of the Françon-Viennot bijection described by
the following algorithm.

Algorithm 7.

• Input: A Laguerre history H of size n

• Output: A permutation σ of size n.

• Initialization: σ = ◦;
• Execution: Let w be the weight of H. For k ∈ {1, . . . , n}, replace the (wk + 1)-st ◦

of σ by:

– ◦k◦ if Hk =↗;

– k◦ if Hk =−→;

– ◦k if Hk =99K;

– k if Hk =↘.

The final permutation is obtained by removing the last ◦.

For example, see (4) for a step by step execution of Algorithm 7 on the Laguerre
history of Figure 1.

σ = ◦ → ◦ 1 ◦ → 2 ◦ 1 ◦ → 2 ◦ 3 ◦ 1 → 2 ◦ 3 ◦ 41 ◦
→ 25 ◦ 3 ◦ 41 ◦ → 25 ◦ 3641 ◦ → 257 ◦ 3641 ◦

→ 25783641 ◦ → 25783641

(4)

3 The 2-PASEP and the Matrix Ansatz

The two-species PASEP is a Markov chain whose states are words of length N in the letters
{◦, •, •}. This was first studied in a more general setting in [27] and then combinatorialy
in [6, 10, 18, 19]. This Markov chain is described the following way:

Definition 8. Let q be a constant such that 0 6 q 6 1. The 2-PASEP is the Markov
chain on the words in the letters ◦, •, • with transition probabilities:
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• If x = A • ◦B and y = A ◦ •B then Px,y = 1
N+1

(black particle hops right) and
Py,x = q

N+1
(black particle hops left).

• If x = A• ◦ B and y = A ◦ •B then Px,y = 1
N+1

(gray particle hops right) and
Py,x = q

N+1
(gray particle hops left).

• If x = A • •B and y = A• • B then Px,y = 1
N+1

(black particle hops right) and
Py,x = q

N+1
(black particle hops left).

• If x = ◦B and y = •B then Px,y = 1
N+1

(particle enters from left).

• If x = B• and y = B◦ then Px,y = 1
N+1

(particle exits to the right).

• Otherwise Px,y = 0 for y 6= x and Px,x = 1−
∑

x 6=y Px,y.

An example of a chain on three letters among which two are • is given on Figure 2
where we represent the transitions (N + 1)PX,Y for X 6= Y and PX,Y 6= 0.

1

1

1

q

1

q

1
q

1
q

Figure 2: A Markov chain for N = 3 and r = 2.

Remark 9. Given two states of the 2-PASEP x and y, using the different transitions one
can see that the transition from x to y is the same as the one from ι(x) to ι(y) where ι is
the map that reverse a state and replace the ◦ spots by • and conversely. This is called
the particle hole symmetry of the process.

For example, P•••,••• is equal to P••◦,•◦•.
To each state x of the 2-PASEP with N sites we associate a word X(x) in {A,D,E}N

using the following map:
◦ 7→ E; • 7→ D; • 7→ A.

We define an involution ι on words in {A,D,E}N that corresponds to the particle hole
symmetry.

Definition 10. Let X ∈ {A,D,E}N , define ι(X) as the word obtained after reversing X
and replacing D by E and conversely.
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Uchiyama [27] proved that we can use a Matrix Ansatz in order to compute the
stationary distribution of the states of the 2-PASEP. We denote by Prob(x) the stationary
distribution of a state x.

Proposition 11. [27] Let D,A,E be infinite matrices. Let 〈W | (resp. |V 〉) be an infinite
row (resp. column) vector satisfying the Ansatz:

DE = qED +D + E; (5)

DA = qAD + A; (6)

AE = qEA+ A; (7)

〈W |E = 〈W | ; (8)

D |V 〉 = |V 〉 . (9)

Then the probability to be in a state x in {◦, •, •}N with r letters A is:

Prob(x) =
〈W |X(x) |V 〉

[yr] 〈W | (D + yA+ E)N |V 〉
. (10)

where [yr] means that we consider the coefficient of the monomial yr.

Remark 12. The Ansatz in [27] is more general, corresponding to the 2-ASEP where
particles may enter and exit the chain from the right and the left with different rates.

We give here a new solution of this system using the following matrices.

D =


1 1 0 0 . . .
0 [2]q [2]q 0 . . .
0 0 [3]q [3]q . . .
0 0 0 [4]q . . .
...

...
...

...

 ; (11)

E =


0 0 0 0 . . .
1 1 0 0 . . .
0 [2]q [2]q 0 . . .
0 0 [3]q [3]q . . .
...

...
...

...

 ; (12)

A =


1 0 0 0 . . .
0 q 0 0 . . .
0 0 q2 0 . . .
0 0 0 q3 . . .
...

...
...

...

 (D + E); (13)

〈W | = (1, 1, 0, 0, . . . ); (14)
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|V 〉 =


1
0
0
...

 . (15)

Lemma 13. The previous matrices and vectors satisfy the equations from Proposition 11.

Proof. Let M = DE. For all i, j, we have

Mij =
∞∑
k=1

DikEkj

=
i+1∑
k=i

[i]qEkj.

Hence, M is described as follow :
Mi,i−1 = [i]qEi,i−1 = [i]q[i−1]q;

Mi,i = [i]q

(
Ei,i + Ei+1,i

)
= [i]q

(
[i−1]q + [i]q

)
;

Mi,i+1 = [i]qEi+1,i+1 = [i]2q;

(16)

and Mi,j = 0 if |i− j| > 1. Let N = ED. We have
Ni,i−1 = [i−1]2q;

Ni,i = [i−1]q

(
[i−1]q + [i]q

)
;

Ni,i+1 = [i−1]q[i]q;

and Ni,j = 0 if |i− j| > 1. For all i, we have

qNi,i−1 +Di,i−1 + Ei,i−1 = [i−1]q(q[i−1]q + 1) = [i−1]q[i]q;

qNi,i +Di,i + Ei,i = (q[i−1]q + 1)([i]q + [i−1]q) = [i]q([i−1]q + [i]q);

qNi,i+1 +Di,i+1 + Ei,i+1 = (q[i−1]q + 1)[i]q = [i]2q,

which is equal to (16) and so (5) is satisfied.
For (6) and (7), recall that A is described by

Ai,i−1 = qi[i−1]q;

Ai,i = qi
(

[i−1]q + [i]q

)
;

Ai,i+1 = qi[i]q.

(17)

Hence, we have

(DA)ij =
∞∑
k=1

DikAkj
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=
i+1∑
k=i

[i]qAkj.

We use the following description:

(DA)i,i−1 = [i]qAi,i−1 = qi[i]q[i−1]q;

(DA)i,i = [i]q

(
Ai,i + Ai+1,i

)
= [i]q

(
qi[i−1]q + (qi + qi+1)[i]q

)
;

(DA)i,i+1 = [i]q

(
Ai,i+1 + Ai+1,i+1

)
= [i]q

(
(qi + qi+1)[i]q + qi+1[i+1]q

)
;

(DA)i,i+2 = [i]qAi+1,i+2 = qi+1[i]q[i+1]q.

(18)

The product AD is described using the same idea:

(AD)i,i−1 = Ai,i−1Di−1,i−1 = qi[i−1]2q;

(AD)i,i = Ai,i−1Di−1,i + Ai,iDi,i = qi
(

[i−1]2q + [i−1]q[i]q + [i]2q

)
;

(AD)i,i+1 = Ai,iDi,i+1 + Ai,i+1Di+1,i+1 = qi
(

[i−1]q[i]q + [i]2q + [i]q[i+1]q

)
;

(AD)i,i+2 = Ai,i+1Di+1,i+2 = qi[i]q[i+1]q.

Hence, for all i, we have

q(AD)i,i−1 + Ai,i−1 = qi[i−1]q(q[i−1]q + 1)

= qi[i−1]q[i]q;

q(AD)i,i + Ai,i = qi(q[i−1]q + 1)([i]q + [i−1]q) + qi+1[i]2q
= qi[i]q([i−1]q + [i]q) + qi+1[i]2q;

q(AD)i,i+1 + Ai,i+1 = qi(q[i−1]q + 1)[i]q + qi+1([i]2q + [i]q[i+1]q)

= qi[i]2q + qi+1([i]2q + [i]q[i+1]q)

q(AD)i,i+2 + Ai,i+2 = qi+1[i]q[i+1]q + 0

= qi+1[i]q[i+1]q,

which is equal to (18) and proves that (6) is satisfied.
Let us now consider the product AE. We have the following description:

(AE)i,i−2 = Ai,i−1Ei−1,i−2 = qi[i−1]q[i− 2]q;

(AE)i,i−1 = Ai,i−1Ei−1,i−1 + Ai,iEi,i−1 = qi
(

[i−1]q[i− 2]q + [i−1]2q + [i]q[i−1]q

)
;

(AE)i,i = Ai,iEi,i + Ai,i+1Ei+1,i = qi
(

[i−1]2q + [i]q[i−1]q + [i]2q

)
;

(AE)i,i+1 = Ai,i+1Ei+1,i+1 = qi[i]2q.

(19)
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We also have EA described as follow:
(EA)i,i−2 = Ei,i−1Ai−1,i−2 = qi−1[i−1]q[i− 2]q;

(EA)i,i−1 = Ei,i−1Ai−1,i−1 + Ei,iAi,i−1 = qi−1[i− 2]q[i−1]q + qi−1[i−1]2q + qi[i−1]2q;

(EA)i,i = Ei,i−1Ai−1,i + Ei,iAi,i = qi−1[i−1]2q + qi[i−1]2q + qi[i]q[i−1]q;

(EA)i,i+1 = Ei,iAi,i+1 = qi[i−1]q[i]q.

Hence, for all i, we have

q(EA)i,i−2 + Ai,i−2 = qi[i−1]q[i− 2]q + 0

= qi[i−1]q[i− 2]q;

q(EA)i,i−1 + Ai,i−1 = qi[i−1]q[i− 2]q + qi[i−1]2q + qi(q[i−1]q + 1)[i−1]q

= qi[i−1]q[i− 2]q + qi[i−1]2q + qi[i]q[i−1]q;

q(EA)i,i+1 + Ai,i+1 = qi[i−1]2q + qi(q[i−1]q + 1)([i−1]q + [i]q)

= qi[i−1]2q + qi[i]q([i−1]q + [i]q)

q(EA)i,i+2 + Ai,i+2 = qi(q[i−1]q + 1)[i]q

= qi[i]2q,

which is equal to (19) and proves that (7) is satisfied.
Using the structure of the vectors, one easily proves that (8) and (9) are satisfied,

which ends the proof.

Remark 14. When q = 1, A = D+E satisfies (6) and (7). In this case we can compute the
stationary distribution of the 2-PASEP using the stationary distribution of the PASEP
(case with zero • particles). Let x be a state of the 2-PASEP with N sites and r gray
particles. We have

Prob(x) =
1(
N
r

)∑
y

Prob(y), (20)

where the sum is on all the states of the PASEP with particle • at the positions of the •
particles of x, empty sites ◦ at the positions of the empty sites ◦ of x and a particle • or
or an empty site ◦ at the sites with a • particle in x.

For example, we consider the state x = ••◦. Let x1 = • • ◦ and x2 = • ◦ ◦ be the
states associated. We have Prob(x) = 14

3·4! . Similarly, we have Prob(x1) = Prob(x2) = 7
4!

,
and

14

3 · 4!
=

1(
3
1

) ( 7

4!
+

7

4!

)
.

4 Path interpretation

One way to obtain a combinatorial interpretation of the stationary distribution is to
interpret each monomial of the numerator and denominator of (10) as a weighted path.

We start by defining a new class of paths generalizing the Laguerre histories.
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Definition 15. A marked Laguerre history of size (n, r) is a Laguerre history of size n
where all the steps but the first can be marked and r steps are marked. Any marked step
starting from height h increases its weight by h.

This way, a step −→ or ↗ has a weight between 0 and h if it is not marked and
between h and 2h otherwise. A step 99K or ↘ has a weight between 0 and h − 1 if it is
not marked and between h and 2h− 1 otherwise.

To avoid confusion, all notations for the marked Laguerre histories are represented by
bold letters. An example of a marked Laguerre history of size (8, 2) is given in Figure 3.
The steps with overlined weight are the marked steps.

1

3
1

Figure 3: An example of a Laguerre history of H(ADADEDE) with total weight 5.

The total weight of a marked Laguerre history H (denoted by tw(H)) is the sum of
the weights of it steps. For example, the total weight of the marked Laguerre history in
Figure 3 is 5. We associate a word of length n − 1 to a marked Laguerre history H of
length n the following way. The marked steps are labeled by A, the ↗ or −→ steps are
labeled D and the remaining steps are labeled E. We forget the label of the first step
as it is always D. We call this word the label of H and we denote it by label(H). For
example, the label of the marked Laguerre history in Figure 3 is ADADEDE.

Given a word X, let H(X) be the set of marked Laguerre histories with label X and
let ZX be the generating polynomial of all the paths:

ZX(q) =
∑

H∈H(X)

qwt(H); (21)

and let
ZN,r(q) =

∑
X

ZX(q) (22)

where the sum is over all the words in {A,D,E}N with r letters A (with N = n− 1).
The following result gives us a combinatorial interpretation of the steady-state prob-

abilities of the 2-PASEP in terms of marked Laguerre histories.

Theorem 16. Let x be a state of the 2-PASEP with N sites and r gray particles and X
be the associated word in A, D, and E. We have:

Prob(x) =
ZX(q)

ZN,r(q)
. (23)
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Proof. The idea is to associate a marked Laguerre history with each monomial of the
matrix product of the numerator of (10). Any monomial corresponds to the product of
N non-zero coefficients (Xk)ik,jk where Xk ∈ {A,D,E} is the matrix corresponding to
the k’th letter of X. As the indices (ik, jk) must satisfy ik = jk−1, they can represent
the successive heights of a path: ik corresponds to the starting height of the k’th step
and and jk corresponds to its ending height. Moreover, as the matrices A, D, and E
are tridiagonal, |ik − jk| 6 1 so the paths are Motzkin paths. In order to have a path
starting from height 0, we need to add a ↗ or −→ step at the beginning of the path
depending on which coefficient of 〈W | has been extracted. For the steps labeled D, we
have jk ∈ {ik, ik + 1} so the possible steps are ↗ or −→; for the steps labeled E, we have
jk ∈ {ik, ik − 1} so the possible steps are ↘ or 99K. For the steps labeled A, a coefficient
either comes from the matrix D or the matrix E. We choose the corresponding step and
mark it in order to be able to invert the process.

The weight of the k’th step of the path corresponds to the power of q taken in the
coefficient (Xk)ik,jk . One can see that for the matrix D (steps ↗ or −→) the possible
weights are between 0 and ik and that for the matrix E (steps ↘ or 99K) the possible
weights are between 0 and ik−1. Finally for the matrix A, the weights are the same than
for D and E on which we added ik due to the diag(1, q, q2, q3, . . .) factor. This proves
that the paths we obtain are exactly the marked Laguerre histories.

Special cases of Theorem 16 are:

ZN,r(1) =

(
N

r

)
(N + 1)! (24)

Zr,r(q) = [r + 1]q! (25)

The first equation immediately follows from the next section which exhibits a bijection
between these marked Laguerre histories and partially signed permutations. The second
equation follows from a continued fraction proven by Heine. A bijective proof was given
by Biane [2]. Another way to prove it is by using the following lemma.

Lemma 17. If we denote by mk
n(q) the sum of the weights of the marked Laguerre histories

of size n with n− 1 marked steps that end at height k (the ending height of the last step
is k), we have

mk
n(q) = q(

k
2) [n]q!

2

[n− k]q![k]q!
(26)

Proof. We prove this lemma by induction. If n = 1, the possible values for k are 0 and 1.
In both cases there is only one path of weight 1 as the first step is never marked.

Suppose the property true for n − 1. A path of length n ending at height k can be
either:

• a path of length n− 1 ending at height k + 1 followed by a ↘ step;

• a path of length n− 1 ending at height k followed by a 99K step or a −→ step;
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• a path of length n− 1 ending at height k − 1 followed by a ↗ step.

Hence, we have

mk
n = mk+1

n−1q
k+1[k + 1]q +mk

n−1q
k
(

[k]q + [k + 1]q

)
+mk−1

n−1q
k−1[k]q. (27)

Using (26) to compute mk+1
n−1, m

k
n−1, and mk−1

n−1 we have the following.

mk+1
n−1 =

[n− 1]q!
2

[n− k]q![k]q!
q(

k
2)+2k+1[n− k]q[n− k − 1]q

mk
n−1 =

[n− 1]q!
2

[n− k]!q[k]q!
q(

k
2)+k[n− k]q

(
[k]q + [k + 1]q

)
mk−1
n−1 =

[n− 1]q!
2

[n− k]q![k]q!
q(

k
2)[k]2q

(28)

Using the fact that qk[n− k]q = [n]q − [k]q, (27) becomes

q(
k
2) [n− 1]q!

2

[n− k]q[k]q

(
([n]q − [k]q)([n]q − [k + 1]q) + ([n]q − [k]q)([k]q + [k + 1]q) + [k]2q

)
which simplifies to (26).

Note that the special cases k = 0, k = n− 1, and k = n are correctly treated. Indeed,
in (28) we have mk+1

n−1 equals 0 for k = n and k = n− 1, we have mk
n−1 equals 0 for k = n,

and mk−1
n−1 equals 0 for k = 0.

We also give a recurrence satisfied by ZX(q).

Proposition 18. Let X be a word of size N in the letters A, D, and E and s be an
integer. Denote by k the number of letters A or E in X, we have

ZAs·D·X(q) = [k + 1]qZAs·X(q) +
∑

X=X1·E·X2

qκ(X1)ZAs·X1·D·X2(q); (29)

ZAs·E·X(q) = [s+ 1]qZAs·X(q); (30)

ZAs(q) = [s+ 1]q!, (31)

where As is the word with s times the letter A and κ(X1) is the number of E and A in X1.

Proof. Note that ZAs(q) = Zr,r(q), such that (31) directly comes from (25).
To prove the other parts of this property, we use the fact that ZY (q) is equal to the

matrix product 〈W |m(Y ) |V 〉 where m is the morphism sending the letters of Y to the
matrix satisfying the Ansatz of Proposition 11. We shall identify m(Y ) and Y in the rest
of this proof.

We prove Equation (30) by induction on s. If s = 0, this equation is just another way
of writing (8): 〈W |E = 〈W |. Otherwise, using (7), AE = qEA+ A, we have

〈W |AsEX |V 〉 = q 〈W |As−1EAX |V 〉+ 〈W |As−1X |V 〉
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= (q[s]q! + 1) 〈W |AsX |V 〉 ,

using the induction relation, so we obtain

〈W |AsEX |V 〉 = [s+ 1]q! 〈W |SX |V 〉 .

For Equation (29), we prove more generally that for any word Y , we have

〈W |Y DX |V 〉 = [k + 1]q 〈W |Y X |V 〉+
∑

X=X1EX2

qκ(X1) 〈W |Y X1DX2 |V 〉 . (32)

It suffices then to set Y = As to obtain the result. We prove this equation by induction
on the size of X. If X is the empty word, it is simply another writing of (9): D |V 〉 = |V 〉.
Otherwise, let X ′ be the word obtained from X by removing the first letter. There are
three possibilities.

• If X = DX ′, let Y ′ = Y D. We then have 〈W |Y DX |V 〉 = 〈W |Y ′DX ′ |V 〉. Let us
prove that the induction relation applied to 〈W |Y ′DX ′ |V 〉 gives us the same result
that for 〈W |Y DX |V 〉. As X and X ′ have the same number of letters A and E,
the first term of the right part of (32) equals [k + 1]q 〈W |Y ′X ′ |V 〉. Moreover, we
can write X as X1EX2 if and only if we can write X ′ as X ′1EX2 with X1 = DX ′1.
Moreover, in these equalities, X1 and X ′1 have the same number of E and A. Thus,∑

X′=X′1EX2

qκ(X
′
1) 〈W |Y ′X ′1DX2 |V 〉 =

∑
X=X1EX2

qκ(X1) 〈W |Y ′X ′1DX2 |V 〉 ,

so the induction is satisfied using the fact that Y ′X ′ = Y X and Y ′X ′1 = Y X1.

• If X = AX ′, let Y ′ = Y A. Using (6) (DA = qAD + A), we have

〈W |Y DX |V 〉 = q 〈W |Y ′DX ′ |V 〉+ 〈W |Y X |V 〉 . (33)

As X ′ and X have the same number of letters E, we can write X as X1EX2 if and
only if we can write X ′ as X ′1EX2 with X1 = AX ′1. Moreover, in these equalities,
X1 and X ′1 have the same number of E and X1 has one more A than X ′1. Hence,
the induction relation implies

〈W |Y ′DX ′ |V 〉 = [k]q 〈W |Y ′X ′ |V 〉+
∑

X′=X′1EX2

qκ(X
′
1) 〈W |Y ′X ′1DX2 |V 〉

= [k]q 〈W |Y X |V 〉+
∑

X=X1EX2

qκ(X1)−1 〈W |Y X1DX2 |V 〉 ,

as Y ′X ′ = Y X and Y ′X ′1 = Y X1. Using this equality in (33), the induction relation
is satisfied.
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• If X = EX ′, let Y ′ = Y E. Using (5) (DE = qED + E +D), we have

〈W |Y DX |V 〉 = q 〈W |Y ′DX ′ |V 〉+ 〈W |Y X |V 〉+ 〈W |Y DX ′ |V 〉 . (34)

As X starts with an E, except for the case X = EX ′, we can write X as X1EX2

if and only if X ′ can be written as X ′1EX2 with X1 = AX ′1. Moreover, in these
equalities, X1 and X ′1 have the same number of A and X1 has one more E than X ′1.
Hence, the induction relation implies:

〈W |Y ′DX ′ |V 〉 = [k]q 〈W |Y ′X ′ |V 〉+
∑

X′=X′1EX2

qκ(X
′
1) 〈W |Y ′X ′1DX2 |V 〉 ,

and the sum can be rewritten as∑
X=X1EX2

qκ(X1)−1 〈W |Y X1DX2 |V 〉 −
1

q
〈W |Y DX ′ |V 〉 .

Using this equality in (34), the induction relation is satisfied.

Hence, the induction relation is satisfied in every cases, which ends the proof.

Note that this proof implies that equations (29) and (30) are satisfied for any com-
binatorial object interpreting the probabilities of the 2-PASEP, whereas Equation (31)
depends on the objects themselves.

As a corollary we obtain a factorization of ZX(q).

Corollary 19. Let X be a word of {A,D,E}N with r letters A. we have

ZX(q) = [r + 1]q!Z̃X(q), (35)

where Z̃X(q) is a polynomial in q with nonnegative integer coefficients.

It would be interesting to find a combinatorial proof of this result as it would allow us
to give a combinatorial interpretation of the probabilities of the 2-PASEP with a general
value for q using a smaller family of objects.

In Definition 23 we define an equivalence relation on partially signed permutations
implying a combinatorial proof of Corollary 19 for q = 1.

5 Combinatorial interpretation using partially signed permuta-
tions

In order to obtain a combinatorial interpretation of these probabilities in terms of gener-
alized permutations, we shall use a generalization of the Françon-Viennot bijection. The
original bijection, defined in [14], is a bijection between Laguerre histories and permu-
tations that we extend to a bijection between marked Laguerre histories and partially
signed permutations.
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Algorithm 20.

• Input: A partially signed permutation σ of size n.

• Output: A marked Laguerre history H of size n.

• Execution: Let H = ψFV (σ) where σ is the permutation obtained from σ by remov-
ing the signs. For every i ∈ σ, mark the i’th step of H to build H. When marking
a step starting at height h, add h to its weight.

We denote by ΨFV (σ) the result of this algorithm. For example, for σ = 25783641,
the image of σ without the signs is given on the left of Figure 4 and the marked version
on the right.

1
1

1

3
1

Figure 4: Result of Françon-Viennot bijection for the permutation 25783641 on the left
and for the partially signed permutation σ = 25783641 on the right.

The reciprocal map is obtained by storing the positions of the marked steps in the
marked Laguerre history and then applying the reciprocal map of the usual Françon-
Viennot bijection. Finally, just overline the values corresponding to the marked steps.

Proposition 21. The map ψFV is a bijection between partially signed permutations of
size n with r overlined values and marked Laguerre histories of size n with r marked steps.
Moreover, let σ ∈ B′n. We have

ADE(GC(σ)) = label(ψFV (σ)); (36)

tw(σ) = tw(ψFV (σ)). (37)

Proof. As permutations and Laguerre histories are in bijection, there are as many partially
signed permutations of size n with r overlined values as marked Laguerre histories of size n
with r marked steps. Moreover, let σ and τ be two partially signed permutations having
the same image H by ψFV . As the Françon-Viennot bijection is injective on permutations,
the permutations σ and τ obtained from σ and τ are equal. In addition, the positions of
the marked steps of H correspond to the overlined values of σ and τ . They are therefore
the same and so σ = τ .

Let σ be a partially signed permutation and H = ψFV (σ), recall from Definition 2
that tw(σ) is the number of 31−2 patterns of σ plus its number of (31, 2) patterns. By
construction, the number of 31−2 patterns of σ is equal to the weight of H if we remove
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the additional weights of the marked steps. In order to prove that tw(σ) = tw(H), we
prove that the height h of a marked step of H in position k is equal to the number of
descents σi > σi+1 of σ such that σi+1 < k < σi. We use the reciprocal map of the
Françon-Viennot bijection recalled in Algorithm 7 where h corresponds to the number
of ◦ present when we add the value k in the permutation. Moreover, all these positions
except for the last one shall be occupied by a value greater than k and shall create a
descent with the value to its right. Thus, there are h descents satisfying the desired
property.

Finally, depending if k is overlined or not and forms a descent or not, the k’th step
of H is labeled by A, E, or D and ADE(GC(σ)) is equal to the label of ψFV (σ).

Using Theorem 16 and Proposition 21 we obtain the following theorem.

Theorem 22. Let x be a state of the 2-PASEP with N sites having r gray particles. We
have

Prob(x) =
1

ZN,r(q)

∑
ADE(GC(σ))=X(x)

qtw(σ), (38)

where ZN,r is the sum of qtw(σ) for all partially signed permutations σ of size N + 1
having r overlined values

Hence, partially signed permutations can be used to describe the probabilities of the
2-PASEP for any value of the parameter q.

In order to give a combinatorial proof of Corollary 19 in the case q = 1, we define here
an equivalence relation on partially signed permutations.

Definition 23. Let σ be a partially signed permutation of size n with r overlined values.
Let i1, . . . , ir+1 be the positions of these values and of 1, and let u1, . . . , ur+2 be the factors
of σ of the form

uk := σik−1+1 . . .σik , (39)

with i0 = 0 and ir+2 = n. Let τ be a partially signed permutation, we say that σ and τ
are equivalent (σ ∼ τ ) if there is a permutation µ ∈ Sr+1 such that

τ = uµ1 . . . uµr+1ur+2. (40)

For example, for σ = 27345186, we have u1 = 2, u2 = 734, u3 = 51 and u4 = 86. For
µ = 312, we have τ = 51273486. The set of the partially signed permutations equivalent
to σ is:

{25173486, 27345186, 51273486, 51734286, 73425186, 73451286}.

Lemma 24. Let σ and τ be two partially signed permutations such that σ ∼ τ . We have

GC(σ) = GC(τ ) (41)
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Proof. Firstly, we have Sign(σ) = Sign(τ ) as ∼ does not change the signs of the values.
Moreover, the value on the right of a not overlined value (other than 1) is the same in σ
and in τ such that GDes(σ) = GDes(τ ), which ends the proof.

As there are (r + 1)! partially signed permutations in the equivalence class of a per-
mutation with r overlined values, this lemma implies Corollary 19 for q = 1. Note that
the above equivalence relation leaves GC unchanged but does not modify the weight in
order to obtain the [r + 1]q! factor.

Each equivalence class may be identified by an assemblée of permutation, a family
of object used in [18] to give a combinatorial interpretation of the probabilities of the
2-PASEP in the case q = 1 with other parameters.

6 Another interpretation

In Section 3 we show that for any state x of the 2-PASEP and X = X(x), we have
Prob(x) = Prob(ι(x)) where ι is the particle hole symmetry involution of Definition 10.

Unfortunately, this property cannot be observed directly on the marked Laguerre
histories and on the partially signed permutations. In the case of the usual PASEP, this
property also exists and can be observed using large Laguerre histories [16]. Using the
connection between Laguerre histories and large Laguerre histories, we define the marked
large Laguerre histories and use them to obtain another interpretation of the probabilities.

6.1 Marked large Laguerre histories

Let us start by recalling the definition of large Laguerre histories [29].

Definition 25. A large Laguerre history of size n is a weighted Motzkin path of size
n with two different horizontal steps such that the weight of a step ↗, −→, ↘, or 99K
starting from height h is between 0 and h.

Definition 26. A marked large Laguerre history of size (n, r) is a large Laguerre history
of size n such that every step may be marked and r steps are marked. If a step↗ or −→
starting at height h is marked, its weight is increased by h+ 1 where the marked steps↘
or 99K starting at height h increase their weight by h.

Hence, a step −→ or ↗ has a weight between 0 and h if it is not marked and be-
tween h+ 1 and 2h+ 1 if it is marked. A step 99K or ↘ has a weight between 0 and h if
it is not marked and between h and 2h if it is marked.

The label of a marked large Laguerre history H of size (n, r) is the word of size n in
the letters A, D and E obtained by sending the marked steps on A, the steps↗ and −→
on D and the remaining steps on E. We denote it by label(H).

Note that the marked large Laguerre histories of size (n, 0) are exactly the large La-
guerre histories of size n.

An example of a marked large Laguerre history is given in Figure 5. We denote by
H0(X) the set of all marked large Laguerre histories whose label is X.
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1
2

1
1

Figure 5: A marked large Laguerre history of size (8, 2) which label is ADADDEDE.

In order to use these objects to obtain a combinatorial interpretation of the prob-
abilities of the 2-PASEP, we define a bijection between marked Laguerre histories and
marked large Laguerre histories. This map is a generalization of a bijection between La-
guerre histories and large Laguerre histories described by the second author in [22] using
weighted Dyck path. The following algorithm is another description of this map directly
on Laguerre histories.

Algorithm 27.

• Input: a Laguerre history H of size n.

• Output: a large Laguerre history H ′ of size n− 1.

• Execution: for all 1 6 i < n, build H ′i (the i’th step of H ′) using the following table

Hi\Hi+1 ↗ or −→ ↘ or 99K

↗ or 99K ↗ 99K

↘ or −→ −→ ↘

(42)

The weight of H ′i is equal to the weight of Hi.

We denote by Ψ the map associated with Algorithm 27. The reciprocal map can also
be described using a similar table from large Laguerre histories of size n to Laguerre
histories of size n+ 1. An example of Ψ is given in Figure 6

1
1 1

1

Ψ

Figure 6: An example of Ψ on a Laguerre history of size 8.
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The map Ψ is a variant of a well known bijection between Laguerre histories and large
Laguerre histories using their common representation as weighted Dyck paths [22]. The
proof that it is a bijection uses the following lemma.

Lemma 28. Let H be a Laguerre history of size n and 0 < k < n. Let hk be the height
of the k’th step of H and h′k be the height of the k’th step of Ψ(H)

• If Hk is ↗ or −→, then h′k = hk.

• If Hk is ↘ or 99K, then h′k = hk − 1.

Proof. We prove this lemma by induction on k. Let H ′ = Ψ(H). We have h1 = h′1 = 0
and H1 is indeed ↗ or −→. In the case k = 2, if H2 is ↗ or −→ then, using the table
in (42), H ′1 = H1 as it cannot be ↘ or 99K. This proves that h2 = h′2. Moreover, if H2 is
↘ or 99K then H1 is necessarily ↗ and so H ′1 is 99K and h′2 = 0 = h2 − 1.

Suppose the lemma true for k − 1, there are four cases obtained directly from (42).

• If Hk−1 is ↗ or −→ and Hk is ↗ or −→ then H ′k−1 = Hk−1 and h′k−1 = hk−1 which
implies h′k = hk.

• If Hk−1 is ↘ or 99K and Hk is ↗ or −→ then H ′k−1 = Hk−1 and h′k−1 = hk−1 − 1
which implies h′k = hk − 1.

• If Hk−1 is ↗ or −→ and Hk is ↘ or 99K then h′k−1 = hk−1 and h′k = hk − 1.

• If Hk−1 is ↘ or 99K and Hk is ↘ or 99K then h′k−1 = hk−1 − 1 and h′k = hk.

Lemma 29. Let H be a Laguerre history. We have

label(H) = label(Ψ(H)); (43)

tw(H) = tw(Ψ(H)). (44)

Proof. The weight stays unchanged when applying Ψ which proves Equation (44).
Moreover, using (42) we have that for i < n, the i’th step of Ψ(H) is −→ or ↗ if and

only if it is the case of the (i+ 1)-st step of H. This proves (43).

Note that this result is a reformulation of the first two points of Proposition 3.6 of [22].
Let us now extend this map to the marked versions of these objects.

Algorithm 30.

• Input: a marked Laguerre history H.

• Output: a marked large Laguerre history H′.

• Execution:

– let H be the Laguerre history obtained from H by removing its marks;

– H ′ = Ψ(H);
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– for all k such that Hk is marked, mark the (k−1)’th step of H ′ to build H′;

– for all marked steps of H, if it is a −→ (resp. 99K), change it in 99K (resp.
−→).

As the execution of this algorithm is the same as the execution of Algorithm 27 when
applied to Laguerre history, this one is a generalization to marked Laguerre histories that
we also denote by Ψ. An example of an execution of Ψ on a marked Laguerre history is
given on Figure 7. In this example, the Laguerre history H and the large Laguerre history
H ′ are the ones of Figure 6.

1

3
1

1
2

1
1Ψ

Figure 7: A marked Laguerre history on the left and its image by Ψ on the right. The
intermediate steps correspond to the paths in Figure 6.

Proposition 31. The map Ψ sending marked Laguerre histories to marked large Laguerre
histories is a bijection. Moreover, for every marked Laguerre history H, we have

label(H) = label(Ψ(H)); (45)

tw(H) = tw(Ψ(H)). (46)

Proof. The fact that Ψ is a bijection comes directly from the fact that Ψ is a bijection
from Laguerre histories to large Laguerre histories.

As the positions of the letters A are the same in label(H) and in label(Ψ(H)) and
that the non-marked steps of ψ(H) are the same as the steps of ψ(H), Equation (45) is
a consequence of Lemma 29.

Let H′ = Ψ(H). Equation (44) implies that we only need to prove that the weight we
add to a marked step of H′ corresponds to the added weight as we mark the corresponding
step in H in order to prove (46).

Let (h1, . . . , hn) and (h′1, . . . , h
′
n−1) be such that hi (resp. h′i) is the height of the i’th

step of H (resp. H′). Let k be the position of a marked step of H. Let H be the Laguerre
history obtained from H by removing the marked steps and their additional weight and
H ′ the one obtained from H′. As we exchange the steps −→ and 99K when we mark a
step and as the −→ and↗ have a greater weight increase when marked on large Laguerre
histories, we need to prove that h′k−1 = hk − 1 if H ′k−1 is a ↗ step or a 99K step and
that h′k−1 = hk otherwise. Let us treat the four different cases using Lemma 28 and (42).

• If H ′k−1 is↗ we have h′k−1 = h′k− 1. Moreover, Hk is↗ step or −→ so h′k = hk and
then h′k−1 = hk − 1.
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• If H ′k−1 is 99K we have h′k−1 = h′k. Moreover, Hk is ↘ or 99K so h′k = hk − 1 and
then h′k−1 = hk − 1.

• If H ′k−1 is −→ we have h′k−1 = h′k. Moreover, Hk is ↗ step or −→ so h′k = hk and
then h′k−1 = hk.

• If H ′k−1 is ↘ we have h′k−1 = h′k + 1. Moreover, Hk is ↘ or 99K so h′k = hk − 1 and
then h′k−1 = hk.

We then deduce the following combinatorial interpretation.

Corollary 32. Let x be a state of the 2-PASEP with N sites and r gray particles. We
have

Prob(x) =
1

ZN,r(q)

∑
H∈H0(X(x))

qtw(H), (47)

where ZN,r(q) is the generating series of the weights of the marked large Laguerre histories
of size N with r marked steps.

6.2 An involution on Laguerre histories

Our main interest in this section is to describe an involution on marked (large) Laguerre
histories that behaves the same way as ι does on the states of the 2-PASEP where ι is
the map defined in Definition 10. This goal is easier to achieve on marked large Laguerre
histories.

To describe this involution we need the notion of opposing steps of a path: given
Hi =↗, the opposing step is the Hj =↘ such that

j = min
k>i
{Hk =↘ | hk = hi + 1}.

We represented all opposing steps of a path in Figure 8. For example, the opposing step
of H5 is H9.

Figure 8: All opposing steps of a path.

Algorithm 33.

• Input: a marked large Laguerre history H.

• Output: a marked large Laguerre history H̃.
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• Execution: Let i1, . . . , ir be the positions of the marked steps of H. Apply the
following steps:

1. unmark the path;

2. reverse the path H;

3. exchange the weights of the opposing ↗ and ↘;

4. mark the path at the positions n− i1, . . . , n− ir;
5. change the unmarked −→ to 99K and reciprocally.

We denote by ι the map associated with Algorithm 33. A detailed example of this
transformation is given in Figure 9 with the different intermediate steps representing
which step is applied between two paths.

1
2

1
1

1
1

1
1

1
1

1
1

2
1

1
1

2
1

(1)

(2)

(3)

(4)

(5)

ι

Figure 9: An execution of ι on H ∈ H0(ADADEEE) to its image H̃ ∈ H0(DDDEAEA).
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Theorem 34. The map ι is an involution on marked large Laguerre histories. Moreover,
if H is a marked large Laguerre history, we have

ι
(

label(H)
)

= label(ι(H)); (48)

tw(H) = tw(ι(H)). (49)

Proof. Reversing a Laguerre history exchanges the starting height of a step with its ending
height. For horizontal steps this doesn’t change anything. For increasing and decreasing
steps, exchanging the weight with the opposing step ensure that the weight of every step
is between 0 and its starting height after reversing the path. Hence, ι is an involution.

Reversing the path changes a ↘ step to a ↗ one and conversely. Exchanging −→ by
99K and conversely corresponds to exchanging D and E in the definition of ι on words in
{A,D,E}. Moreover, the positions of the letter A is just reversed which proves (48).

The steps one, two, and four of Algorithm 33 do not change the weight of the path.
We only need to prove that marking H at a position n− ik increases the weight as much
as it is decreased by unmarking H at position ik. If the step is −→ or 99K, its starting
height does not change through the different steps. The steps does not change either. The
increased weight is the same. A step↗ is sent to↘ by reversing the path and conversely,
this increases or decreases the height by one which compensate the fact that, starting at
height h a step ↗ increases its weight by h+ 1 and a step ↘ by h. This proves (49).

The maps Ψ and ι also induce an involution directly on marked Laguerre history.

Corollary 35. Let H be a marked Laguerre history and i = Ψ−1 ◦ ι ◦Ψ, we have

ι
(

label(H)
)

= label(i(H)); (50)

tw(H) = tw(i(H)). (51)

7 Conclusion

This combinatorial work gives rise to an algebraic interpretation developed by the second
author in [23]. Thanks to this combinatorial algebra setting Nunge gives an exact enumer-
ation formula of the stationary distribution of any state of the 2-ASEP. This generalizes
results on noncommutative symmetric functions [15, 26, 21].

Theorem 36. [23] Let x be a state of the 2-PASEP and I be the segmented composition
such that X(x) = ADE(I). We have

ZX(x) =
∑
J�I

(
−1

q

)`(I)−`(J)
q− st′(I,J)cJ, (52)

where cJ = [s]j1q [s − 1]j2q . . . [1]jsq with j1, . . . , js are the parts of J and st′ is a statistic on
segmented compositions.
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The 2-PASEP has five parameters in its most general form [27] α, β, γ, δ and q. In
this work we set α = β = 1 and γ = δ = 0. We could also set the probabilities equal to
1/(N + 1) to be equal to u/(N + 1) and then choose for example set q > 1 and adjust
the other parameters. This is an interesting problem suggested by the referee. Some
of our results could probably be generalized in the case for α and β general. The work
of Josuat-Vergès in the case of the classical PASEP [16] gives an interpretation for the
Laguerre histories and the permutations. We leave as an open problem to generalize this
to marked Laguerre histories and partially signed permutations.

Inspired by the Markov chains defined on permutations (or permutation tableaux)
that project on the PASEP [7], we would like to define an analog on the partially signed
permutations or on marked Laguerre histories. We conjecture that it is possible to define
such a Markov chain on partially signed permutations with r signs that will project to the
2-PASEP. Ideally the graph would be composed of (r+ 1)! components. Each component
would project to the Markov chain of 2-PASEP.

A natural generalization of the 2-PASEP is due to Cantini [4]. Given ` a positive
integer, the state of the process is all the words of length N on the alphabet {−`, . . . , `}.
Then particles ij can become ji with rate 1 if i > j and with rate q otherwise. At the
left and right border a particle i can become −i with a certain rate. The 2-PASEP is the
case ` = 1. The matrix ansatz does not hold in this general setting but Cantini shows
that the partition function is a specialization of a Koornwinder polynomial [4]. We leave
as an open problem to generalize partially signed permutations to this model.
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