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Abstract

We show that the Hurwitz action is “as transitive as possible” on reflection
factorizations of Coxeter elements in the well generated complex reflection groups
G(d, 1, n) (the group of d-colored permutations) and G(d, d, n).

Mathematics Subject Classifications: 20F36, 20F55, 05E18

1 Introduction

Given a group G with a generating set T that is closed under conjugation, the braid group
Bm := 〈σ1, . . . , σm−1 | σiσi+1σi = σi+1σiσi+1〉 on m strands acts on Tm via(

t1, . . . , ti−1, ti, ti+1, ti+2, . . . , tm
) σi7−→(

t1, . . . , ti−1, ti+1, (ti)
ti+1 , ti+2, . . . , tm

)
,

where (ti)
ti+1 := t−1i+1 · ti · ti+1 represents conjugation. The individual moves σi are called

Hurwitz moves, and the entire action is called the Hurwitz action. Given a tuple t ∈ Tm,
the product of the elements of σi(t) is equal to the product of the elements of t, so that
the Hurwitz action may be viewed as an action on T -factorizations of a given element c =
t1 · · · tm in G. Moreover, the Hurwitz action clearly preserves the set of conjugacy classes
of the tuple t on which it acts. In general, there may be multiple orbits of factorizations
of a given element c with fixed tuple of conjugacy classes under the Hurwitz action, but in
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[LR16, Conj. 6.3], it was conjectured that if G is a well generated complex reflection group
and c is a Coxeter element in G, then the multiset of conjugacy classes of the factors in a
factorization completely determines the Hurwitz orbit to which it belongs. The purpose
of this note is to prove the conjecture for the two combinatorial families of well generated
complex reflection groups.

Main Theorem. Fix integers n > 2, d > 2, let G be one of the complex reflection
groups G(d, 1, n) and G(d, d, n), and let c be a Coxeter element in G. Then two reflection
factorizations of c are in the same Hurwitz orbit if and only if they have the same multiset
of conjugacy classes of reflections.

The remainder of this document is structured as follows: In Section 2, we give the
mathematical context and background for the present work. In Section 3, we introduce
the main objects of our study: the infinite families of complex reflection groups and their
generic covers. In Section 4, we prove the main result. Finally, in Section 5, we make
some remarks about the exceptional complex reflection groups (those that do not belong
to the infinite family).

2 Context and background

We begin with a review of some previous work on the Hurwitz action, much of which
takes place in the context of reflection groups (either complex or Coxeter).

The original motivations for the study of the Hurwitz action are geometric: it was
introduced by Hurwitz [Hur91] as part of his study of covering surfaces of the Riemann
sphere. In that context, the group G under consideration is the symmetric group Sn and
the allowable factors T are the transpositions, which case has been the subject of much
further study (e.g., [Klu88, BIT03]). More generally, as part of his study of the geometry
of hyperplane arrangements, Bessis considered the case that G is a complex reflection
group and T is the set of reflections in G. (These notions are defined in the next section.)

Theorem 1 (Bessis [Bes15, Prop. 7.6]). Let G be a well generated complex reflection group
and c a Coxeter element in G. Then the Hurwitz action is transitive on minimum-length
reflection factorizations of G.

This result was proved on a case-by-case basis, using the classification of complex
reflection groups. The corresponding result for arbitrary Coxeter groups was proved by
Igusa and Schiffler [IS10], and given a short, elegant proof in [BDSW14].

In the case in finite Coxeter groups (synonymously, finite real reflection groups), much
is known about the structure of the Hurwitz orbits of reflection factorizations. The ele-
ments with the property that the Hurwitz action is transitive on their minimum-length
reflection factorizations are completely classified [BGRW17]. In [LR16], the present author
and Reiner showed that two reflection factorizations (of any length) of a Coxeter element
in a finite Coxeter group belong to the same Hurwitz orbit if and only if they share the
same multiset of conjugacy classes. This result was recently extended by Wegener and
Yahiatene.
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Theorem 2 (Wegener–Yahiatene [WY20, Thm. 1.2]). Let G be an arbitrary Coxeter
group and c a Coxeter element in G. Then two reflection factorizations of c lie in the
same Hurwitz orbit if and only if they share the same multiset of conjugacy classes.

When not restricted to reflection factorizations, the Hurwitz action has been com-
pletely analyzed for dihedral groups and some related families [Hou08, Sia09, Ber11].

Though the present work is not focused on enumeration, we should mention that
reflection factorizations of Coxeter elements were enumerated by Chapuy and Stump, with
a beautiful uniform formula, proved case-by-case [CS14]. The Chapuy–Stump formula was
proved uniformly for Weyl groups by Michel [Mic16], and was further refined by DelMas,
Hameister, and Reiner [dHR18]. Subsequently, these enumerations have been generalized
to all regular elements and given a uniform proof by Douvropoulos [Dou18].

3 Complex reflection groups

3.1 Basic definitions, classification, Coxeter elements

In this section, we give relevant background on complex reflection groups. For a more
thorough treatment (though not necessarily in the same notation), see [LT09, Chs. 2, 11,
and 12].

Given a finite-dimensional complex vector space V , a reflection is a linear transforma-
tion t : V → V whose fixed space ker(t− 1) is a hyperplane (i.e., has codimension 1), and
a finite subgroup G of GL(V ) is called a complex reflection group if G is generated by its
subset T of reflections.1 For example, if d, e and n are positive integers, then the group

G(de, e, n) :=

{
n× n monomial matrices whose nonzero entries are

(de)th roots of unity with product a dth root of unity

}
is a complex reflection group acting on Cn: writing ω = exp(2πi/de) for the primitive
(de)th root of unity, the reflections are the transposition-like reflections

1
. . .

1
ωk

1
. . .

1
ωk

1
. . .

1



(1)

1Often in the literature it is required a priori that reflections have finite order, or that G be a group of
unitary transformations. We omit these conditions because they do not affect the resulting classification.
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of order 2, fixing the hyperplane xi = ωkxj, and the diagonal reflections

1
. . .

1
ωek

1
. . .

1


(2)

of various orders, fixing the hyperplane xi = 0. It is natural to represent such groups
combinatorially: the group G(de, 1, n) is isomorphic to the wreath product Z/deZ oSn of
a cyclic group with the symmetric group Sn. The elements of Z/deZ oSn are pairs [w; a]
with w ∈ Sn and a = (a1, . . . , an) ∈ (Z/deZ)n, with product given by

[w; a] · [u; b] = [wu;u(a) + b], where u(a) :=
(
au(1), . . . , au(n)

)
.

Under this isomorphism, w is the underlying permutation of the monomial matrix cor-
responding to [w; a], while ak is the exponent to which ω = exp (2πi/de) appears in the
nonzero entry in the kth column. For S ⊆ {1, . . . , n}, we say that

∑
k∈S ak is the weight

of S; this notion will come up particularly when the elements of S form a cycle in w.
When S = {1, . . . , n}, we call a1 + . . .+ an the weight of the element [w; a].

We denote by ε the identity permutation in the symmetric group Sn, so the diagonal
reflection in (2) corresponds to [ε; (0, . . . , 0, ek, 0, . . . , 0)]. In the case of the transposition-
like reflections, we condense the wreath-product notation even further and write [(i j); k]
for the reflection in (1), rather than the longer [(i j); (0, . . . , 0,−k, 0, . . . , 0, k, 0, . . . , 0)].

Complex reflection groups were classified by Shephard and Todd [ST54]: every irre-
ducible complex reflection group is either isomorphic to some G(de, e, n) or to one of 34
exceptional examples, and every complex reflection group is a direct sum of irreducibles.
In the present work we focus on the groups G(de, e, n), but we briefly discuss the excep-
tional groups in Section 5.

An element g of a complex reflection group is called regular if it has an eigenvector
that does not lie on any of the fixed hyperplanes of any of the reflections in G. A Coxeter
element in G is a regular element of multiplicative order h := |T |+|A|

n
, where T is the set of

reflections in G, A is the set of reflecting hyperplanes, and n is the dimension of the space
on which G acts.2 Not every complex reflection group contains Coxeter elements; those
that do are called well generated in some sources and duality groups in others. In the
infinite family G(de, e, n), the well generated groups are precisely G(d, 1, n) and G(d, d, n).

2In different sources, one finds other, not-necessarily equivalent definitions of Coxeter elements. For
example, in [Bes15, Dou18], Coxeter elements are taken to be those for which the eigenvector can be
chosen with eigenvalue exp(2πi/h). For more discussion, see [RRS17].
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For example, the elements
ω

1
1

. . .

1

 ∈ G(d, 1, n) and


ω

1
. . .

1
ω

 ∈ G(d, d, n) (3)

are Coxeter elements in their respective groups, where ω = exp(2πi/d).
There are d conjugacy classes of reflections in G(d, 1, n): all the transposition-like

reflections are conjugate to each other, while the diagonal reflections fall into d−1 classes
depending on their weight. When n = 2, the group G(d, d, n) is the dihedral group of
order 2d; thus, it has one conjugacy class of reflections if d is odd and two if d is even.
For n > 3, all reflections in G(d, d, n) are conjugate to each other.

Remark 3. In a Weyl group, all Coxeter elements are conjugate. For other complex
reflection groups, this is not necessarily the case; however, by [RRS17, Prop. 1.4], if c
and c′ are Coxeter elements in a complex reflection group G, then there exists a group
automorphism of G that sends c to c′ and sends reflections to reflections. Consequently,
in order to prove the Main Theorem for all Coxeter elements it suffices to prove it for just
one.

3.2 Generic covers

As described in the previous section, the group G(d, 1, n) is isomorphic to the wreath
product Z/dZ oSn of the cyclic group Z/dZ by the symmetric group Sn. Consequently,
for each d there is a natural projection πd : G(∞, 1, n)→ G(d, 1, n) from the infinite group
G(∞, 1, n) := Z oSn onto G(d, 1, n) that reduces the weight vector a in the element [w; a]
modulo d. Moreover, this covering is compatible with the reflection group structure, in
the following sense: we may view the elements of G(∞, 1, n) as monomial matrices whose
nonzero entries are integer powers of a formal variable x, acting on the vector space Kn

where K is an algebraically closed field containing C and the formal variable x (e.g., one
could take K to be C(x), or to be the Puiseux series in x). The reflections are again
the elements that fix a hyperplane, and again come in two families: the transposition-like
reflections [(i j); k] := [(i j); (0, . . . , 0,−k, 0, . . . , 0, k, 0, . . . , 0)] for i, j ∈ {1, . . . , n}, k ∈ Z
and the diagonal reflections [ε; (0, . . . , 0, k, 0, . . . , 0)] for k ∈ Z r {0}. These reflections
generate G(∞, 1, n), and every reflection r in G(d, 1, n) has in its fiber π−1d (r) reflections of
G(∞, 1, n). The converse is not quite true: the image πd(r̃) of a reflection r̃ in G(∞, 1, n)
is a reflection in G(d, 1, n) unless r̃ is diagonal and has weight divisible by d, in which
case the projection is the identity. We may extend the definition of regular element to
this setting; the element
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c̃ :=


x

1
1

. . .

1

 ∈ G(∞, 1, n) (4)

with (right) eigenvector (x, . . . , x2/n, x1/n)T is one example. For any d, the image of c̃
under πd is the Coxeter element for G(d, 1, n) that appears in (3), and for these reasons
we say that c̃ is the standard Coxeter element in G(∞, 1, n).

Just as G(d, 1, n) has a subgroup G(d, d, n), the wreath product G(∞, 1, n) has a
subgroup G(∞,∞, n) consisting of all elements of weight 0. For each d, the projection
map πd restricts to a covering πd : G(∞,∞, n) → G(d, d, n). Moreover, it was shown
by Shi [Shi02, Thm. 2.3] that in fact G(∞,∞, n) is isomorphic to the affine symmetric
group, the Coxeter group of affine type A. This group has Coxeter presentation〈

s1, . . . , sn−1, sn = s0

∣∣∣∣∣∣
s2i = 1 for i = 1, . . . , n
sisj = sjsi if i 6= j ± 1
sisi+1si = si+1sisi+1 for i = 0, . . . , n− 1

〉
,

where concretely we can take the generators to be si = [(i i + 1); 0] for i = 1, . . . , n − 1
and s0 = sn = [(1 n); 1]. In an arbitrary Coxeter group, the reflections are defined
to be the conjugates of the generators si; in G(∞,∞, n), these coincide exactly with
the reflections in G(∞, 1, n) that belong to G(∞,∞, n), namely, the transposition-like
reflections [(i j); k]. Under the projection πd, these are mapped surjectively onto the
reflections in G(d, d, n).

In a Coxeter group, one defines a Coxeter element to be a product of the simple
generators in some order. For example,

c̃ := s0s1 · · · sn−1 =


x

1
. . .

1
x−1

 (5)

is a Coxeter element in G(∞,∞, n) in this sense. The element c̃ is a regular element in
G(∞,∞, n), with eigenvector (x, . . . , x2/(n−1), x1/(n−1), 0)T , and its image under πd is the
Coxeter element for G(d, d, n) that appears in (3); for these reasons we say that c̃ is the
standard Coxeter element in G(∞,∞, n).

Remark 4. When n = 2, the affine symmetric group G(∞,∞, 2) is the infinite dihedral
group, consisting of the isometries of the real line R that preserve the integer lattice Z.
(The standard Coxeter element in this case is translation by 1.) This group was already
considered in [LR16], where it was used in the proof of the Main Theorem for finite real
reflection groups. In particular, [LR16, §§4.1, 4.3] imply that any reflection factorization
(t1, . . . , t2k+1) of a reflection t in G(∞,∞, 2) is in the same Hurwitz orbit as a factorization
of the form (t′1, t

′
1, t
′
3, t
′
3, . . . , t

′
2k−1, t

′
2k−1, t).
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4 Proof of the main result

In this section, we prove the Main Theorem. The first step is the following lemma, which
allows passing the relevant questions about G(d, 1, n) and G(d, d, n) to their generic covers.

Lemma 5. Let Gd be one of the groups G(d, 1, n) and G(d, d, n), and let G∞ be its
generic cover. Let c ∈ Gd be the Coxeter element from (3) and let c̃ ∈ G∞ be the standard
Coxeter element for G∞ that appears in (4) or (5). Then for any reflection factorization
(t1, . . . , tk) of c in Gd, there exists a reflection factorization (t̃1, . . . , t̃k) of c̃ in G∞ such
that πd

(
t̃i
)

= ti for all i.

Proof. The first step is to build a reflection factorization of an element in G∞ that is
“close to” c̃.

If Gd = G(d, 1, n), then every reflection factorization of c contains diagonal reflections
(since every product of transposition-like reflections belongs to G(d, d, n), which c does
not); choose i to be the smallest index such that ti is a diagonal reflection. If instead Gd =
G(d, d, n), then every reflection factorization of c contains a reflection whose underlying
permutation is (a, n) for some a ∈ {1, . . . , n−1} (since all other reflections fix the standard
basis vector en, which c does not); choose i to be the smallest index such that ti is such a
reflection. For each index j ∈ {1, . . . , k} r {i}, choose t̃j to be an arbitrary reflection in
π−1d (tj). Then choose t̃i as follows: if Gd = G(d, 1, n), take t̃i to be the unique reflection

in π−1d (ti) such that the weight of c̃′ := t̃1 · · · t̃k is equal to 1; if Gd = G(d, d, n), take t̃i to

be the unique reflection in π−1d (ti) such that the weight of n in c̃′ := t̃1 · · · t̃k is −1.

By construction, c̃ and c̃′ have the same underlying permutation, corresponding cycles
of c̃ and c̃′ have the same weight, and πd(c̃) = πd(c̃′) = c. Thus we can write c̃ = [w; a]
and c̃′ = [w; a′] and we have a− a′ = d · (b1, . . . , bn) for some integers b1, . . . , bn such that
b1 + . . . + bn = 0; and moreover if Gd = G(d, d, n) then also bn = 0. For i = 1, . . . , n,
define b′i = b1 + . . .+ bi−1 (so in particular b′1 = 0 and b′n = b1 + . . .+ bn−1 = −bn), and let
δ = [ε; d · (b′1, b′2, . . . , b′n)] ∈ G(∞, 1, n). If Gd = G(d, 1, n) then w = (1 2 · · · n) and so

δc̃δ−1 = [w; (a1 + db′2 − db′1, a2 + db′3 − db′2, . . . , an−1 + db′n − db′n−1, an + db′1 − db′n)]

= [w; (a1 + db1, a2 + db2, . . . , an + dbn)].

If instead Gd = G(d, d, n) then w = (1 2 · · · n− 1)(n) and so

δc̃δ−1 = [w; (a1 + db′2 − db′1, . . . , an−2 + db′n−1 − db′n−2, . . . , an−1 + db′1 − db′n−1, an)]

= [w; (a1 + db1, . . . , an−2 + dbn−2, . . . , an−1 + dbn−1, an)].

In both cases, the result of the conjugation is c̃′. Moreover, since πd(δ) is the identity
element in Gd, it follows that (

(δ−1t̃1δ), . . . , (δ−1t̃kδ)
)

is the desired reflection factorization of c̃.
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Remark 6. In general, the question of whether reflection factorizations of an element g in
G(d, 1, n) or G(d, d, n) can be lifted to the generic cover can be subtle. One problem is that
reflection length is not preserved by projection: if g̃ ∈ G∞ has minimum-length reflection
factorizations of length k, it may be that its projection πd(g̃) has shorter factorizations,
that consequently cannot be lifted to factorizations of g̃. A trivial example of this problem
is the reflection g̃ = [ε; (d, 0, 0)] ∈ G(∞, 1, 3) (having reflection length 1), whose image
is the identity in G(d, 1, 3) (having reflection length 0): the empty factorization of the
identity cannot be lifted to a factorization of g̃.

Even when reflection length is preserved, it may not be possible to lift all factorizations.
For example, the central element g = [ε; (1, 1, 1)] = −1 in G(2, 1, 3) is the image of
g̃ = [ε; (1, 1, 1)] in G(∞, 1, 3) under the projection π2. Both elements have reflection
length 3 (for example, they can be factored as the product of three diagonal reflections),
but the reflection factorization

g = [(1 2); (0, 0, 0)] · [(1 2); (1, 1, 0)] · [ε; (0, 0, 1)]

is not the projection of any reflection factorization of g̃. For more on reflection length in
complex reflection groups, see [Shi07, FG14].

To finish the proof of the Main Theorem, we handle the groups G(d, d, n) and G(d, 1, n)
separately.

4.1 The group G(d, d, n)

If n = 2 then Gd := G(d, d, n) is the dihedral group of order 2d. The Main Theorem was
proved for this group (along with all other finite real reflection groups) in [LR16].

Now suppose that n > 2. In this case, the reflections in Gd form a single conjugacy
class, and so the statement to be proved is that for each Coxeter element c in Gd, any two
reflection factorizations of the same length belong to the same Hurwitz orbit. Moreover,
from the discussion in Remark 3 we know that it suffices to prove the statement for
the single Coxeter element c := [(1 2 · · ·n − 1)(n); (0, . . . , 0, 1,−1)] in (3). Let c̃ :=
[(1 2 · · ·n−1)(n); (0, . . . , 0, 1,−1)] be the standard Coxeter element in G∞ := G(∞,∞, n).

Fix an integer m and two length-m reflection factorizations t = (t1, . . . , tm) and t′ =
(t′1, . . . , t

′
m) of c. By Lemma 5, there exist reflection factorizations t̃ =

(
t̃1, . . . , t̃m

)
and

t̃′ =
(
t̃′1, . . . , t̃

′
m

)
of c̃ in G∞ such that πd(t̃i) = ti and πd(t̃

′
i) = t′i for all i ∈ {1, . . . ,m}.

The reflections in G∞ form a single conjugacy class (the defining Coxeter relations can
written si+1 = (si+1si)

−1si(si+1si), so all si are conjugate, and each reflection is conjugate
to one of the si), hence by Theorem 2 of Wegener–Yahiatene, the factorizations t̃ and t̃′

belong to the same Hurwitz orbit. Hurwitz moves clearly commute with the projection πd,
so the same braid β that satisfies β(̃t) = β(̃t′) also satisfies β(t) = β(t′). This completes
the proof.

4.2 The group G(d, 1, n)

Our proof for G(d, 1, n) begins the same as for G(d, d, n); however, because the generic
cover G∞ := G(∞, 1, n) is not a Coxeter group, we cannot make use of Theorem 2.
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Consequently, we employ a more hands-on approach.
By Remark 3, it suffices to prove the statement for the single Coxeter element c :=

[(1 2 · · ·n); (0, . . . , 0, 1)] in G(d, 1, n) shown in (3). Let c̃ := [(1 2 · · ·n); (0, . . . , 0, 1)] be
the standard Coxeter element in G∞. Choose a reflection factorization t = (t1, . . . , tm)
of c. By Lemma 5, there exists a reflection factorization t̃ = (t̃1, . . . , t̃m) of c̃ in G∞ such
that πd(t̃i) = ti for all i ∈ {1, . . . ,m}. The bulk of the proof is to produce a canonical
representative of the Hurwitz orbit of t̃.

We may use Hurwitz moves to move all the diagonal reflections in t̃ before all the
transposition-like reflections, and so without loss of generality we assume that t̃1, . . . , t̃k
are diagonal and t̃k+1, . . . , t̃m are transposition-like. Apply the projection π1 : G∞ → Sn;
denoting t̂i = π1(t̃i), we have that t̂ := (t̂k+1, . . . , t̂m) is a transposition factorization of the
long cycle ĉ := π1(c̃) = (1 2 · · ·n). It is not difficult to show3 that for any transposition
t̂, there is a factorization t̂′ in the Hurwitz orbit of t̂ in which t̂ is the first factor. By
choosing a braid β such that β(̂t) = t̂′ and applying it to the last m− k coordinates of t̃,
we may take t̃k+1 to have nonzero entries in any pair of off-diagonal positions that we like.
Consequently, we may apply the following sort of Hurwitz moves to arrange one diagonal
reflection to have non-1 entry in the (1, 1) position:([

1 0
0 b

]
,

[
0 a
a−1 0

])
σ−→
([

0 a
a−1 0

]
,

[
b 0
0 1

])
σ−→
([

b 0
0 1

]
,

[
0 ab−1

a−1b 0

])
.

Since all diagonal reflections commute with each other, we may successively move each
one into the kth position and apply the same procedure to give a factorization in the same
Hurwitz orbit as t in which all diagonal reflections have their unique nonzero weight in
the first position.

The product of the transposition-like factors in t belongs to the subgroup G(∞,∞, n)
of weight-0 elements. Consequently, the sum of the weights of the diagonal factors must
be equal to the weight of c̃, which is 1. This implies that, after performing the Hurwitz
moves above, the product of the diagonal reflections is [ε; (1, 0, . . . , 0)] and the product of
the transposition-like factors is the permutation matrix ĉ.

We continue to focus on the suffix consisting of transposition-like factors. By [LR16,
Thm. 1.1] (which has the same statement as our Main Theorem but in the case of finite
real reflection groups) applied in Sn, the factorization t̂ = (t̂k+1, . . . , t̂m) has in its Hur-
witz orbit a factorization in which the first m − k − (n − 1) factors are all equal to the
transposition (1 2) and the last n − 1 factors are (1 2), (2 3), . . . , (n − 1 n), a minimal
factorization of ĉ. (Incidentally, this implies that m−k− (n−1) is even.) Choose a braid
β that has this effect on t̂; then

β(t̃k+1, . . . , t̃m) =
(

[(1 2); ak+1] , . . . , [(1 2); am−n+1] ,

[(1 2); am−n+2] ,
[
(2 3); am−n+3)

]
, . . . , [(n− 1 n); am]

)
3For example, it follows from [LR16, Cor. 1.4 and Cor. 5.5]; but one can also derive it directly from

the tree representation of factorizations in Sn [Dén59].

the electronic journal of combinatorics 27(2) (2020), #P2.54 9



for some integers ak+1, . . . , am. Because everything is so explicit, by carrying out the
multiplication we can immediately read off two facts: first, that am−n+3 = · · · = am = 0,
and second, that

[(1 2); ak+1] · · · [(1 2); am−n+2] = [(1 2); 0]. (6)

The subgroup of G∞ generated by the factors [(1 2); ai] for k + 1 6 i 6 m − n + 2 is
isomorphic to a subgroup of the infinite dihedral group G(∞,∞, 2). Therefore, applying
the results described in Remark 4 to (6), this subfactorization has in its Hurwitz orbit a
factorization of the form(

[(1 2); bk+1] , [(1 2); bk+1] , [(1 2); bk+3] , [(1 2); bk+3] , . . .

. . . , [(1 2); bm−n] , [(1 2); bm−n] , [(1 2); 0]
)

for some integers bk+1, bk+3, . . . , bm−n.
We now summarize our progress so far: given an arbitrary reflection factorization t

of the element c in Gd consisting of k diagonal reflections and m − k transposition-like
reflections, we have selected a covering factorization t̃ of c̃ in G∞ and shown that t̃ is in
the same Hurwitz orbit as a factorization (r̃1, . . . , r̃m) with the following properties:

1. r̃1, . . . , r̃k are diagonal reflections with nonzero weight in the first coordinate and
product [ε, (1, 0, . . . , 0)];

2. there are integers bk+1, bk+3, . . . , bm−n such that r̃k+1 = r̃k+2 = [(1 2); bk+1], r̃k+3 =
r̃k+4 = [(1 2); bk+3], . . . , r̃m−n = r̃m−n+1 = [(1 2); bm−n]; and

3. r̃m−n+2 = [(1 2); 0], r̃m−n+3 = [(2 3); 0], . . . , r̃m = [(n− 1 n); 0].

In the next stage of the argument, we cable the diagonal factors together, in the
following sense. Given a factorization f = (f1, . . . , fm) of an element g in a group G,
choose an interval I = [a, b] ⊆ {1, . . . ,m}. Then the result of cabling f at I is the
length-(m− b+ a) factorization

(f1, . . . , fa−1, fa · · · fb, fb+1, . . . , fm)

of g in G. The action of the braid group Bm−b+a on cabled factorizations lifts in a natural
way to the action of the m-strand braid group on the original factorization: the result

σa−1 · (f1, . . . , fa−2, fa−1, fa · · · fb, fb+1, . . . , fm) =
(f1, . . . , fa−2, fa · · · fb, (fa−1)

fa···fb , fb+1, . . . , fm)

of a single Hurwitz move is the cabling of

σb−1 · · ·σa−1 · f = (f1, . . . , fa−2, fa, . . . , fb, (fa−1)
fa···fb , fb+1, . . . , fm)

at the interval [a− 1, b− 1], and similarly

σa · (f1, . . . , fa−1, fa · · · fb, fb+1, fb+2, . . . , fm) =
(f1, . . . , fa−1, fb+1, (fa · · · fb)fb+1 , fb+2, . . . , fm)
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Figure 1: Cabling: Applying (σ−14 σ−13 σ−12 )(σ−12 σ−13 σ−14 )(σ1σ2σ3) to the factorization
(a, b, c, d, e) of g = abcde (left) produces (d, age

−1g−1d, bge
−1g−1d, cge

−1g−1d, eg
−1d). Ap-

plying the braid (σ−12 )(σ−12 )(σ1) (right) to the cabled factorization (abc, d, e) produces
(d, (abc)ge

−1g−1d, eg
−1d).

is the cabling of

σa · · ·σb · f = (f1, . . . , fa−1, fb+1, (fa)
fb+1 , . . . , (fb)

fb+1 , fb+2, . . . , fm)

at the interval [a+ 1, b+ 1]. This is illustrated in Figure 1.
Next, we use the cabling of the diagonal factors, together with many repetitions of the

moves([
z 0
0 1

]
,

[
0 zb

z−b 0

]
,

[
0 zb

z−b 0

])
σ2σ1−→

([
0 zb

z−b 0

]
,

[
0 zb

z−b 0

]
,

[
z 0
0 1

])
σ1σ2−→

([
z 0
0 1

]
,

[
0 zb−1

z−b+1 0

]
,

[
0 zb−1

z−b+1 0

])
,

to make all of these [(1 2); b] factors equal to [(1 2); 0]: once the first pair has been reduced
to [(1 2); 0], they can be cabled together (with product the identity) and moved to the
end of the middle section of the factorization, allowing the next pair to be reduced.

At this point, we have that t̃ has in its Hurwitz orbit a factorization

(r̃1, . . . , r̃k, [(1 2), 0], [(1 2), 0], . . . , [(1 2), 0], [(2 3), 0], . . . [(n− 1 n), 0])

where r̃1, . . . , r̃k are diagonal reflections with nonzero weight in the first coordinate. Fi-
nally, we use Hurwitz moves to permute the diagonal factors (which all commute with each
other) into the following order: we first place all the reflections whose weight is congruent
to 1 modulo d in order from smallest weight to largest, followed by those whose weight is
congruent to 2 modulo d in order from smallest weight to largest, and so on. The resulting
factorization obviously depends only on the weights of r̃1, . . . , r̃k, or equivalently only on
the weights of the reflections in t̃. Moreover, the image of this factorization under πd is
in the same Hurwitz orbit as t and is uniquely determined by the multiset of conjugacy
classes of reflections in t. Thus every factorization with the same multiset of conjugacy
classes belongs to the same Hurwitz orbit as t. This completes the proof.
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5 Exceptional groups

As mentioned in the introduction, the present author and Reiner have conjectured [LR16,
Conj. 6.3] that the Hurwitz action is “as transitive as possible” on reflection factoriza-
tions of a Coxeter element in any well generated complex reflection group. Ideally, one
would hope for a uniform proof of this statement. However, even in the case of shortest
factorizations (Theorem 1 of Bessis), the only known proofs are case-by-case. Below, we
discuss the situation in more detail.

There are 34 irreducible finite complex reflection groups not contained in the infinite
family; in the Shephard–Todd classification, they are named G4, G5, . . . , G37. Of the
exceptional groups, 26 are well-generated, including the six exceptional real reflection
groups, of types H3, F4, H4, E6, E7, and E8 (respectively G23, G28, G30, G35, G36, and
G37). Thus, there are 20 groups for which the question considered here makes sense.

In [Pet18] and [GLRS20], two groups of authors considered the smallest of the well
generated exceptional groups, namely G4, G5, and G6. They proved in each case that
the analogue of our Main Theorem is true, that is, that two reflection factorizations of a
Coxeter element in one of these groups lie in the same Hurwitz orbit if and only if they
have the same multiset of conjugacy classes. The proofs in all cases are inductive: it is
shown that for factorizations involving sufficiently many (say, k), factors, one can use an
approach similar to the “cabling” strategy above to reduce the problem to considering
factorizations of length k−1, and then the result is established by exhaustive computation
for short factorizations. In principle, the same approach (particularly in the form used
by Lazreq et al.) should work for all of the remaining groups; however, in practice, there
is a huge gap between naive bounds for when the inductive step applies and what base
cases are computationally feasible to check, even for groups of rank 2.

Other approaches may be possible. The proof of Theorem 2 in [WY20] is uniform,
but makes heavy use of Coxeter-specific tools (the Coxeter length and Bruhat order) that
do not have good analogues in the complex case. In [LR16], the main tool used was
a lemma concerning the possible acute angles among the roots in a circuit (a minimal
linearly dependent set) in a real root system. It is conceivable that such an approach
could be coupled with the techniques of [Pet18, GLRS20] to give a proof in at least
some complex groups; but the root circuit lemma in [LR16] is ultimately proved via a
brute-force computational attack even in Weyl groups.

Separately, one might hope to extend the investigation to factorizations of elements
other than Coxeter elements. There are three invariants attached to a tuple (t1, . . . , tm)
of reflections in a complex reflection group G that are easily seen to be preserved by the
Hurwitz action:

• the product t1 · · · tm of the ti;

• the subgroup H = 〈t1, . . . , tm〉 of G generated by the ti; and

• the multiset
{
{htih−1 : h ∈ H} : i = 1, . . . ,m

}
of orbits of the ti under conjugation

by H.
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(For factorizations of a Coxeter element, the subgroup H is always the full group G.)
In [Ber11], it was shown that these invariants distinguish Hurwitz orbits when G is a
dihedral group. One is tempted to conjecture that the same result is true for reflections
in any complex reflection group. This conjecture is consistent with the known results on
Coxeter elements, as well as with the work of Kluitmann [Klu88] and Ben-Itzhak–Teicher
[BIT03] in the symmetric group. Work-in-progress by Minnick–Pirillo–Racile–Wang and
J. Wang (respectively, for tuples of arbitrary length in small exceptional groups, and for
tuples that constitute minimum-length factorizations of arbitrary elements in the infinite
family; personal communications) also lend credence to the conjecture.
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[dHR18] Elise delMas, Thomas Hameister, and Victor Reiner, A refined count of Coxeter
element reflection factorizations, Electron. J. Combin. 25 (2018), #P1.28.

[Dou18] Theo Douvropoulos, On enumerating factorizations in reflection groups,
arXiv:1811.06566, 2018.

[FG14] Briana Foster-Greenwood, Comparing codimension and absolute length in complex
reflection groups, Comm. Algebra 42 (2014), no. 10, 4350–4365.

the electronic journal of combinatorics 27(2) (2020), #P2.54 13

https://arxiv.org/abs/1811.06566


[GLRS20] Gaurav Gawankar, Dounia Lazreq, Mehr Rai, and Seth Sabar, Hurwitz actions
on reflection factorizations in complex reflection group G6, arXiv:2002.05102, 2020.

[Hou08] Xiang-dong Hou, Hurwitz equivalence in tuples of generalized quaternion groups
and dihedral groups, Electron. J. Combin. 15 (2008), #R80.

[Hur91] Adolf Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunk-
ten, Math. Ann. 39 (1891), 1–60.

[IS10] Kiyoshi Igusa and Ralf Schiffler, Exceptional sequences and clusters, J. Algebra
323 (2010), no. 8, 2183–2202.

[Klu88] Paul Kluitmann, Hurwitz action and finite quotients of braid groups, Braids
(Santa Cruz, CA, 1986), Contemp. Math., vol. 78, Amer. Math. Soc., Providence,
RI, 1988, pp. 299–325.

[LR16] Joel Brewster Lewis and Victor Reiner, Circuits and Hurwitz action in finite root
systems, New York J. Math. 22 (2016), 1457–1486.

[LT09] Gustav I. Lehrer and Donald E. Taylor, Unitary reflection groups, Australian
Mathematical Society Lecture Series, vol. 20, Cambridge University Press, Cam-
bridge, 2009.

[Mic16] Jean Michel, Deligne-Lusztig theoretic derivation for Weyl groups of the number
of reflection factorizations of a Coxeter element, Proc. Amer. Math. Soc. 144 (2016),
no. 3, 937–941.

[Pet18] Zachery Peterson, Hurwitz transitivity of longer reflection factorizations in G4

and G5, arXiv:1808.01268, 2018.

[RRS17] Victor Reiner, Vivien Ripoll, and Christian Stump, On non-conjugate Coxeter
elements in well-generated reflection groups, Math. Z. 285 (2017), no. 3-4, 1041–1062.

[Shi02] Jian-yi Shi, Certain imprimitive reflection groups and their generic versions,
Trans. Amer. Math. Soc. 354 (2002), no. 5, 2115–2129.

[Shi07] , Formula for the reflection length of elements in the group G(m, p, n),
Journal of Algebra 316 (2007), no. 1, 284–296.

[Sia09] Charmaine Sia, Hurwitz equivalence in tuples of dihedral groups, dicyclic groups,
and semidihedral groups, Electron. J. Combin. 16 (2009), no. 1, #R95.

[ST54] Geoffrey C. Shephard and John A. Todd, Finite unitary reflection groups, Cana-
dian J. Math. 6 (1954), 274–304.

[WY20] Patrick Wegener and Sophiane Yahiatene, A note on non-reduced reflection fac-
torizations of Coxeter elements, Algebraic Combinatorics 3 (2020), no. 2, 465–469.

the electronic journal of combinatorics 27(2) (2020), #P2.54 14

https://arxiv.org/abs/2002.05102
https://arxiv.org/abs/1808.01268

	Introduction
	Context and background
	Complex reflection groups
	Basic definitions, classification, Coxeter elements
	Generic covers

	Proof of the main result
	The group G(d, d, n)
	The group G(d, 1, n)

	Exceptional groups

