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Abstract

We give a complete solution to the extremal topological combinatorial prob-
lem of finding the minimum number of tiles needed to construct a polyomino with
h holes. We denote this number by g(h) and we analyze structural properties of
polyominoes with h holes and g(h) tiles, characterizing their efficiency by a topolog-
ical isoperimetric inequality that relates minimum perimeter, the area of the holes,
and the structure of the dual graph of a polyomino. For h 6 8 the values of g(h)
were originally computed by Tomas Olivera e Silva in 2015, and for the sequence
hl = (22l − 1)/3 by Kahle and Róldan-Roa in 2019, who also showed that asymp-
totically g(h) ≈ 2h. Here we also prove that the polyominoes constructed by Kahle
and Róldan-Roa with hl = (22l − 1)/3 holes and g(hl) tiles are in fact unique up to
isometry with these fixed parameters; that is, having the minimal number of tiles
for hl holes.
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1 Introduction

A polyomino is a planar shape in R2 formed by gluing together a finite number of congruent
squares along their edges such that it has a connected interior. We refer to the squares
on a polyomino as either squares or tiles.

In this paper, we are interested in the extremal topological problem of finding the
minimum number of tiles required for a polyomino to have a specified number of holes.
To be precise about the topology, we consider the tiles of a polyomino to be closed.
Polyominoes are finite unions of these closed tiles, so they are compact. The holes of
a polyomino are the bounded, connected components of the polyomino’s complement in
the plane. For a polyomino A we denote its number of holes and tiles by h(A) and |A|,
respectively.

Definition 1. For h > 1, we define the sequence of the minimum number of tiles needed
for constructing a polyomino with h holes as

g(h) := min
h(A)=h

|A|. (1)

Figure 1: Crystallized polyominoes for 1 6 h 6 3.

Definition 2. A polyomino with h holes is crystallized if it has g(h) tiles.

This definition is inspired by the striking resemblance these extremal polyominoes
bear to chemical crystals, both visually and in the driving principle of their formation.
As the formation of crystals is restricted by the physical properties of the atoms involved,
the tiles in these polyominoes are trying to pack densely while maximizing the number of
enclosed holes, and these holes impose certain geometrical structures in order to achieve
maximum efficiency.

In [1], all polyominoes with n 6 28 tiles were enumerated, up to isometry, by their
number of holes. These computations give the values of g(h) for 1 6 h 6 8 and also count
the number of crystallized polyominoes for 1 6 h 6 8.

In [4], the related function f(n), defined as the maximum number of holes that a
polyomino with n tiles can have, was introduced and its asymptotic behavior was studied.
They proved that g(h) is the right inverse of f(n), and that f(n) = (1/2)n+O(

√
n)+o(1).

In the same paper, a sequence of crystallized polyominoes was constructed with g(h)+h =
(2l + 1)2 − 1 for all l > 1 (see Table 1). We will refer to this sequence of crystallized
polyominoes as the K–R sequence, and we denote its elements by Sl for l > 1.
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h 1 2 3 4 5 6 7 8 (22l − 1)/3

g(h) 7 11 14 17 19 23 25 28 [(22l+1 + 3 · 2l+1 + 4)/3]− 1
| Gh | 1 4 3 8 1 64 4 37 1∗

Table 1: We denote by | Gh | the number of polyominoes, up to isometry, that have h
holes and g(h) tiles. The table shows all previously known values for g(h) and | Gh |. The
values for 1 6 h 6 8 are due to e Silva [1], and the first two rows of the last column are
from [4]. *We prove in Theorem 9 that | G(22l−1)/3 |= 1 for all l > 1.

In [6], the analogous problem for polyiamonds, polyforms constructed with equilateral
triangles, was completely solved. In that setting, all crystallized polyiamonds were also
found to satisfy a set of optimal geometric and topological structural conditions.

Here, we completely answer these questions for polyominoes. We find all values of
g(h), and we characterize the values of h for which optimal structural conditions, which
we define precisely in Section 2, are satisfied. In the process of doing so, we are able to
prove that the crystallized polyominoes constructed in [4] with hl = (22l − 1)/3 holes are
unique up to isometry.

2 Statement of Main Results

We use the sequences of perfect squares and pronic numbers, N2 and N(N+1), to produce
benchmark values for g(h), tracking the maximum number of holes that can fit in a certain
area. Using α to denote a general square or pronic number, let hα denote the maximum
number of holes which can exist in a polyomino A which is contained in the square or
pronic rectangle of area α.

Theorem 3. For any positive integer N > 3,

hN2 =



(N − 1)2

3
− 1 if N ≡ 1 mod 3

N(N − 2)

3
if N = 2l + 1 for l > 1

N(N − 2)

3
− 1 else,

(2)

and

hN(N+1) =


N(N − 1)

3
− 1 if N ≡ 0 or 1 mod 3

(N + 1)(N − 2)

3
− 1 if N ≡ 2 mod 3.

(3)

For any square or pronic number α = N2 or α = N(N+1) such that N 6 5, the values
of hα and g(hα) can be determined from the values computed in [1], listed in Table 1. For
those first few values it can happen that hN2 = hN(N+1). To avoid this complication, and
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because those values are already known, the next theorem gives the values of g(hα) for
N > 6.

Theorem 4. For α ∈ {N2, N(N + 1) : N > 6}, g(hα) = α− hα − C for

C =



1 if α = N2 and N = 2l + 1

3 if α = N2 and N ≡ 1 mod 3

or α = N(N + 1) and N 6≡ 2 mod 3

4 if α = N2 and N 6≡ 1 mod 3, N 6= 2l + 1

5 if α = N(N + 1) and N ≡ 2 mod 3.

(4)

In the above, C is the number of tiles missing from the boundary in a crystallized
polyomino which has the maximum number of holes in a square or pronic rectangle. For
instance, the α = 62 case gives hα = 7 and C = 4, and confirms that g(7) = 36−7−4 = 25
from Table 1. We are now able to give the values for g(h) for all h > 1, in terms of the
values of g(hα).

h g(h) h g(h) h g(h) h g(h) h g(h)
9 30 30 81 51 128 72 175 93 221
10 33 31 83 52 131 73 177 94 223
11 35 32 85 53 133 74 179 95 225
12 38 33 88 54 135 75 182 96 228
13 40 34 90 55 137 76 184 97 230
14 43 35 92 56 140 77 186 98 232
15 45 36 95 57 142 78 188 99 234
16 48 37 97 58 144 79 190 100 236
17 50 38 99 59 146 80 193 101 238
18 53 39 101 60 149 81 195 102 241
19 55 40 104 61 151 82 197 103 243
20 57 41 106 62 153 83 199 104 245
21 59 42 108 63 155 84 201 105 247
22 62 43 110 64 157 85 204 106 249
23 64 44 113 65 160 86 206 107 251
24 67 45 115 66 162 87 208 108 254
25 69 46 117 67 164 88 210 109 256
26 71 47 119 68 166 89 212 110 258
27 74 48 122 69 168 90 215 111 260
28 76 49 124 70 171 91 217 112 262
29 78 50 126 71 173 92 219 113 264

Table 2: Values of g(h) for 9 6 h 6 114. We indicate in bold the values of h if h = hα for
an α ∈ {N2, N(N + 1)}. For h < 9, see Table 1.
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Theorem 5. For h > 1, let α = min{N2, N(N + 1) : h 6 hα}. Then

g(h) = g(hα)− 2(hα − h). (5)

Values of g(h) are given in Table 2 for 9 6 h 6 113, with values of hα in bold. Theorem
5 assures that almost all increments of g(h) from h to h + 1 are 2, and implicit in the
combination of Theorems 4 and 5 is that the remaining increments from hα to hα + 1 are
always 3.

Then in Theorems 7 and 8 we give structural characterizations of crystallization for
all h > 1. The dual graph of a polyomino is the graph whose vertices are indexed by the
tiles of the polyomino, with edges between two vertices if and only if the respective tiles
in the polyomino share an edge. We say that a polyomino is acyclic if its dual graph is a
tree, and refer to cycles in the dual graph as dual cycles.

The area of a hole is defined to be the number of tiles needed to fill it. If the squares
are assumed to have unit side length, then this would be equivalent to the Euclidean
notion of area. In this case with squares, the holes all have the shape of polyominoes, and
thus it is more convenient to discuss area in terms of the tiles which could be used to fill
the holes.

A polyomino with h holes and n tiles has minimal outer perimeter if it has an outer

perimeter equal to 2
⌈
2
√
n+ h

⌉
.

Definition 6. A polyomino is efficiently structured if it is acyclic, each hole has an area
of one, and it has minimal outer perimeter.

Theorem 7. Efficiently structured polyominoes are crystallized.

However, the converse of Theorem 7 does not hold. We prove in Theorem 8 that there
is an exceptional set of crystallized polyominoes which are acyclic with all holes having of
area of one, but which fail to attain minimal outer perimeter. As a corollary, this implies
that all crystallized polyominoes are in fact acyclic with all holes having an area of one.

For the cases from Theorem 4 in which C = 4 or C = 5, define

S = {N2 | N ≡ 0 or 2 mod 3 and N 6= 2l + 1 for any l > 1},
R = {N(N + 1) | N ≡ 2 mod 3}.

Theorem 8. For α ∈ S ∪ R, a crystallized polyomino with hα + 1 holes is acyclic and
each of its holes have an area of one, but it does not attain minimal outer perimeter. For
all other h, a crystallized polyomino is efficiently structured.

Finally, we consider the enumeration of crystallized polyominoes, proving that ele-
ments of the K–R sequence in [4] are the unique crystallized polyominoes, up to isometry,
with h = (22l − 1)/3 for all l > 1.

Theorem 9. [K–R Sequence Uniqueness] For a fixed integer l > 1, there is only one, up
to isometry, crystallized polyomino A with h(A) = (22l − 1)/3.
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The rest of the paper is organized as follows. In Section 3, we give background,
establish preliminary results, and prove Theorem 7. In Section 4, we exhibit various
obstructions to efficient crystallization and prove Theorem 8. In Section 5, we prove
Theorems 3, 4, and 9. Finally, in Section 7, we prove Theorem 5 by dismantling the
crystallized polyominoes that we construct in Section 6.

3 Background and Preliminary Results

3.1 Basic Definitions and Terminology

In what follows we introduce some terminology and notation. We use the term arrange-
ment to refer to any subset of tiles of the regular square tessellation of R2. Polyominoes
are themselves arrangments, but arrangements are not required to have connected interior
and simply refer to the specified positions of a set of tiles. A space in the square lattice
is said to be filled if it contains a tile, and empty if not.

The total area of a polyomino is the number of tiles plus the aggregate area of all
its holes, and the perimeter p(A) of a polyomino A is defined to be the number of edges
that are part of the topological boundary of A. An edge of the perimeter is on the hole
perimeter of A if it is bounding a hole, and it is on the outer perimeter otherwise. The
number of edges on the hole perimeter is denoted by ph(A), and the number of edges on
the outer perimeter of A is denoted by po(A). As an example, let A be the polyomino in
the center of Figure 1, then p(A) = 30, po(A) = 18, and ph(A) = 12.

The bounding rectangle of a polyomino A is the smallest rectangle in which A fits.
The boundary layer of a polyomino is the set of squares that have at least one edge on
the outer perimeter, and the interior of a polyomino is the set of spaces which are not in
the boundary layer. For a polyomino with a rectangular interior, say (w − 2) × (l − 2),
define D1 to be the arrangement in the boundary layer of the w × l rectangle in which
all spaces except for the four corners are filled. Similarly, define D2 to be the boundary
arrangement in which all but one of the corners are filled. For D1 and D2 we suppress
the dimensions of the rectangle, as these will always be clear from context.

Figure 2: D1 and D2 for a 3× 4 rectangular interior.

Remark 10. Observe that N2−(N−r)(N+r) = r2, and N(N+1)−(N−r)(N+1+r) =
r2 + r. These values track the decrease in area if a square or pronic rectangle is replaced
by a narrower rectangle with the same perimeter. In particular the difference is always
at least one for squares, and at least two for pronic rectangles.
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3.2 Hole Connectivity and the Dual Graph of a Polyomino.

We defined the dual graph of a polyomino in Section 2. Let b(A) be the number of edges
in the dual graph of a polyomino A. Since the interior of A must be connected, its dual
graph must be connected and therefore have a spanning tree. Thus if A has n tiles, the
dual graph has n vertices and its spanning tree has n− 1 edges. Therefore

b(A) > (n− 1). (6)

It is important to notice that the dual graph does not capture the topology of a
polyomino. In Figure 3 for example, A has no holes but its dual graph contains a cycle,
and the dual graph of B is acyclic but B has five holes.

A B

Figure 3: Polyominoes A and B with their dual graphs colored in green, and the hole
graph of B colored in red.

Definition 11. The hole graph of a polyomino A is the graph whose vertices are indexed
by the holes of A, with edges connecting two holes if their boundaries share a common
vertex of the polyomino.

We refer to the hole adjacency condition as being corner adjacent, as opposed to the
edge adjacent condition for tiles. A set of holes in a polyomino is said to be connected if
the corresponding induced subgraph of the hole graph is connected. The hole graph of a
polyomino A is necessarily acyclic, as a cycle corresponds to a Jordan curve in the plane
which would disconnect the interior of A.

3.3 A Topological Isoperimetric Inequality

For all n > 1, we denote by pmin(n), the minimum perimeter that a polyomino with n tiles
can have. In 1976, F. Harary and H. Harborth [3] proved that the minimum perimeter
possible in a polyomino with n tiles is given by

pmin(n) = 2
⌈
2
√
n
⌉
. (7)

In [5], it was proven that polyominoes with area α ∈ {N2, N(N + 1)} that attain
minimum perimeter are unique up to isometry. These polyominoes are precisely those
with the shape of a square or a pronic rectangle.
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It is clear that polyominoes that are not simply connected, that have at least one hole,
cannot achieve minimum perimeter as given in (7). The next lemma gives a lower bound
for the minimum perimeter that a polyomino can have given its area and its number of
holes.

Lemma 12. If A is a polyomino with n tiles and h holes, then po(A) > pmin(n+ h).

Proof. Let H be the aggregate area of all the holes of A. Then H > h because the
minimum area that a hole can have is an area of one. Let B be the polyomino obtained
by completely covering the holes of A with H tiles. Observe that B has n+H tiles, and
by equation (7), p(B) > pmin(n+H). Using the fact that the function h(x) = 2

⌈
2
√
x
⌉

is
a non-decreasing function we get that p(B) > pmin(n + h). Then, because p(B) = po(B)
and A and B have the same outer perimeter, we conclude that

po(A) > pmin(n+ h). � (8)

Lemma 12 and equation (7) are the reasons of why we have defined in Section 2 that
a polyomino with n tiles and h holes has minimal outer perimeter if its outer perimeter is

2
⌈
2
√
n+ h

⌉
. In what follows, using techniques introduced in [4], we give an upper bound

for the number of holes that a polyomino can have.
Let A be a polyomino with n tiles. Then 4n = 2b(A) + p(A) because each square tile

has 4 edges and these edges are either on the perimeter of A or connecting two tiles of A.
Thus, using p(A) = po(A) + ph(A) we get

ph(A) = 4n− 2b(A)− po(A). (9)

The minimum number of edges that a hole can have is four, thus from (9) we get

h(A) 6
ph(A)

4
=

4n− 2b(A)− po(A)

4
.

Then, from inequalities (6) and (8) we get

h(A) 6
4n− 2(n− 1)− pmin(n+ h)

4
. (10)

This is a topological isoperimetric inequality that bounds the number of holes that a
polyomino can have depending on the structure of its dual graph, the area of its holes,
and its outer perimeter. The next definition establishes notation for this upper bound as
a function of n and h.

Definition 13. For all natural numbers n and h, define

M(n, h) =
2n+ 2− pmin(n+ h)

4
. (11)

From inequality (10), this function immediately gives a necessary condition for the
existence of a polyomino, which is intricately tied to efficient structure.
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Lemma 14. If M(n, h) < h for some natural numbers n and h, then a polyomino with n
tiles and h holes does not exist. And for all h > 1, we have h 6M(g(h), h).

Lemma 15. A polyomino with n tiles and h holes is efficiently structured if and only if
h = M(n, h).

Proof of Lemma 15. Let A be a polyomino with n tiles and h holes. If A is acyclic, it’s
dual graph is a tree and b(A) = n− 1; if every hole has an area of one, then ph(A) = 4h;
and if A has minimal perimeter, then po(A) = pmin(n + h). Thus if A is efficiently
structured, these values give M(n, h) = h, as seen in the derivation of inequality (10).

Now suppose A fails to achieve one of the three condtitions of efficient structure. If
A is not acyclic, then b(A) > n − 1. If it does not have minimal outer perimeter, then
po(A) > pmin(n + h). And finally if there is a hole of area at least two, then there is at
least one hole with at least six edges, and thus h 6 (ph(A) − 2)/4. By equation (9) and
inequality (10), all three issues cause h < M(n, h), by decreasing the numerator in the
first two cases and increasing the denominator in the third. So if M(n, h) = h, then A is
efficiently structured. �

In [4], it was proven that the crystallized polyominoes defined in the K-R sequence
satisfy M(n, h) = h, and are therefore efficiently structured.

Corollary 16. If a polyomino A exists with n tiles and h holes such that M(n, h) = h+
1/2, then exactly one of the following three things occurs: 1) A has a single dual cycle; 2)
A has a single hole with area two, and the rest have area one; or 3) po(A) = pmin(n+h)+2.

This is clear from the construction of M(n, h) and the proof of Lemma 15. To under-
stand how how equation (11) changes with respect to the minimal outer perimeter of a
polyomino, we observe that

pmin(n+ h+ 1) =

{
pmin(n+ h) + 2 if n+ h is square or pronic

pmin(n+ h) else.
(12)

Adding a single tile also increases 2n to 2n + 2. Then for a fixed h > 1, M(n, h) is a
non-decreasing function of n such that

M(n+ 1, h)−M(n, h) =

{
0 if n+ h is a square or pronic number

1/2 else
(13)

We now give a proof of Theorem 7, which states that any efficiently structured poly-
omino is crystallized.

Proof of Theorem 7. Let A be an efficiently structured polyomino with n tiles and h
holes. By Lemma 15, this is equivalent to h = M(n, h), and by equation (13) we know
that M(n − 1, h) 6 M(n, h). If M(n − 1, h) < M(n, h), then by Lemma 14 there does
not exist a polyomino with n− 1 tiles and h holes, and thus A is crystallized.
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Suppose instead that M(n−1, h) = M(n, h), and assume that there exists a polyomino
B with n− 1 tiles and h holes. Then by equation (13) we get that n− 1 +h is a square or
pronic number, and B is efficiently structured by Lemma 15. By Remark 10, a polyomino
with minimal outer perimeter and total area equal to a square and pronic number must be
constructed in a square or pronic rectangle, and thus the boundary layer of B is completely
filled, which gives a cycle. This contradicts efficient structure for B, and therefore there
does not exist a polyomino with n− 1 tiles and h holes. Thus, A is crystallized. �

The converse of Theorem 7 is not true. Figure 4 shows crystallized polyominoes which
fail to attain minimal outer perimeter and thus are not efficiently structured.

A

B

Figure 4: Polyominoes A and B are crystallized polyominoes that are not efficiently
structured. Although both are acyclic with each hole having an area of one, neither has
minimal outer perimeter. A has 23 tiles and 6 holes and B has 28 tiles and 8 holes. One
can see in the calculation that 6 < M(6, 23) = 6.5, and 8 < M(8, 28) = 8.5.

In the next section we develop tools to understand for which values of h a crystallized
polyomino with h holes may fail to be efficiently structured.

4 Obstructions to Crystallization

Define m(h) = min{n : M(n, h) > h}. By equation (10) this is a theoretical lower
bound for g(h), and therefore if a polyomino exists with m(h) tiles and h holes, this is an
immediate proof that g(h) = m(h).

In this section we establish several obstructions to g(h) hitting the optimal value of
m(h). In particular, we aim to show that Theorem 5 is in fact equivalent to stating that
for all h > 1,

g(h) =

{
m(h) + 1 if h = hα + 1 for square or pronic α 6= (2l + 1)2

m(h) else.
(14)

This asserts that m(h) is the right answer except when trying to fit one too many
holes into an optimal shape of minimal outer perimeter, and Theorem 8 will follow by
characterizing when M(m(h)+1, h) = h. To establish these exceptions at values of hα+1,
we begin by examining the numerical and geometric constraints of m(h).
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Lemma 17. For every h, M(m(h), h) = h. Furthermore, if 0 < α − (m(h) + h) < 3 for
some square or pronic number α, then m(h + 1) = m(h) + 3, and otherwise m(h + 1) =
m(h) + 2.

Proof. The perimeter of a polyomino is always even, so 2n+ 2− pmin(n+ h) is even, and
M(n, h) = C/2 for some integer C. Fix h > 1. For n = 1, pmin(1 + h) > 6 and

2n+ 2− pmin(n+ h) = 4− pmin(1 + h) < 0.

Then by equation (13), increasing n by one increases M(n, h) by either 0 or 1/2, and thus
M(n, h) hits every positive multiple of 1/2 as n increases indefinitely. So M(m(h), h) = h
and the inequality in its definition is really equality.

Suppose we have n = m(h) for some h. Then since pmin is non-decreasing,

M(n+ 1, h+ 1) =
2n+ 2 + 2− pmin(n+ h+ 2)

4

6
2n+ 2− pmin(n+ h)

4
+

1

2

= h+
1

2
.

(15)

So m(h+ 1) > m(h) + 2 for all h. By the same calculation,

M(m(h) + 2, h+ 1) = h+ 1

whenever pmin(n + h + 3) = pmin(n + h). By equation (12) this will be the case unless
0 < α−(m(h)+h) < 3 for some square or pronic number α, in which case pmin(n+h+3) =
pmin(n+ h) + 2, and then

M(m(h) + 2, h+ 1) =
2n+ 4 + 2− pmin(n+ h+ 3)

4

=
(2n+ 2− pmin(n+ h)) + 2

4

= h+ 1/2.

(16)

Adding a third tile does not cross another square or pronic threshold, so by equation (13)
this adds another 1/2 to the function and m(h+ 1) = m(h) + 3. �

Similar to the polyiamond case in [6], this points to each additional hole requiring
two extra tiles in general, and then a third tile when the total area of the shape expands
past a threshold of N2 or N(N + 1). To study the structure of crystallization near these
thresholds, for a fixed α ∈ {N2, N(N + 1)} define

tα = max{h : m(h) + h 6 α}. (17)
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Since g(h) > m(h), this is a theoretical upper bound for hα. We derive equations for this
sequence, and characterize these cases by how close m(tα) + tα gets to α.

Suppose that m(h) + h = N2, and note that such an h is necessarily h = tN2 . Then
M(N2 − h, h) = h by definition of m(h), so

4h = 2(N2 − h) + 2− 4N

= 2N2 − 2h+ 2− 4N

=⇒ h =
(N − 1)2

3
.

(18)

This is an integer if and only if N ≡ 1 mod 3. It is straightforward to check by similar
calculations that the values

m(tα) + tα =


N2 − 1 if α = N2 and N 6≡ 1 mod 3

N(N + 1) if α = N(N + 1) and N 6≡ 2 mod 3

N(N + 1)− 2 if α = N(N + 1) and N ≡ 2 mod 3,
(19)

along with equation (18) yield that

tN2 =


(N − 1)2

3
if N ≡ 1 mod 3

N(N − 2)

3
else,

(20)

and

tN(N+1) =


N(N − 1)

3
if N ≡ 0 or 1 mod 3

(N + 1)(N − 2)

3
if N ≡ 2 mod 3.

(21)

Lemma 17 describing the jumps in m(h) ensures that the values in equation (19) are
all maximal for m(h) + h 6 α, and so the values of h solved for in these calculations give
the values of tα in (20) and (21).

Observe that Theorem 3 is now equivalent to stating that hα = tα if α = (2l + 1)2,
and otherwise hα = tα − 1. Or in words, only the K–R sequence from [4] is able attain
the maximal number of holes theoretically possible in a square or pronic rectangle.

And by the jumps of m(h), Theorem 4 asserts that g(hα) = m(hα), which we prove
by construction in Section 6. Then the fact that equation (14) is equivalent to Theorem
5 follows immediately from Theorems 3 and 4 and the jumps in m(h). Assuming these
three main theorems, for which we provide proofs in Sections 6 and 7, we now prove the
structural characterization given in Theorem 8.

Proof of Theorem 8. By equation (14), a crystallized polyomino with h holes will
either have m(h) tiles and be efficiently structured by Lemma 15, or it will have g(h) =
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m(h)+1 tiles. By equation (13), M(m(h)+1, h) = h when m(h)+h is a square or pronic
number, and otherwise M(m(h) + 1, h) > h. And by equations (18) and (19), m(h) + h
is a square or pronic number precisely when h = tα for α /∈ S ∪R ∪ {N2 : N = 2l + 1}.

Therefore, by equation (14), the set S ∪R is exactly the set of α for which

g(hα + 1) = m(hα + 1) + 1,

and m(hα + 1) + 1 tiles and hα + 1 holes is not efficiently structured.
It only remains to show that the efficient condition which fails for α ∈ S∪R is minimal

outer perimeter. Then let h = hα + 1 for α ∈ S ∪ R. By Lemma 17 and equation (14),
g(hα + 1) − g(hα) = 3. But observe that the constant C in Theorem 4 is either four or
five for α ∈ S ∪R. Then

g(hα + 1) + (hα + 1) = (g(hα) + 3) + hα + 1 = g(hα) + hα + 4,

and
α− 1 6 g(hα) + hα + 4 6 α.

Therefore
pmin(g(hα + 1) + (hα + 1)) = pmin(α).

By Remark 10, all bounding rectangles with outer perimeter pmin(α) which are not a
square or pronic rectangle have area at most α − 1. A construction with g(hα + 1) tiles
and hα + 1 holes cannot exist in a shape of area at most α− 1, because it either has area
α and is too big, or it has area α − 1 and by the reasoning in the proof of Theorem 7 it
would necessarily fill the entire boundary layer and create a cycle. By definition of hα,
an extra hole cannot fit in the square or pronic rectangle of area α, and therefore such a
construction does not achieve minimal outer perimeter.

By equation (13), we know that

M(m(hα) + 1, hα + 1) = M(m(hα + 1), hα + 1) + 1/2 = (hα + 1) + 1/2.

Then by Corollary 16, only one efficient condition can fail. So a crystallized polyomino
with hα + 1 holes for α ∈ S ∪R is acyclic, each of its holes has an area of one, and it fails
to achieve minimal outer perimeter, and all other crystallized polyominoes are efficiently
structured. �

We proceed by showing that g(tα) > m(tα) whenever α 6= (2l + 1)2, and determine
that this will also require increasing the outer perimeter to get a crystallized polyomino
with tα holes.

4.1 Checkerboard Obstructions

Let the checkerboard partition of a rectangle in the square lattice refer to the bipartition
of its squares into sets W and B, where the squares alternate between W and B in every
row and column like a checkerboard. For convenience we always assume that the top left
corner is in W . When a polyomino is forced to use up a sufficient amount of its boundary
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layer, then holes in the interior will necessarily be contained in one set of this partition.
Recall that D1 refers to the corner-less rectangular boundary layer, and D2 has all spaces
of it’s boundary filled except for a single corner.

Lemma 18 (Checkerboard Lemma). Let A be an acyclic polyomino with n tiles and h
holes, each hole having an area of one. If A has a rectangular interior, then the outer-
most layer of the interior alternates between holes and tiles, and the set of holes in A is
completely contained in the set W in the checkerboard partition of the interior.

Proof. In general any empty spaces in the interior of a polyomino are contained in the
bounded components of its complement in the plane, and are thus part of the holes. So
two adjacent empty spaces anywhere in the interior contribute to a hole of area at least
two. Then if A has rectangular interior, its boundary contains D1, so in the outermost
layer of the interior any two adjacent filled spaces form a dual cycle with their two adjacent
boundary tiles. These are both contradictions to our assumptions, and hence the spaces
in the outermost layer of the interior must alternate.

Furthermore, at least one of the the corners of this layer must be a hole, since filling
in all four would connect the boundary sections of D1 into a cycle (see Figure 5). Then
by rotations and reflections, we may assume the top left corner is empty and therefore in
the outermost layer of the interior all spaces in W are holes and all spaces in B are tiles.

Figure 5: Left: A dual cycle is created if all four interior corners are filled. Right: An
alternating interior layer, with holes in W and green tiles in B.

Now suppose A has holes contained somewhere in B, and let B′ ⊆ B be a maximal
connected set of holes in A. All spaces in W which are adjacent to B′ must be filled,
since every hole must have an area of one. And since B′ is maximal with respect to being
connected, all spaces in B which are corner adjacent to B′ must either be filled, or not be
contained in the interior of A. But spaces in B′ are separated from the boundary by the
alternating layer where all spaces of B are filled, so all such spaces in B which are corner
adjacent to B′ are in the interior of A and must be filled.

The hole graph of a polyomino is acyclic, as noted following Definition 11. Therefore
the portion of the hole graph corresponding to B′ is a tree. We claim that for any acyclic
set of holes, each hole having an area of one, which has all of its corner adjacent spaces
filled with tiles, the tiles surrounding the holes form a cycle. This is clearly the case for a
single hole, and any tree can be constructed by fixing a root and adding vertices of degree
one, one at a time.
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So assume that the statement holds for every such acyclic set of at most k holes, each
hole with an area of one. A new hole cannot be attached to more than one existing vertex,
as this would create a cycle. Thus any new hole requires filling in the seven surrounding
tiles which are not the corner adjacent hole it is being attached to, some of which are
already filled in A. This adds an indent to the cycle where the new hole was attached,
but it remains a cycle, and by induction if A has an acyclic set of holes, each hole with
an area of one, with all of its corner adjacent tiles filled, then A has a dual cycle.

This is in contradiction with our assumption of A being acyclic. So all holes of A must
be contained in W and all spaces of B must be filled. �

Recall that it was pointed out in the proof of Theorem 7 that the total area of an
efficiently structured polyomino cannot be equal to a square or pronic number. It would
need to be constructed in the square or pronic rectangle with that area, and this would
require the entire boundary to be filled, creating a dual cycle.

Furthermore, suppose the total area of an efficiently structured polyomino is α − 1.
Then it must again be constructed in the square or pronic rectangle of area α, since a
smaller rectangle with minimal perimeter has total area at most α−1 by Remark 10, and
by the same argument a dual cycle would be created. And then it has exactly one empty
boundary space, which must be a corner to preserve minimal perimeter, and therefore it
has boundary D2.

Combining this observation regarding the total area with the Checkerboard Lemma is
already sufficiently restrictive to rule out m(tα) in most cases.

Lemma 19. If m(tα) + tα = α, then g(tα) > m(tα) and hα 6 tα − 1.

Proof. That g(tα) > m(tα) follows directly from the preceding observation regarding total
area. The only difference is that here we acknowledge that the only time m(h) + h is a
square or pronic number is if h = tα for α = N2 with N ≡ 1 mod 3, or α = N(N + 1)
with N 6≡ 2 mod 3.

Then if m(tα) + tα = α, any crystallized polyomino with tα holes has total area at
least α + 1. This cannot fit in a square or pronic rectangle of area α, and therefore
hα 6 tα − 1. �

Lemma 20. If 2 | α, then g(tα) > m(tα) and hα 6 tα − 1.

Figure 6: Dual cycle around one hole, around a tree, and then extended around a single
extra hole.
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Proof. Lemma 19 already covers the case here when m(tα) + tα = α. Otherwise, by
the derivations of equations (20) and (21), if α = N2 then m(tα) + tα = α − 1, and if
α = N(N + 1) then m(tα) + tα = α− 2.

Case 1: Assume that 2 | α = N2, and suppose that A is a crystallized polyomino with
tα holes and m(tα) tiles such that m(tα) + tα = α− 1. Then A’s bounding rectangle must
be an N ×N square by the observation regarding total area, which then also asserts that
A must have boundary D2.

By the Checkerboard Lemma, the spaces of B in the checkerboard partition of the
interior are all filled. So on each of the two parallel sides of even length, one of the corners
of the interior must be filled. But three of the corners of the boundary layer are also filled,
so by the pigeonhole principle this creates at least one dual cycle of length four in a corner,
which contradicts efficient structure. Hence g(tα) > m(tα).

Furthermore, if hα = tα, then there is a polyomino A fitting into the square of area
α with tα holes and m(tα) + 1 tiles. Thus A must have total area α, and all tiles of the
boundary layer must be filled. But none of the corner tiles bound any holes, and taking
one away will not disconnect A, which would imply that in fact g(tα) 6 m(tα). By the
preceding argument this is a contradiction, and hence hα 6 tα − 1.

Case 2: If instead α = N(N +1) and m(tα)+ tα = α−2, then similarly by Remark 10
any other rectangle with this perimeter has area at most α− 2, and filling a shape of this
area would create a dual cycle in the boundary layer, so a pronic rectangle is required.
Two tiles on the boundary must be empty, and to maintain minimum perimeter they
must be two corners or a corner and one of its adjacent spaces. As before, two interior
corners must be filled, and then both of their incident corners in the boundary must be
empty to avoid dual cycles. But there are precisely two empty spaces which are not holes
or tiles, so the rest of the boundary is filled and the indented corners create a dual cycle,
which is again a contradiction. Hence g(tα) > m(tα).

Similarly to the previous case, if hα = tα, then a polyomino A in the pronic rectangle
of area α which has tα holes and m(tα) + 1 tiles has total area α − 1, and exactly one
empty boundary space. Then if the outermost layer of the interior alternates between
tiles and holes, there must again be two interior corners which are filled. At least one
of those boundaries must have the corner and its two adjacent boundary spaces filled,
creating a dual cycle of length four. And the corner tile there does not bound any holes
and can be removed without disconnecting A, which implies that g(tα) 6 m(tα), which
is a contradiction. Therefore it suffices to show that the outermost layer of the interior
alternates.

However, the Checkerboard Lemma no longer applies, since M(n, h) will be h + 1/2,
which forces exactly one of the three conditions of efficient structure to fail by Corollary
16. Since we are restricting the shape to be contained in a pronic rectangle, the only way
to increase the perimeter while filling a total area of α − 1 is if the empty space of the
boundary is not in a corner. But then A would be acyclic and only have holes of area
one, so the Checkerboard Lemma would assure that the outermost layer of the interior
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alternates. Otherwise the empty boundary space is in a corner and there is either a single
dual cycle or the existence of a hole with area exactly two.

Suppose that there are two adjacent tiles in the outermost layer of the interior, creating
a dual cycle of length four with the adjacent tiles of the boundary. Since there cannot be
any further cycles or holes of area two, the rest of this layer must alternate, and it has
2(N − 2) + 2(N − 3) spaces, which is even. Then surrounding these two adjacent tiles
must be two holes, one on either side. And then two tiles, one on the other side of each
hole, and then two holes, and so on. Since there are an even number of spaces this will
end with either a hole of area two or two tiles placed next to each other creating another
cycle, which is a contradiction.

The same is true if we start with a hole of area two, and therefore the spaces in this
layer alternate between holes and tiles, which implies by the above that g(tα) 6 m(tα),
which is a contradiction. Hence hα 6 tα − 1. �

Lemmas 19 and 20 prove that g(tα) > m(tα) + 1 and hα 6 tα − 1 for all odd squares
with side length N ≡ 1 mod 3, all even squares, and all pronic rectangles. This leaves
only odd squares which have side lengths N ≡ 0 or 2 mod 3.

5 Expansion and Compression

To determine what happens for the remaining odd squares, we develop a technique for
lifting efficient arrangements from smaller crystallized polyominoes, and refer to this pro-
cess as expansion. We refer to a set of five tiles arranged to have a central tile with one
tile adjacent at each edge as a “plus,” and a set of five holes arranged to have a central
hole with one hole adjacent at each corner as an “X” (see Figure 7).

∗ ∗

∗ ∗

∗

Figure 7: A polyomino with four pluses and five X’s. On the right the central tile of each
plus is marked in green, and the central hole of each X with an ∗.

For an odd integer N , let PN be the sub-arrangement of tiles and holes in the interior
of the N × N rectangle in which: (a) all spaces in B of the checkerboard partition are
filled, and (b) all spaces in the odd rows of W , enumerated from the top down, are empty.
The remaining spaces are considered to be undetermined.

PN is not itself a polyomino since its set of tiles is not connected, but it will play an
integral role in the expansion process. Observe that the undetermined spaces of PN form
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a square grid of dimensions (N − 3)/2 × (N − 3)/2. If any undetermined space is filled
with a tile it will create a plus, while any hole in these spaces will create an X. We let
UN denote the set of spaces left undetermined by PN . The process of expansion will be
to determine these spaces by using the interior of an (N + 1)/2× (N + 1)/2 square as a
template.

Figure 8: P9 in the interior of the 9 × 9 square, with tiles in black, holes in white, and
undetermined spaces in green.

Definition 21. Let A be an arrangement of tiles and holes in the N × N square with
boundary D for some D1 ⊆ D ⊆ D2. The expansion of A is the arrangement E(A) in the
(2N − 1)× (2N − 1) square with boundary D, subarrangement P2N−1, and in which the
spaces of U2N−1 are equivalent to the corresponding spaces in the interior of A.

Definition 22. Conversely, an arrangement A of tiles and holes in the N × N square
which can be written as A = D ∪ PN ∪ UA for some D1 ⊆ D ⊆ D2 and a specified
subarrangement UA in the spaces of UN is called compressible, and the compression of
A is C(A), the arrangement in the (N + 1)/2× (N + 1)/2 square with boundary D and
interior equivalent to UA.

These processes are inverses, with E(C(A)) = A for any compressible A. They also
preserve the properties of connectivity in both the hole graph and the dual graph.

Lemma 23. Let A be a compressible arrangement. Then a pair of adjacent tiles in C(A)
expands to a path of length two in A, and a pair of corner adjacent empty spaces in C(A)
expands to a path of length two in the hole graph of A.

Proof. This comes directly from the structure of PN ⊂ A. Two adjacent interior tiles
of C(A) expand to two pluses which intersect in a connecting tile from PN , and a tile
adjacent to the boundary layer of C(A) corresponds to a tile of UA which is connected to
the boundary layer by a tile of PN (see Figure 9).

Moreover, for any filled space of UA the four tiles of PN surrounding it can be thought
to extend the four edges of the corresponding tile from C(A). So when adjacent spaces of
C(A) are filled, the intermediate tile of PN is a subdivision of that edge in the expansion.
The same holds for empty spaces, where two corner adjacent empty spaces of C(A) create
two X’s in A which intersect in an empty space of PN (see Figure 10). �
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While we do not require that an arrangement A is a polyomino in the definitions of
expansion and compression, Lemma 23 allows us to determine when the property of being
an acyclic polyomino is preserved by these processes.

Lemma 24 (Compression Lemma). A compressible arrangement A is an acyclic poly-
omino if and only if C(A) is an acyclic polyomino with each of its holes having an area
of one.

Proof. We prove this by exhibiting the contrapositives in both directions. First Let A
be a compressible arrangement. Suppose C(A) has at least two adjacent empty spaces,
forming a hole of area at least two. Then the tile separating the corresponding holes of
UA is isolated and A fails to be a polyomino (see Figure 9).

C(A)

←→

A

Figure 9: Cycles are preserved by expansion and compression (in green). Two adjacent
empty spaces in C(A) disconnect A (in red). Note that C(A) is a polyomino, but A is
not.

Next suppose that C(A) has a dual cycle. If the cycle does not use any of the boundary
layer, then A contains a cycle by Lemma 23. Otherwise the cycle uses the boundary. But
any connected section of the boundary used by the cycle in C(A) is also connected in A
since by definition they have the same boundary structure, and this again forms a cycle
(see Figure 9).

Now suppose that C(A) is not connected, and thus not a polyomino. Then there must
be a connected set of holes which either forms a cycle or is a path that connects to two
empty boundary corner spaces at its ends, separating the tiles of C(A) into at least two
disjoint pieces (see Figure 10). As in the preceding argument, by Lemma 23 a cycle of
holes expands to a cycle of holes in A, which would force A to be disconnected. And
a path of holes connecting two empty boundary corners expands to a path connecting
two empty boundary corners of A, which is then disconnected. Thus, if A has connected
interior and is acyclic, then C(A) is connected, acyclic, and all holes have area one.
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C(A)

←→

A

Figure 10: A path of holes connecting two empty corners disconnects both A and C(A).

On the other hand, if A does not have connected interior, then it has either a cycle
of holes or a path of holes connecting two empty boundary corners. Any path of holes
must alternate between holes in PN and holes in UA. Then suppose two holes in UA are
mutually adjacent to a hole in PN . These holes are either consecutive spaces of UA along
a row or column, which would compress to a hole of area at least two in C(A) (see Figure
9), or they are diagonal from each other and thus corner adjacent in C(A). If no holes of
area at least two are created, then a cycle compresses to a cycle and a path connecting
two empty boundary corners of A compresses to a path connecting two boundary corners
of C(A) (see Figure 10). Thus either a hole of area at least two is created, or C(A) is
disconnected.

Similarly, if there is a cycle of tiles in A, then the tiles of the cycle in the interior
alternate between PN and UA, and two tiles in this cycle from consecutive spaces of UA
compress to adjacent tiles in C(A). Since A and C(A) have the same boundary, this cycle
compresses to a cycle in C(A), as in the previous argument for expanding a cycle (see
Figure 9). Hence if C(A) is conneceted, acyclic, and only has holes of area one, then A
has connected interior and is acyclic. �

Observe that if A is compressible, then it cannot have holes of area more than one,
and when D = D2 both A and C(A) will necessarily achieve the minimum perimeter for
their total area.

Corollary 25. A compressible acyclic polyomino A with boundary D2 is efficiently struc-
tured if and only if C(A) is efficiently structured.

Moreover, containing the subarrangement PN is a necessary condition for crystalliza-
tion of a polyomino contained in an odd N×N square with boundary layer D1 ⊆ D ⊆ D2.

Lemma 26. Let N > 5 be an odd positive integer. If A is an efficiently structured
polyomino with square (N − 2) × (N − 2) interior, then all spaces in the odd rows of W
in the checkerboard partition of the interior must be holes.

Proof. For N odd, since we assume the top left corner of the interior is in W , all corners
of the interior are in W by parity. Then by the Checkerboard Lemma and by parity, the
odd rows of W are precisely those which have holes in the outermost layer of the interior.
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t

t

Figure 11: Tiles in odd rows of W cannot connect to the boundary.

If a space in an odd row of W is filled by tile t, then the spaces which are corner
adjacent to t in even rows of W must be empty to avoid creating dual cycles. So the only
way to connect t to the boundary in order to satisfy the connected interior condition for
polyominoes is by filling a path of spaces in the odd rows and columns of W . But as
noted above, these rows and columns coincide with the the holes in the outermost layer
of W , and thus cannot connect to the boundary without creating dual cycles. Therefore
they must all be holes. �

Corollary 27. Let N > 5 be an odd integer. If A is an efficiently structured polyomino
with square (N − 2)× (N − 2) interior, then A is compressible.

This follows immediately from the Checkerdboard Lemma and Lemma 26. In particu-
lar, for N odd with N 6≡ 1 mod 3, we have that m(tN2) + tN2 = N2− 1 and an efficiently
structured polyomino with tN2 holes is compressible and has boundary D2. This leads to
a final obstruction to g(tα) = m(tα), and a proof of Theorem 9.

Lemma 28. Let N be an odd positive integer such that N 6≡ 1 mod 3, and N 6= 2l + 1
for any positive integer l. Then g(tN2) > m(tN2), and hN2 6 tN2 − 1.

Proof. Let N = 2lp+ 1 for some l > 1 and some p > 1 for which 2 - p, and suppose that
A is a polyomino with tN2 holes and m(tN2) tiles. For N 6≡ 1 mod 3 this gives total area
N2 − 1. By Corollary 27, A has boundary D2 and is compressible. And A is efficiently
structured by Lemma 15, so by Corollary 25 C(A) is an efficiently structured polyomino
with boundary D2, and is itself compressible if (N + 1)/2 is odd.

Then let N0 = N , and let Ni = (Ni−1 +1)/2 be the length of the square for Ci(A), the
i-th compression of A. Since N = 2lp + 1, we have that Ni = 2l−ip + 1, which is odd for
all i < l. Therefore l compressions can be performed, with C l(A) an efficiently structured
polyomino with boundary D2 in an Nl × Nl square for even Nl = p + 1 > 4. With D2

as its boundary layer, the total area of C l(A) must be N2
l − 1, but by Lemma 20 there

cannot be an efficiently structured polyomino with this area in an even square. Therefore
g(tN2) > m(tN2).

And if hN2 = tN2 , then by the preceding argument a crystallized polyomino with hN2

holes must have total area at least N2. If it has total area exactly N2, then the boundary
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layer is completely filled and forms a cycle. As in the proof of Lemma 20, one of the
corner tiles is extraneous and can be removed, which is a contradiction. Otherwise the
total area is more than N2 and such a polyomino cannot fit in this square. Therefore
hN2 6 tN2 − 1. �

∗ E(S1)−−−→ ∗ −→

y

←−

∗ ∗

∗ ∗

∗ E(S2)←−−− ∗
∗

∗

∗

∗

Figure 12: Expansion of S1, with E(S1) = S2 and E2(S1) = E(S2) = S3.

Proof of Theorem 9. For N = 2l + 1, the existence of crystallized polyominoes with
tN2 = (22l − 1)/3 holes and m(tN2) = [(22l+1 + 3 · 2l+1 + 4)/3]− 1 tiles was proved in [4].
We prove the uniqueness of those constructions by simply compressing them all down to
S1, the unique crystallized polyomino with a single hole (see Figure 1).

In particular fix l > 1, let N = 2l + 1 and Ni = (Ni−1 + 1)/2 = 2l−i + 1, and let A be a
compressible polyomino with (22l− 1)/3 holes and [(22l+1 + 3 · 2l+1 + 4)/3]− 1 tiles. Since
2l + 1 6≡ 1 mod 3, this has total area N2 − 1, and thus A has boundary D2. For i < l
all of the Ni are odd, with Nl−1 = 3. Therefore Ci(A) is compressible with boundary
D2 for all i < l, and thus C l−1(A) = S1. But compression and expansion are inverses,
so if two polyominos A and A′ have that Ck(A) = Ck(A′), then A = A′. In particular
the polyominoes Sl are the unique crystallized polyominoes with (22l − 1)/3 holes, and
Sl = El−1(S1). �

The method of expansion and compression then gives an alternate way to construct
the sequence Sl. For all other squares and pronic numbers, we give constructions in Sec-
tion 6 which show that hα = tα − 1. Assuming these constructions, we use expansion to
prove Theorems 3 and 4.

Proof of Theorems 3 and 4. By Lemmas 19 and 20, Given the constructions of Sec-
tion 6 and the sequence Sl, we have crystallized polyominoes with hα holes and α−hα−C
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tiles for the appropriate C, except when α = N2 for odd N such that N 6≡ 1 mod 3 and
N 6= 21 + 1 for any positive integer l.

Consider such an N , which can be written as N = 2lp+ 1 for 2, 3 - p. Then as in the
proof of Lemma 28, p + 1 is even and we can take a crystallized polyomino A with hα
holes for α = (p + 1)2 and expand it l times to get a crystallized polyomino C l(A) in an
N ×N square. Since 3 - p, p + 1 6≡ 1 mod 3, and A will be the appropriate construction
from Section 6.2 or 6.3, each with boundary D1. Then C l(A) has boundary D1 and total
area N2−4. By equation (20), Lemma 17, and Lemma 28, C l(A) has hN2 = tN2−1 holes
and N2 − hN2 − 4 tiles. �

6 Constructions of Crystallized Polyominoes

We call a polyomino which is a sequence of pluses which overlap on a non-central tile a
plus tree. We then refer to the place where such a structure in the interior of a polyomino
connects to a section of the boundary layer as its root. The basic elements of our con-
structions involve choosing an appropriate boundary layer, and filling the interior with
efficiently spaced plus trees. A plus tree growing in a certain direction is three spaces
wide, and a disjoint plus tree is not allowed to connect to any of its tiles or fill any of the
empty spaces between the pluses.

These polyominoes all have tα− 1 holes and will be efficiently structered by construc-
tion, and are thus an immediate proof of Theorems 3 and 4. For N ≡ l mod 3, we denote
the k-th element of the even square sequences by Sl,k, and the k-th element of the pronic
rectangle sequences by Rl,k, where N is the shorter of the two side lengths. All equations
for total area are taken from the appropriate cases in equations (19) and (20), and Lemma
17.

6.1 Even Squares, N ≡ 1 mod 3

The polyomino S1,k is made up of 2k vertical plus trees with roots alternating between
the bottom and top boundaries from left to right, each with 3k pluses, and has boundary
D1 with the top left corner additionally filled. To satisfy the Checkerboard Lemma we
also require that the spaces of the outermost layer of the interior alternate between tiles
and holes, with a hole in the top left corner.

Each plus tree takes up three of its own columns, and along with the boundary and
outermost layer of the interior on each side the total width is N = 4 + 6k. Similarly, for
a tree rooted at the bottom, count each hash of a plus along with the row above it, then
there are two additional rows above and two below, and the height is also 4 + 6k. This
length is always 1 mod 3, so the minimal total area for (tN2 − 1) holes is N2 − 3.

Since N is even the bottom left and top right corners will be indented, and the bound-
ary sections are all connected. Then S1,k achieves total area (4 + 6k)2 − 3, and by con-
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S1,1, N = 10, g(26) = 71 S1,2, N = 16, g(74) = 179

Figure 13: The first two elements of the sequence S1,k.

struction it is efficiently structured. Hence S1,k is crystallized for all k > 1, with

h(S1,k) =
(N − 1)2

3
− 1 =

(3 + 6k)2

3
− 1 = 12k2 + 12k + 2,

|Sl,k| = (4 + 6k)2 − h(S1,k)− 3 = 24k2 + 36k + 11.
(22)

6.2 Even Squares, N ≡ 2 mod 3

We construct S2,k with boundary D1, and make the upper right hand corner equivalent
to S2 to connect the two disjoint boundary sections. To the right of this there are 2k− 2
vertical plus trees, with the roots alternating from the bottom to the top, and below the
copy of S2 there are 2k − 2 horizontal plus trees with two pluses each, with the roots
alternating between the left boundary and the leftmost vertical plus tree from the bottom
up.

The vertical plus trees, the 2 additional columns to the right boundary and one column
separating them from S2, which has width five, makes the total width N = 3(2k − 2) +
3 + 5 = 6k + 2, which is always 2 mod 3. There are the same number of horizontal plus
trees as vertical ones, and the rest of spacing is the same, so the height is also 6k + 2.
For N ≡ 2 mod 3, the minimal total area for tN2 − 1 holes is N2− 4. So S2,k is efficiently
structured by construction, and thus crystallized for all k > 1, with

h(S2,k) =
N(N − 2)

3
− 1 =

(6k + 2)6k

3
− 1 = 12k2 + 4k − 1,

|S2,k| = (6k + 2)2 − h(S2,k)− 4 = 24k2 + 20k + 1.
(23)
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S2,1, N = 8, g(15) = 45 S2,2, N = 14, g(55) = 137

Figure 14: The first two elements of the sequence S2,k.

6.3 Even Squares, N ≡ 0 mod 3

The construction for N ≡ 0 mod 3 is the same as the previous case, but with S3 instead of
S2 in the upper left corner. This increases the side length to N = 3(2k−2)+3+9 = 6k+6,
and the minimal total area for tN2 − 1 holes is N2 − 4. Therefore by construction S0,k is
an efficiently structured polyomino, and hence crystallized for all k > 1, with

h(S2,k) =
N(N − 2)

3
− 1 =

(6k + 6)(6k + 4)

3
− 1 = 12k2 + 20k + 7,

|S2,k| = (6k + 6)2 − h(S2,k)− 4 = 24k2 + 52k + 25.

(24)

S0,1, N = 12, g(39) = 101 S0,2, N = 18, g(95) = 225

Figure 15: The first two elements of S0,k.
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6.4 Pronic Rectangles, N ≡ 0 mod 3

R0,1, N = 6,

g(9) = 30

R0,2, N = 9,

g(23) = 64

R0,3, N = 12,

g(43) = 110

Figure 16: The first three elements of R0,k.

Let R0,k have boundary D1 with the top left corner filled. The interior is then filled with
k plus trees whose roots alternate between the right boundary and the bottom boundary.
Right-rooted trees move left and then turn straight down, and bottom-rooted trees move
up and then turn right, fitting tightly around the previous tree.

The height has k plus trees and two additional rows on top and bottom, for a total
of 3k + 4. The width is one less than the height, since the first tree is rooted on the side
and so there are is only one column on the right which is not accounted for by the trees,
instead of the usual two. Thus the bounding rectangle has dimensions N × (N + 1) for
N = 3k+3, and by construction R0,k has efficient structure with total area N(N +1)−3.
Therefore R0,k is crystallized for all k > 1, with

h(R0,k) =
N(N − 1)

3
− 1 =

(3k + 3)(3k + 2)

3
− 1 = 3k2 + 5k + 1,

|R0,k| = N(N + 1)− h(R0,k)− 3 = 6k2 + 16k + 8.
(25)

6.5 Pronic Rectangles, N ≡ 0 mod 3

For N ≡ 1 mod 3 we define R1,k to be the same as R0,k, but with the initial tree having
two pluses. In this case the width increases by two, and the height is the same, so its
bounding rectangle is N × (N + 1) for N = 3k + 4. The equation in terms of N is the
same as the above, and so R1,k is crystallized for all k > 1, with

h(R1,k) =
N(N − 1)

3
− 1 =

(3k + 4)(3k + 3)

3
− 1 = 3k2 + 7k + 3,

|R1,k| = N(N + 1)− h(R1,k)− 3 = 6k2 + 20k + 14.
(26)
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R1,1, N = 7,

g(13) = 40

R1,2, N = 10,

g(29) = 78

R2,3, N = 13,

g(51) = 128

Figure 17: The first three elements of R1,k.

6.6 Pronic Rectangles, N ≡ 2 mod 3

Finally we have the double spiral construction for N ≡ 2 mod 3. In this case, the minimal
total area for tN(N+1) − 1 holes is N(N + 1)− 5. We orient R2,k so that the odd length is
the width and the even length is the height, with all five empty spaces of the boundary
in the bottom row; three from the left corner and two from the right corner. The interior
is checkered and filled with two concentric plus tree spirals, one starting on the left of
the bottom boundary and one on the bottom of the right boundary. They indent at the
bottom left corner, and otherwise turn at right angles as depicted in Figure 18.

R2,3, N = 14, g(59) = 146 R2,4, N = 17, g(89) = 212

Figure 18: The third and fourth elements of the sequence R2,k.
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The k-th element of this sequence has k horizontal sections of plus trees and k vertical
sections of plus trees, and the extra spaces depend on the parity of k. If k is even, the
horizontal trees can be counted with an extra two rows taken up by the bottom rooted
plus, and thus with two additional rows at the top and only the boundary row on the
bottom, the height is 3k + 5. And vertically it an extra plus moving left at the center
giving two additional columns, with another two additional columns on each side. So the
width is 3k + 6. If k even, the right-rooted spiral can be counted among the k trees, and
there is an extra two spaces created by the plus moving down at the center. So the height
is 3k+ 6. And then horizontally there is a central hole indicating one extra column, with
two additional columns on the sides, making the width 3k + 5.

So in all cases N = 3k + 5 ≡ 2 mod 3, and by construction R2,k is an efficiently
structured crystal with total area N(N + 1)− 5, and with

h(R2,k) =
(N + 1)(N − 2)

3
− 1 =

(3k + 6)(3k + 3)

3
− 1 = 3k2 + 9k + 5,

|R2,k| = N(N + 1)− h(R2,k)− 5 = 6k2 + 24k + 20.
(27)

The first two of this sequence are degenerate with respect to the spiral effect and are
depicted below.

R2,1, N = 8, g(17) = 50 R2,2, N = 11, g(35) = 92

Figure 19: The first two elements of R2,k.

7 Dismantling and the Proof of Theorem 5

Given a crstallized polyomino A with hα holes, we develop algorithms which remove at
each step two tiles and one hole. By Lemma 17, this will produce constructions achieving
g(h) tiles and h holes for all h for which α is the minimum square or pronic number such
that h 6 hα. For α = N2 or N(N + 1), if we can remove at least dN/3e holes from A in
this manner, then the total area of the remaining polyomino is at most N(N − 1) or N2,
respectively, and we say we have dismantled A.
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−→ −→

−→ −→

Figure 20: Iterative process for removing two tiles and one hole.

Consider first the case that a polyomino has a plus tree rooted next to an indented
corner, and the tree grows straight along the length of the side boundary. This subar-
rangement is especially prominent in S1,k in Figure 13, and occurs in all constructions in
Section 6 except for the double spiral in 6.6. This can be dismantled by the following
process depicted in Figure 20: (a) fill the lowest hole along the side boundary by pushing
in the adjacent boundary tile; (b) remove the two boundary tiles adjacent to the indented
corner; and (c) remove the indented corner and the boundary tile which is corner adja-
cent to it. Steps (a) and (b) combine to remove two tiles and one hole, and step (c) also
removes two tiles and one hole, and additionally sets up a new indented corner so that
the process can be repeated as long as the tree grows along that boundary. Both removals
preserve the properties that the polyomino is acyclic and each hole has an area of one.

In the pronic mod 2 case there is not always a long rooted tree, but the tree along the
top can be rooted so that this process can be implemented. To do so, as in Figure 21:
(a) move the top corner tile to the adjacent interior corner; (b) remove the two tiles that
were adjacent to the corner tile; (c) push the boundary tile on the bottom row up to root
the tree; (d) remove the two tiles which had been adjacent to the tile that was pushed up.

−→ −→

Figure 21: Process for rooting a tree in the double spiral construction.
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Dismantling odd squares becomes increasingly difficult upon subsequent expansions.
There will always be holes in all four corners by parity, and these holes are always easily
removed via methods used in the previous two examples. If the outer corner space is
filled, we can apply the first removal from Figure 21, and if it is empty we can apply the
second removal from Figure 20.

Removing the corners subtracts 12 total spaces, which suffices to dismantle up to
an 11 × 11 square. For larger squares, after the corners are dealt with we remove the
next hole via a complete rearrangement which is a modified version of the double spiral
construction, with unique central configurations depending on N mod 3, as depicted in
Figure 22.

Figure 22: Rearrangements for N = 13, 15, and 17.

These arrangements generalize straightforwardly for larger N by expanding the bound-
ary and extending each spiral in two directions. For example, the 1 mod 3 construction
on the left in Figure 22 extends to N = 19 by taking the spiral that stops at the bottom
right and extending it left and then up, and the spiral that is pointing up extends right
and then down. This adds six to both the width and height, and thus preserves N mod 3.

The 1 mod 3 construction has 18 empty spaces around the boundary, and the other
two have 19 empty spaces. Recall that for N ≡ 1 mod 3, the construction for hN2 holes
has three empty corners, and the constructions for N 6≡ 1 mod 3 both have four empty
corners. Then another 12 spaces are removed by dismantling the four corner holes, and
this rearrangement removes one additional hole, giving the above numbers.

−→ −→

Figure 23: General method to remove five holes from Sl.
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The only exception is the sequence Sl, which starts with a single empty corner and
requires one extra removal. In removing the four corners from Sl, three become indented
as in Figure 21. Then we get the additional removal by moving one these three indented
corners to the center and removing the other two (see Figure 23). Observe that these
rearrangements preserve the acyclic structure of the polyomino and the property that all
holes have area one.

Proof of Theorem 5. As noted above, all constructions in Section 6 either have a
rooted plus tree growing next to an indented corner along the full side of the polyomino,
or have a plus tree which can be rooted as shown in Figure 21, and any crystallized
polyomino with hα holes for α an odd square which is constructed via expansion can be
rearranged after some initial removals to have a rooted plus tree growing along a full side
of the polyomino. Then, implementing the removal process for holes along a rooted tree
clearly suffices to dismantle all of these crystallized polyominoes, as they remove at least
N − 4 holes, far more than the roughly N/3 necessary.

This implies that g(h) 6 g(hα) − 2(hα − h) for any h such that α is the minimum
square or pronic number with h 6 hα. Let α′ < α be the next largest square or pronic
number. Then since m(hα) = g(hα), Lemma 17 ensures that g(hα) − 2(hα − h) = m(h)
for all h such that h+m(h) > α′. When α′ = (2l + 1)2, we have that

(hα′ + 1) +m(hα′ + 1) > α,′

and otherwise hα′ + 1 = tα′ . Then m(tα′ + 1) = m(tα′) + 3 by Lemma 17, and by Lemmas
19, 20, and 28 we have that

g(tα′) = m(tα′) + 1 = m(tα′ + 1)− 2.

Therefore g(hα)− 2(hα−h) = g(h) for all h such that α is the minimum square or pronic
number such that h 6 hα. �

Observe that these removals will quickly disrupt the property of having minimal outer
perimeter. In fact, none of the constructions in Figure 22 are crystallized, since in all
three cases N2 − 18 is already less than N(N − 1).

The jumps from hα to hα + 1 are the only jumps of three for g(h) once h > 6. We
also demonstrate a constructive procedure to show that three tiles is always sufficient to
produce an additional hole when h > 6. Whenever there is a plus rooted to a border, the
local transformation in Figure 24 maintains all routes of connectivity in the polyomino
and does not create any cycles.

−→ −→

Figure 24: Adding one hole and three tiles to a rooted plus on the boundary.
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The h = 5 case in a 5×5 square is the largest crystallized polyomino without a rooted
plus, and in particular the jump from g(5) = 19 to g(6) = 23 is the last time there is a
jump of more than 3 in g(h).

8 Concluding Remarks and Open Problems

Outside of the K–R sequences, it remains an open problem to enumerate crystallized
polyominoes. Expansion can perhaps be leveraged in this pursuit, but in its current
formulation it does not capture small changes to the boundary.

There is a subfamily of polyominoes with holes, called punctured polyominoes that have
been studied before but without asking the extremal problem of maximizing the number
of holes within that subfamily. For definitions and results on punctured polyominoes see
Chapter 2, 8, and 11 of [2]. An important observation is that punctured polyominoes do
not capture the topological structure that we are interested in studying in this paper.

Viewing polyominoes as embedded 2-dimensional cubical complexes and the number of
holes as the rank of the first homology group (with integer coefficients), this problem also
generalizes immediately to the question of maximizing the (d− 1)-dimensional homology
for cubical complexes, such as polycubes in R3.
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