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Abstract

A k-universal permutation, or k-superpermutation, is a permutation that con-
tains all permutations of length k as patterns. The problem of finding the minimum
length of a k-superpermutation has recently received significant attention in the
field of permutation patterns. One can ask analogous questions for other classes of
objects. In this paper, we study k-supertrees. For each d > 2, we focus on two
types of rooted plane trees called d-ary plane trees and [d]-trees. Motivated by re-
cent developments in the literature, we consider “contiguous” and “noncontiguous”
notions of pattern containment for each type of tree. We obtain both upper and
lower bounds on the minimum possible size of a k-supertree in three cases; in the
fourth, we determine the minimum size exactly. One of our lower bounds makes
use of a recent result of Albert, Engen, Pantone, and Vatter on k-universal layered
permutations.
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1 Introduction

1.1 Background

Let Sn denote the set of permutations of the set [n] = {1, . . . , n}. We write permutations
as words in one-line notation. Given µ ∈ Sm, we say that the permutation σ = σ1 · · ·σn ∈
Sn contains the pattern µ if there are indices i1 < · · · < im such that σi1 · · ·σim has
the same relative order as µ. Otherwise, we say that σ avoids µ. Consecutive pattern
containment and avoidance are defined similarly by requiring the indices i1, . . . , im to
be consecutive integers. An enormous amount of research in the past half-century has
focused on pattern containment and pattern avoidance in permutations [7,30,31]. Plenty
of particularly popular permutation pattern problems possess the following form:

What is the minimum length of a permutation that contains all patterns of a certain
type?

For example, one can ask for the smallest size of a permutation containing all length-k
patterns; such a permutation is called a k-universal permutation or a k-superpermutation
[4, 20, 32]. The analogous question for consecutive pattern containment has also received
attention [5, 27–29]. Rather than discuss all of the variants of this problem that have
emerged, we refer the reader to the beautiful article [19], which surveys many of the
results in this area.

In recent years, the notion of pattern containment has spread to other combinatorial
objects. It is natural to ask about the minimum possible sizes of “universal objects” in
these contexts. This idea dates back to 1964, when Rado [34] asked for the minimum
number of vertices in a graph that contains all k-vertex graphs as induced subgraphs. A
vast amount of literature has been devoted to “Rado’s problem” alone (see [2, 3, 8, 9, 21]
and the references therein).

In this paper, we focus on rooted plane trees. Several variations on the theme of
contiguous and noncontiguous pattern containment in rooted plane trees have appeared
in [6,15,18,23–25,33,35]. The purpose of the present article is to investigate the minimum
possible size of a k-universal tree, or k-supertree, in some of these contexts. Similar
questions about universal trees have been studied since the 1960’s [10–14, 26]. However,
our notions of universal rooted plane trees are new and are inspired by more recent
definitions of pattern containment in trees.

1.2 Main Definitions and Terminology

Let d > 2 be an integer. A d-ary plane tree is either an empty tree or a root vertex with d
subtrees that are linearly ordered from left to right and are themselves d-ary plane trees.
A 2-ary plane tree is also called a binary plane tree. Note that the subtrees of a vertex
can be empty. By the “ith subtree” of a vertex, we simply mean the ith subtree from the
left. We say an edge has “type i” if it connects a vertex to the root of its ith subtree. A
d-ary plane tree is called full if every vertex has either 0 or d children (or, equivalently, if
only leaves have empty subtrees).
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Every connected induced subgraph T ∗ of a d-ary plane tree T can be viewed as a
d-ary plane tree in the obvious way. If T ∗ is isomorphic as a d-ary plane tree to another
d-ary plane tree T , then we say that T ∗ is a contiguous embedding of T in T and that T
contiguously contains T . For example, the 3-ary plane tree

contiguously contains but does not contiguously contain .

Rowland [35] defined contiguous pattern containment in full binary plane trees, and the
authors of [25] made a similar definition for full 3-ary plane trees. In general, for any
k > 0, the operation of removing (pruning) all leaves provides a natural bijection from
the set of full d-ary plane trees with dk + 1 vertices to the set of d-ary plane trees with k
vertices. Using this bijection, one can easily see that our definition of contiguous pattern
containment for d-ary plane trees corresponds to the definitions in [25,35] when d ∈ {2, 3}.
Our formulation has the advantage of working with smaller trees so that diagrams are
not cluttered with unnecessary leaves.

Given a vertex u in a d-ary plane tree, let χ(u) be the set of all i ∈ [d] such that
u has a nonempty ith subtree. Suppose e is an edge of type i that connects u to one
of its children v (meaning i ∈ χ(u)). We can consider the operation of contracting the
edge e. We call this operation a legal contraction if every element of χ(u) \ {i} is either
strictly smaller than min(χ(v)) or strictly greater than max(χ(v)). Informally speaking,
this definition ensures that edges do not “overlap” or “cross” each other during a legal
contraction. After legally contracting an edge in a d-ary plane tree, we are left with a
new d-ary plane tree. Given d-ary plane trees T and T , we say that T noncontiguously
contains T if we can obtain T from T through a sequence of legal edge contractions. For
example, the 3-ary plane tree

noncontiguously contains but does not noncontiguously contain .

When d = 2, we can use the pruning bijection mentioned above to show that our definition
of noncontiguous pattern containment in binary plane trees is consistent with the notion
considered in [15,33].

Given a set S of positive integers, an S-tree is a rooted tree in which the children
of each vertex are linearly ordered from left to right and the number of children of each
vertex is an element of S ∪ {0}. One can think of a [d]-tree as a tree obtained from a
d-ary plane tree by forgetting about empty subtrees and the types of edges. What we
term [2]-trees are more commonly called “unary-binary trees” or “Motzkin trees.”

Every connected induced subgraph T ∗ of a [d]-tree T is itself a [d]-tree. If T ∗ is
isomorphic as a [d]-tree to another [d]-tree T , then we say that T ∗ is a contiguous embedding
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of T in T and that T contiguously contains T . For example, the [3]-tree

contiguously contains but does not contiguously contain .

Suppose e is an edge in a [d]-tree that connects a vertex u to one of its children v. If
the total number of children of u and v, excluding v itself, is at most d, then the operation
of contracting the edge e is a legal contraction. Note that if v′ was a child of u to the left
(respectively, right) of v, then v′ remains to the left (respectively, right) of the children
of v after we legally contract e. After legally contracting an edge in a [d]-tree, we are left
with a new [d]-tree. Given [d]-trees T and T , we say that T noncontiguously contains T
if we can obtain T from T through a sequence of legal edge contractions. For example,
the [3]-tree

noncontiguously contains but does not noncontiguously contain .

A contiguous k-universal d-ary plane tree is a d-ary plane tree that contiguously con-
tains all d-ary plane trees with k vertices. Similarly, a noncontiguous k-universal d-ary
plane tree is a d-ary plane tree that noncontiguously contains all d-ary plane trees with k
vertices. Let N con

d-ary(k) (respectively, Nnon
d-ary(k)) denote the minimum number of vertices in

a contiguous (respectively, noncontiguous) k-universal d-ary plane tree. Contiguous and
noncontiguous k-universal [d]-trees are defined analogously. Let N con

[d] (k) (respectively,

Nnon
[d] (k)) denote the minimum number of vertices in a contiguous (respectively, noncon-

tiguous) k-universal [d]-tree. We refer to k-universal trees as “k-supertrees” when the
type of tree and the type of containment are clear from context.

We say the root of a rooted plane tree has depth 0; a nonroot vertex has depth r if its
parent has depth r − 1. The height of a rooted plane tree is the maximum depth of its
vertices. We write |T | for the number of vertices in T . The perfect tree P

(d)
h is the unique

d-ary plane tree of height h that has exactly dr vertices of depth r for each r ∈ {0, . . . , h}.
It will be useful to have a formally defined “gluing” operation for combining trees.

Suppose T is a rooted plane tree and v is a leaf of T . If T ′ is another rooted plane tree
(of the same type as T , of course), then we can glue T ′ to v by attaching T ′ to T , where
we identify the root of T ′ with v. For example, if T and v are

and T ′ is , then the result of gluing T ′ to v is .

1.3 Main Results

Let η2 = 1, and let ηd = 1
2

for every d > 3. In Section 3, we will define numbers ρd,
which arise as reciprocals of roots of certain polynomials. The purpose of the subsequent
sections is to prove the following estimates (where d > 2 is a fixed integer):
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(I) N con
d-ary(k) = dk−1 + k − 1;

(II) ηd k log2(k)(1 + o(1)) 6 Nnon
d-ary(k) 6 k

1
2
log2(k)(1+o(1));

(III) d
k−2
d 6 N con

[d] (k) 6 (ρd + o(1))k;

(IV)
ηd
d
k log2(k)(1 + o(1)) 6 Nnon

[d] (k) 6 k
1
2
log2(k)(1+o(1)).

Some remarks are in order regarding these estimates. First of all, note that it is
unusual to be able to prove an exact formula for the minimum size of a universal object,
as we have done in (I). Next, a contiguous k-universal d-ary plane (respectively, [d]-)
tree is certainly also a noncontiguous k-universal d-ary plane (respectively, [d]-) tree,
so we trivially have N con

d-ary(k) > Nnon
d-ary(k) and N con

[d] (k) > Nnon
[d] (k). Furthermore, one

can change a d-ary plane tree into a [d]-tree by simply forgetting about empty subtrees
and edge types. Doing so allows us to view a contiguous (respectively, noncontiguous)
k-universal d-ary plane tree as a contiguous (respectively, noncontiguous) k-universal [d]-
tree. Therefore, it follows from (I) that Nnon

d-ary(k), N con
[d] (k), and Nnon

[d] (k) are all at most

dk−1 +k−1. However, the upper bounds in (II), (III), and (IV) greatly improve upon this
observation. Indeed, the upper bounds in (II) and (IV) are subexponential in k, and the
base of the exponential in the upper bound in (III) is much smaller than d. In Section 3,
we will see that ρd = 1 + 4 log d

d
(1 + o(1)) as d → ∞. Compare this with the exponential

lower bound in (III), in which the base of the exponential is d1/d = 1 + log d
d

(1 + o(1)).
Finally, note that since Nnon

[d] (k) 6 N con
[d] (k), we could deduce immediately from (III)

that Nnon
[d] (k) 6 (ρd + o(1))k. However, the subexponential upper bound in (IV) greatly

improves upon this. Similarly, the lower bound in (III) beats the lower bound in (IV).
We will show in Section 3 that Nnon

d-ary(k) and Nnon
[d] (k) differ by at most a constant factor

(for each fixed d); this fact explains why (II) and (IV) look similar.
Producing nontrivial lower bounds for the sizes of noncontiguous k-universal trees is

fairly difficult; this is analogous to the permutation setting, where nontrivial lower bounds
are scarce. For example, the best known lower bound for the length n of a permutation
that contains all length-k patterns is given by n > k2/e2; this is a consequence of the
simple observation that

(
n
k

)
> k!. The number of d-ary plane trees with k vertices is

1
(d−1)k+1

(
dk
k

)
, so a similar argument in our setting shows that

(Nnon
d-ary(k)

k

)
> 1

(d−1)k+1

(
dk
k

)
.

This translates to a lower bound of roughly dk for Nnon
d-ary(k). Although many of the lower

bounds in the (noncontiguous) permutation setting are trivial, there is a noteworthy
exception: Albert, Engen, Pantone, and Vatter managed to obtain an explicit formula
for the minimum length of a permutation that (noncontiguously) contains all length-k
layered permutations. Making use of a bijection between 231-avoiding permutations and
binary plane trees, we will invoke this result in order to prove the lower bound in (II).
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2 d-ary plane trees

2.1 Contiguous containment

In the case of contiguous containment for d-ary plane trees, we obtain the exact size of
the smallest k-supertree. The upper bound comes from an explicit construction, and the
lower bound comes from considering the family of paths.

Theorem 1. For all integers d > 2 and k > 1, we have N con
d -ary(k) = dk−1 + k − 1.

Proof. We first show that dk−1 + k− 1 is a lower bound for the size of a k-supertree. Let
T be a contiguous k-universal d-ary plane tree. Let T1, . . . , Tdk−1 be the d-ary plane trees
on k vertices in which each nonleaf vertex has exactly one child (i.e., the d-ary plane trees
that are paths on k vertices). For each i ∈ {1, . . . , dk−1}, there is a contiguous embedding
T ∗i of Ti in T. Let v∗i denote the vertex in T that corresponds to the unique leaf of Ti under
this embedding. Starting at v∗i and tracing up k − 1 edges, we immediately recover all of
the edges of T ∗i , so the location of v∗i in T completely determines the isomorphism class of
T ∗i . Because the trees T ∗1 , . . . , T

∗
dk−1 are pairwise nonisomorphic, the vertices v∗1, . . . , v

∗
dk−1

are pairwise distinct. Thus, T contains at least dk−1 vertices at depth at least k−1. Since
T contains vertices at depth k− 1, it must also contain at least one vertex at each depth
j for 0 6 j 6 k − 2. This gives at least k − 1 additional vertices, so T contains at least
dk−1 + k − 1 vertices, as desired.

We now construct a contiguous k-universal d-ary plane tree ∆d(k) on exactly dk−1 +
k − 1 vertices. First, the tree ∆d(1) consists of a single vertex. Now, consider k > 2. To
construct ∆d(k), first consider the d-ary plane tree that is a path on k−1 vertices in which
every edge is of type 1. Let v denote the unique leaf of this path. For each 2 6 i 6 d,
attach a copy of the perfect tree P

(d)
k−2 in the ith subtree of v. (Recall the definition of

perfect trees from the introduction.) Note that each of these d − 1 added trees contains
exactly 1 + d+ · · ·+ dk−2 vertices, which means that together they have dk−1− 1 vertices
in total. Next, consider the leftmost leaf in the copy of P

(d)
k−2 that is sitting in the second

subtree of v. Add one more vertex in the first subtree of this leaf. The resulting tree
∆d(k) has the desired number of vertices. See Figure 1 for an example.

Figure 1: The tree ∆3(4) is depicted on the right. This tree contiguously contains all
3-ary plane trees on 4 vertices, three of which are shown on left.

Finally, we show that ∆d(k) is in fact a k-supertree. Fix any d-ary plane tree T with
k vertices. If T is not a path, then it has height at most k − 2, so it fits into one of
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the copies of P
(d)
k−2. If T is the path whose edges are all of type 1, then we can embed T

in ∆d(k) by mapping the root of T to the root of the second subtree (i.e., the leftmost
nonempty subtree) of v. Now, suppose T is a path in which at least one edge is not of
type 1. Let m be the smallest element of {1, . . . , k − 1} such that the mth edge from the
top of T is not of type 1. We can embed T into ∆d(k) by mapping the unique vertex in
T of depth m− 1 to v. This exhausts all cases and shows that ∆d(k) is k-universal.

2.2 Noncontiguous containment

2.2.1 Lower bounds

Recall that η2 = 1 and ηd = 1
2

for all d > 3. In this subsection we will prove the following
theorem.

Theorem 2. For all integers d > 2 and k > 1, we have

Nnon
d -ary(k) > ηd

(
(k + 1) dlog2(k + 1)e − 2dlog2(k+1)e + 1

)
.

The first step is to show that it suffices to consider the specific case in which d = 2.

Proposition 3. For all integers d > 3 and k > 1, we have

Nnon
d -ary(k) >

1

2
Nnon

2 -ary(k).

Proof. Fix d > 3, and consider the d-ary plane tree path on m− 1 vertices in which every
edge has type 1. Let ~t = (t1, . . . , tm) be an m-tuple of integers satisfying 1 6 t1 < · · · <
tm 6 d. For 2 6 i 6 m, attach a single child via an edge of type ti to the (i− 1)th vertex
of the path, counting from the bottom. Then attach a single child via an edge of type t1
to the bottom vertex of this original path. Call the resulting d-ary plane tree J~t.

Let T = T0 be a d-ary plane tree. We will transform T into a tree T̃ in which every
vertex has at most two children. Suppose T has a vertex v1 with at least 3 children, say
exactly m1 children in subtrees of type ~t1 = (t1,1, . . . , t1,m1). Replace v1 with a copy of
J~t1 in the following manner. Detach the subtrees of v1, and glue J~t1 to v1. Then glue
the (detached) ith nonempty subtree (counted from the left) of v1 to the ith leaf (again
counted from the left) of the copy of J~t1 . Call this tree T1. Choose another vertex v2
that has m2 > 3 children in subtrees of type ~t2, and replace it in the same fashion with
a copy of J~t2 to obtain T2. Continue this process until reaching a tree T̃ = Tr in which
each vertex has at most 2 children.

Note that if 1 6 i 6 r, then Ti noncontiguously contains Ti−1 because we can legally
contract the edges of the original path in the added J~ti from top to bottom. Iterating this

procedure shows that there is a sequence of legal contractions that begins with T̃ = Tr
and ends with T0 = T .

We can naturally associate T̃ with a binary plane tree T̃ ′. If there is an only child of
type 1 in T̃ , it becomes an only child of type 1 in T̃ ′. If there is an only child of type other
than 1 in T̃ , it becomes an only child of type 2 in T̃ ′. See Figure 2 for an example when
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d = 4. As proven above, our construction guarantees that T̃ noncontiguously contains
T , so it also noncontiguously contains every d-ary plane tree that T noncontiguously
contains.

Figure 2: Transforming T into T̃ ′. We have used the color red to indicate the edges of
the inserted copy of Jmi

added in the ith step.

Let T be a noncontiguous k-universal d-ary plane tree with α = Nnon
d -ary(k) vertices.

The tree T̃ obtained via the above construction is also a noncontiguous k-universal d-ary
plane tree, so T̃′ is a noncontiguous k-universal binary plane tree. The trees T̃ and T̃′

have the same number of vertices, say β. We know that β > Nnon
2 -ary(k). We will show that

β < 2α, establishing the desired result.
Let fr denote the number of vertices in T with exactly r children. We obtained

T̃ from T by substituting a copy of Jm for each vertex v of T with m > 3 children.
Note that each such substitution increased the number of vertices in the tree by m − 2.
Thus, β = α +

∑d
m=3(m − 2)fm. We know that

∑d
m=0 fm = α. Furthermore, counting

the α − 1 edges in T according to the number of children of their parent vertices gives
α− 1 =

∑d
m=0mfm. Consequently,

β = α +
d∑

m=3

(m− 2)fm = α + 2f0 + f1 +
d∑

m=0

(m− 2)fm

= α + 2f0 + f1 + (α− 1)− 2α = 2f0 + f1 − 1 < 2
d∑

m=0

fm = 2α.

For the proof of Theorem 2, it now remains only to show that

Nnon
2-ary(k) > (k + 1) dlog2(k + 1)e − 2dlog2(k+1)e + 1. (1)

Let us first establish some terminology and notation concerning labeled trees and tree
traversals. Let PT(2)

n denote the set of binary plane trees with n vertices. A decreasing
binary plane tree is a binary plane tree whose vertices are labeled with distinct positive
integers so that the label of each nonroot vertex is smaller than the label of its parent.
Let DPT(2)

n be the set of decreasing binary plane trees with n vertices in which the labels
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form the set [n]. We can read the labels of a decreasing binary plane tree in in-order by
first reading the labels of the left subtree of the root in in-order, then reading the label
of the root, and finally reading the labels of the right subtree of the root in in-order.
Let I(Υ) denote the in-order reading of the decreasing binary plane tree Υ. The map
I : DPT(2)

n → Sn is a bijection [7, Chapter 8]. Alternatively, we can read the labels of a
decreasing binary plane tree in postorder by first reading the labels of the left subtree of
the root in postorder, then reading the labels of the right subtree of the root in postorder,
and finally reading the label of the root.

For each unlabeled tree T ∈ PT(2)
n , there is a unique way to label the vertices of T

so that the resulting labeled tree ω(T ) ∈ DPT(2)
n has postorder reading 123 · · ·n (the

increasing permutation). This gives us a map ω : PT(2)
n → DPT(2)

n . Let ψ(T ) = I(ω(T )).
It is not difficult to check that the permutation ψ(T ) avoids the pattern 231. In fact, we
have the following useful proposition.

Proposition 4. The map ψ is a bijection from the set of binary plane trees with n
vertices to the set of 231-avoiding permutations in Sn. If T is a binary plane tree that
noncontiguously contains the binary plane tree T , then the permutation ψ(T ) contains the
pattern ψ(T ).

Proof. The map ψ is injective because ω and I are injective. The first statement of the
proposition now follows from the fact that the number of binary plane trees with n vertices
and the number of 231-avoiding permutations in Sn are both equal to the nth Catalan
number.1

To prove the second statement, we need to understand the effect of legal edge con-
tractions on the corresponding permutations. Let T ∈ PT(2)

n be a binary plane tree, and
let e be an edge of T that can be legally contracted. Let a and b be, respectively, the
labels of the upper and lower endpoints of e in ω(T ). Let T /e ∈ PT

(2)
n−1 denote the tree

that is obtained by contracting the edge e in T . One can check that if e is a type-1 edge,
then ψ(T /e) is the permutation obtained by deleting the entry b from ψ(T ) and then
normalizing to obtain a permutation in Sn−1. Similarly, if e is a type-2 edge, then ψ(T /e)
is the permutation obtained by deleting the entry a from ψ(T ) and then normalizing. In
either case, ψ(T ) contains ψ(T /e) as a pattern. If T noncontiguously contains a binary
plane tree T (meaning T is obtained from T via a sequence of legal edge contractions),
then ψ(T ) contains ψ(T ) as a pattern.

Let us illustrate the proof of the second statement of Proposition 4 with an example.
If

T is , then ω(T ) is
1

2

6

7

54

3

8

, and ψ(T ) = I(ω(T )) = 17324658.

1The first statement of this proposition is not new; it is essentially equivalent to the fact that a
permutation is 1-stack-sortable if and only if it avoids 231 (see one of the references [7, 16, 17] for more
details).
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Contracting the edge labeled e, we find that

T/e is , ω(T/e) is 1

2

3 4

5

6

7

, and ψ(T/e) = I(ω(T/e)) = 1632547.

Note that since e is a left edge, the permutation ψ(T/e) = 1632547 is obtained by deleting
the entry b = 4 from the permutation ψ(T ) = 17324658 and then normalizing.

We can finally deduce inequality (1). Suppose T is a noncontiguous k-universal binary
plane tree with Nnon

2-ary(k) vertices. Proposition 4 tells us that ψ(T ) contains every 231-
avoiding permutation in Sk. A permutation is called layered if it avoids both 231 and 312.
Thus, ψ(T ) is a permutation of length Nnon

2-ary(k) that contains all layered permutations in
Sk. The authors of [1] proved that the minimum size of a permutation that contains all
layered permutations in Sk is (k + 1) dlog2(k + 1)e − 2dlog2(k+1)e + 1. This establishes (1)
and hence completes the proof of Theorem 2.

2.2.2 Upper bounds

For every d > 2 and k > 1, we now construct a noncontiguous k-universal d-ary plane
tree ξd(k). The construction is natural but fairly intricate. We begin by defining a few
specific d-ary plane trees that will form the building blocks in our construction of ξd(k).
The d-crescent is the path on d + 1 vertices in which the vertex at depth i is connected
to its parent by an edge of type i. Now, take three copies of the d-crescent. Remove the
lowest vertex from the first of these d-crescents, and glue the remaining tree to the vertex
of depth 1 in the second crescent. Next, remove the root vertex from the third d-crescent,
and glue the remaining tree to the root of the second d-crescent. We call the resulting
tree the d-vertebra and denote it by Vd. Note that Vd has exactly 3 leaves, which we call
the left, center, and right leaves (in the obvious fashion).

Figure 3: From left to right: the 3-crescent; the 3-vertebra V3, with the left, center, and
right leaves labeled `, c, and r (respectively); and the 2nd 3-spine.
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For m > 1, we obtain the mth d-spine by consecutively gluing m copies of the d-
vertebra Vd under a single copy of the d-crescent: the first Vd is glued to the single leaf of
the d-crescent, and each subsequent Vd is glued to the center leaf of the previous Vd. We
speak of the first, second, etc. d-vertebra beginning with the highest one.

At last, we recursively define the families ξd(k). We first describe the following base
cases:

• Let ξd(1) consist of a single vertex.

• Let ξd(2) be the d-crescent.

• Obtain ξd(3) from a d-crescent by giving the leaf d children (one in each position).

The construction for larger k is recursive and differs for d = 2 and d > 2. (The d = 2
construction is a slight improvement on the d > 2 construction.) If d = 2, then for k > 4,

we obtain ξ2(k) from the
(⌊

k
2

⌋
− 1
)th

2-spine as follows:

1. For each 1 6 i 6
⌊
k
2

⌋
− 2, glue a copy of ξ2(i) to each of the left and right leaves of

the ith 2-vertebra.

2. Glue a copy of ξ2(
⌊
k
2

⌋
−1) to the right leaf of the

(⌊
k
2

⌋
− 1
)th

(i.e., lowest) 2-vertebra.

3. Glue a copy of ξ2(
⌈
k
2

⌉
− 1) to the left leaf of the

(⌊
k
2

⌋
− 1
)th

2-vertebra.

4. Glue a copy of ξ2(
⌈
k
2

⌉
) to the center leaf of the

(⌊
k
2

⌋
− 1
)th

2-vertebra.

If d > 2, then for k > 4, we obtain ξd(k) from the
⌊
k
2

⌋th
d-spine as follows:

1. For each 1 6 i 6
⌊
k
2

⌋
− 2, glue a copy of ξd(i) to each of the left and right leaves of

the ith d-vertebra.

2. Glue a copy of ξd(
⌊
k
2

⌋
− 1) to the right leaf of the

(⌊
k
2

⌋
− 1
)th

(i.e., second-lowest)
d-vertebra.

3. Glue a copy of ξd(
⌈
k
2

⌉
− 1) to the left leaf of the

(⌊
k
2

⌋
− 1
)th

d-vertebra.

4. Glue a copy of ξd(
⌈
k
2

⌉
) to the center leaf of the

⌊
k
2

⌋th
(i.e., lowest) d-vertebra.

5. Glue a copy of ξd
(⌊

k+1
4

⌋)
to each of the left and right leaves of the

⌊
k
2

⌋th
d-vertebra.

For k > 4, the tail of ξd(k) is the copy of ξd(
⌈
k
2

⌉
) that is glued to the center leaf of the

bottom of the spine in step (4) (in both the d = 2 and d > 2 constructions). Figure 4
shows ξ2(k) for some small values of k.

We now show that ξd(k) noncontiguously contains every d-ary plane tree with k ver-
tices. The big-picture idea is that we can “siphon off” small subtrees of the tree that we
are trying to contain until what remains fits into the tail. Many of the arguments are
the same for d = 2 and d > 2, so we present the proofs together. The reader may find it
helpful to bear in mind the example of ξ2(9) (as shown in Figure 4).
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Figure 4: The trees ξ2(k) for 1 6 k 6 5, along with ξ2(9). In ξ2(4), ξ2(5), and ξ2(9), the
pink edges represent the spine. The orange edges represent the copies of the previously-
constructed trees that are glued to the spine, and the green edges represent the tail.

Theorem 5. For all integers d > 2 and k > 1, the tree ξd(k) noncontiguously contains
every d-ary plane tree with k vertices.

Proof. Fix d. We proceed by strong induction on k. The statement is obviously true for
k 6 3. Now, consider k > 4. Let T be a d-ary plane tree on k vertices. We will show
that ξd(k) noncontiguously contains T by showing that ξd(k) noncontiguously contains a
larger tree T ′, which in turn noncontiguously contains T .

We construct T ′ from T by defining a finite sequence of pairs (Ti, vi), where Ti is a tree
and vi is a vertex of Ti; we then let T ′ be the last Ti. We will see that we can naturally
view the vertices v0, . . . , vi as vertices in the tree Ti+1. In particular, we can view all of
the vertices vi as vertices in the last tree T ′. First, let T0 = T , and let v0 be the root
of T0. If at any time the subtree in Ti below vi (including vi itself) contains at most⌈
k
2

⌉
vertices, then the sequence terminates. As long as this situation is not achieved, we

obtain (Ti+1, vi+1) from (Ti, vi) as follows. If vi has only a single child, then we let vi+1

denote this child and let Ti+1 = Ti. If vi has exactly 2 children, then we let vi+1 denote
the child with the larger subtree (breaking ties with preference for the right child) and let
Ti+1 = Ti.

Otherwise, vi has at least 3 children. (This possibility of course pertains only to
d > 2.) We consider the leftmost and rightmost nonempty subtrees of vi and obtain Ti+1

by performing the following operations. If the leftmost nonempty subtree contains fewer
vertices than the rightmost nonempty subtree or these two subtrees contain the same
number of vertices, then detach all of the subtrees of vi except the leftmost nonempty
one, add a new child vi+1 in the dth subtree of vi via a red edge of type d, and reattach
the detached subtrees as new subtrees of vi+1 (so that the reattached edges have the
same types that they originally had). If the rightmost nonempty subtree contains fewer
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vertices than the leftmost nonempty subtree, then detach all of the subtrees of vi except
the rightmost nonempty one, add a new child vi+1 in the 1st subtree of vi via a red edge
of type 1, and reattach the detached subtrees as new subtrees of vi+1.

Figure 5: An illustration of the sequence transforming T into T ′, where d = 3 and k = 10.
We also have s0 = 2, s1 = 0, and s2 = 1.

This sequence terminates in some (Tm, vm) with 1 6 m 6
⌊
k
2

⌋
since each vi+1 has

strictly fewer vertices below it than vi. Note that each Ti is either the same as Ti+1 or
else can be obtained from Ti+1 by (legally) contracting the added red edge between vi and
vi+1. In particular, T ′ noncontiguously contains T . (When d = 2, T ′ equals T because
we did not add any red edges.) Each vertex vi, for 0 6 i 6 m− 1, has at most 2 children
in T ′. When vi has exactly 2 children in T ′, we think of the subtree containing vi+1 as
continuing down the main “trunk” of T ′ and the other (smaller) subtree, which we call τi,
as “branching off.” In this case, we let si = |τi|. If vi has only 1 child, then we let si = 0.
Note that the difference between the number of non-red edges below vi and the number
of non-red edges below vi+1 is given by

1, if vi has only a single child in T ′

si, if vi has two children in T ′ and the edge between vi and vi+1 is red

si + 1, if vi has two children in T ′ and the edge between vi and vi+1 is not red.

We can write this number of non-red edges more concisely as{
max{1, si}+ 1, if vi has two children and the edge between vi and vi+1 is not red

max{1, si}, otherwise.

(2)
This characterization will be useful later. Now, we condition on m: if m = 1, then it is
in fact easier to embed T in ξd(k) directly; if m > 1, then we describe the embedding of
T ′ in ξd(k).

First, suppose m = 1, i.e., the algorithm terminates after a single step. If k is even,
then the root of T must have two children, with k

2
and k

2
− 1 vertices, respectively. We

identify the root of T with the top vertex of the
(
k
2
− 1
)th

vertebra. If the subtree with
k
2
− 1 vertices is the right (respectively, left) child of the root, then we can embed this
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subtree in the copy of ξd
(
k
2
− 1
)

that is attached to the right (respectively, left) leaf of

the
(
k
2
− 1
)th

vertebra; and we embed the subtree with k
2

vertices in the copy of ξd
(
k
2

)
in

the tail. (We have used the inductive hypothesis that ξd(κ) is actually a κ-supertree for
all κ < k.) If k is odd, then there are two possibilities for the subtrees of the root of T .

(i) There are two subtrees, each with k−1
2

vertices. We identify the root of T with the

top vertex of the
(
k−3
2

)th
vertebra. We can embed the left subtree in the copy of

ξ2
(
k−1
2

)
that is attached to the left leaf of the

(
k−3
2

)th
vertebra, and we can embed

the right subtree in the tail.

(ii) There are two subtrees, with k−3
2

and k+1
2

vertices, respectively. If the subtree with
k−3
2

vertices is the right (respectively, left) child of the root, then we can embed this

subtree in the right (respectively, left) tree that is glued to the
(
k−3
2

)th
vertebra; and

we embed the subtree with k+1
2

vertices in the tail.

We now turn to the case m > 1. We will describe how to noncontiguously em-
bed T ′ into ξd(k). We first define functions f2 : {0, . . . ,m} → {0, . . . ,

⌊
k
2

⌋
} and f>2 :

{0, . . . ,m} → {0, . . . ,
⌊
k
2

⌋
+ 1} that, roughly speaking, tell us how far down ξd(k) to em-

bed each vi. Unsurprisingly, f2 will be for the d = 2 case, and f>2 will be for the d > 2
case. In what follows, we will write f∗ in statements that apply to both f2 and f>2. Let
f2(0) = f>2(0) = s0. For 1 6 i 6 m− 1, let

f2(i) = max{f2(i− 1) + 1, si} and f>2(i) = max{f>2(i− 1) + 1, si}.

Finally, let f2(m) =
⌊
k
2

⌋
and f>2(m) =

⌊
k
2

⌋
+ 1. We will see that f∗ is strictly increasing

and in fact has the claimed codomain; before establishing these facts, we show that they
will let us embed T ′ in ξd(k).

For each 0 6 i 6 m, we identify vi with a vertex of ξd(k) as follows. For the d = 2
case, we identify vi with: the root of ξ2(k) if f2(i) = 0; the topmost vertex in the f2(i)

th

vertebra of ξ2(k) if 1 6 f2(i) 6
⌊
k
2

⌋
− 1; and the topmost vertex of the tail if f2(i) =

⌊
k
2

⌋
.

For the d > 2 case, we identify vi with: the root of ξd(k) if f>2(i) = 0; the topmost vertex
in the f>2(i)

th vertebra of ξd(k) if 1 6 f>2(i) 6
⌊
k
2

⌋
; and the topmost vertex of the tail if

f>2(i) =
⌊
k
2

⌋
+ 1.

Consider any i with si > 0 and f∗(i) 6
⌊
k
2

⌋
− 1. If τi is the left subtree of vi, then

the inductive hypothesis and the definition of f∗ guarantee that we can embed τi into the
copy of ξd(f∗(i)) that is glued to the left leaf of the f∗(i)

th vertebra. Contract this glued
subtree to a copy of τi; then contract the right subtree of this vertebra to a point; then
contract the vertebra itself to the edge connecting vi to τi and one other edge below vi of
the same type as the edge connecting vi and vi+1 in T ′. The exact same procedure can be
done in the case where τi is the right subtree of vi. If si = 0 and i 6= m, then we contract
everything in the f∗(i)

th vertebra except for a single edge of the type that connects vi
and vi+1 in T ′. Things are even easier for i > 0 with si = 0 and f∗(i) 6

⌊
k
2

⌋
− 1: in

this case, we simply embed the (unique) edge below vi in the “center” crescent of the ith
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vertebra (i.e., the crescent whose bottom is the center leaf of the vertebra). When i = 0
and s0 = 0, we embed this edge into the crescent at the top of the spine.

For d = 2, we finish by contracting the tail of ξ2(k) to a copy of the tree below vm in T ′.
This completes the contraction of ξ2(k) to T ′, which, as remarked earlier, can be further
contracted to T . Now, we turn to d > 2. We will later show that if f>2(m − 1) =

⌊
k
2

⌋
,

then sm−1 6
⌊
k+1
4

⌋
, so we can embed τm−1 at the level of the

⌊
k
2

⌋th
d-vertebra as in the

previous paragraph. And then we contract the tail of ξd(k) to a copy of the tree below
vm in T ′, which completes the contraction of ξd(k) to T ′.

The next order of business is showing that f2 and f>2 have the desired properties for the
embedding described above. We first show that f2(m−1) 6

⌊
k
2

⌋
−1 and f>2(m−1) 6

⌊
k
2

⌋
.

Both functions are strictly increasing on i 6 m − 1, so this will also prove that they are
injective. Easy induction on r shows that

f∗(r) 6
r∑
i=0

max{1, si},

with equality exactly when s0 > 1 and si 6 1 for all 1 6 i 6 r. In particular,

f∗(m− 2) 6
m−2∑
i=0

max{1, si}. (3)

At the same time, recall that max{1, si} is controlled by the number of edges of T (non-
red edges of T ′) that “peel away” at the vertex vi (compare with (2)), so the condition
for the termination of the sequence (Ti, vi) implies that

m−2∑
i=0

max{1, si} 6
⌊
k
2

⌋
− 1. (4)

This immediately implies the claim about f>2(m− 1).
Next, we can show that the inequalities (3) and (4) cannot both be tight for d = 2;

this will imply that f2(m − 2) 6
⌊
k
2

⌋
− 2, and the inequality f2(m − 1) 6

⌊
k
2

⌋
− 1 will

immediately follow from the definition of f2. To see that this improvement is in fact
achieved, note that the first condition in equation (2) (which implies an improvement to
(4)) always occurs somewhere unless T consists of a path on

⌊
k
2

⌋
+ 1 vertices with a tree

on
⌈
k
2

⌉
vertices glued to the bottom. But in this exceptional case, we have s0 = 0, so

inequality (3) is not tight. This completes the proof for d = 2.
We still need to check that if d > 2 and f>2(m − 1) =

⌊
k
2

⌋
, then sm−1 6

⌊
k+1
4

⌋
.

Suppose f>2(m−1) =
⌊
k
2

⌋
, so that the inequalities (3) and (4) are equalities. This means

that f>2(m − 2) =
⌊
k
2

⌋
− 1. Because (3) is an equality, the vertex vm−1 has exactly⌈

k
2

⌉
vertices (including vm−1) below it in Tm−1. If here vm−1 has only a single nonempty

subtree, then sm−1 = 0 and we are done. Otherwise, vm−1 has at least two nonempty
subtrees. The (weakly) smaller of the rightmost and leftmost of these subtrees must have
at most

⌊
1
2

⌈
k
2

⌉⌋
=
⌊
k+1
4

⌋
vertices, so we conclude that sm−1 6

⌊
k+1
4

⌋
, as desired.
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We remark that in the d = 2 case, ad hoc arguments show that this construction is in
fact optimal for k 6 5; however, small refinements are possible for sufficiently large k.

Now that we have shown that the ξd(k)’s are in fact noncontiguous k-universal d-ary
plane trees, we focus on their sizes. Let Md(k) denote the number of vertices in ξd(k).
The following proposition, whose proof we omit, follows from counting the various parts
of ξd(k) as described in the recursive construction above. Let δx,y denote the Kronecker
delta, which has the value 1 when x = y and the value 0 otherwise. Note that the −1’s
below account for “overlap” vertices that are contained in multiple parts.

Proposition 6. For fixed d, the sequence Md(k) has the initial conditions

Md(1) = 1, Md(2) = d+ 1, Md(3) = 2d+ 1,

and for k > 4, it obeys the recurrence

Md(k) = (d+ 1) +
(⌊

k
2

⌋
− δd,2

)
(3d− 2) + 2

b k2c−2∑
i=1

(Md(i)− 1) +Md

(⌊
k
2

⌋
− 1
)
− 1

+Md

(⌈
k
2

⌉
− 1
)
− 1 +Md

(⌈
k
2

⌉)
− 1 + 2(1− δd,2)

(
Md

(⌊
k+1
4

⌋)
− 1
)
.

We can use Proposition 6 and an argument similar to one of the proofs in [26] to
obtain asymptotics for Md(k).

Corollary 7. For fixed d > 2, we have

Nnon
d -ary(k) 6Md(k) = k

1
2
log2(k)(1+o(1)).

Proof. Fix d. It will be convenient to work with natural logarithms, so note k
1
2
log2(k) =

exp
(

1
2 log 2

log2 k
)

. We first prove that there is some constant C (depending on d) such

that Md(k) < C exp
(

1
2 log 2

log2 k
)

for all k. We proceed by induction on k, where making

C large deals with any base cases. It is obvious (by construction) that Md(k) = |ξd(k)| is
monotonically increasing in k. We compute (for sufficiently large k):

Md(k) = Md(k − 2) + (3d− 2) + 2
(
Md

(⌊
k
2

⌋
− 2
)
− 1
)

+Md

(⌊
k
2

⌋
− 1
)
−Md

(⌊
k
2

⌋
− 2
)

+Md

(⌈
k
2

⌉)
−Md

(⌈
k
2

⌉
− 2
)

+ 2(1− δd,2)
(
Md

(⌊
k+1
4

⌋)
−Md

(⌊
k−1
4

⌋))
6Md(k − 2) + 3d− 2 +Md

(⌊
k
2

⌋
− 1
)

+Md

(⌈
k
2

⌉)
+ 2Md

(⌊
k+1
4

⌋)
< C exp

(
1

2 log 2
log2(k − 2)

)
+ 5C exp

(
1

2 log 2
log2

(
k + 1

2

))
= C exp

(
1

2 log 2
log2(k − 2)

)
·
(

1 + 5 exp

(
1

2 log 2
log

(
(k + 1)(k − 2)

2

)
log

(
k + 1

2(k − 2)

)))
= C exp

(
1

2 log 2
log2(k − 2)

)(
1 +

5

k
+ o

(
1

k

))
.
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At the same time, this expression is certainly smaller than

C exp

(
1

2 log 2
log2 k

)
= C exp

(
1

2 log 2
log2(k − 2)

)(
1 +

2 log k

k log 2
+ o

(
log k

k

))
for sufficiently large k, which establishes the first claim.

Second, we show that for any γ < 1
2 log 2

, there exists a constant c > 0 (depending on

γ) such that Nd(k) > c exp(γ log2 k) for all k. As above, we proceed by induction on k,
where making c small deals with the base cases. This time, we compute:

Md(k) > Md(k − 2) + 2Md

(
k − 5

2

)
> c exp

(
γ log2(k − 2)

)(
1 + 2 exp

(
γ log

(
(k − 5)(k − 2)

2

)
log

(
k − 5

2(k − 2)

)))
= c exp

(
γ log2(k − 2)

)(
1 +

2

k2γ log 2
+ o

(
1

k2γ log 2

))
.

Since 2γ log 2 < 1, this expression is larger than

c exp
(
γ log2 k

)
= c exp

(
γ log2(k − 2)

)(
1 +

4γ log k

k
+ o

(
log k

k

))
for sufficiently large k, as desired. The two claims together imply the result.

3 [d]-trees

3.1 Contiguous containment

3.1.1 Lower bounds

We can obtain a lower bound for N con
[d] (k) by modifying the argument in the proof of the

first part of Theorem 1. In particular, we apply this argument to a slightly different family
of trees that are difficult to contain.

Theorem 8. For d > 2 and k > 2, we have

N con
[d] (k) >

(
k − 1− d

⌊
k−2
d

⌋)
db

k−2
d c +

⌊
k−2
d

⌋
+ 1 > d

k−2
d .

Proof. Let T be a contiguous k-universal [d]-tree. Consider the following procedure for
building [d]-trees with k vertices. Start with a [d]-tree that is a path on

⌊
k−2
d

⌋
+1 vertices,

and color the edges of this path red. Add d− 1 additional children to each nonleaf vertex
of this path. When adding these additional children to a nonleaf vertex v, we choose freely
how many children to place on the left of the red edge coming down from v, then we place
the remaining children on the right of this red edge. Finally, place k−1−d

⌊
k−2
d

⌋
vertices

as children of the leaf of the original path. This forms a [d]-tree with k vertices, and there
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are db
k−2
d c trees that can be built in this fashion. Each of these trees has k − 1− d

⌊
k−2
d

⌋
vertices at depth

⌊
k−2
d

⌋
+ 1, an easy modification of the argument in Theorem 1 shows

that these vertices must correspond to pairwise distinct vertices in T of depth at least⌊
k−2
d

⌋
+ 1. Thus, T has at least (

k − 1− d
⌊
k−2
d

⌋)
db

k−2
d c

vertices at depth at least
⌊
k−2
d

⌋
+ 1. The term

⌊
k−2
d

⌋
+ 1 in the statement of the the-

orem accounts for the fact that T must also have at least one vertex at each depth
0, 1, . . . ,

⌊
k−2
d

⌋
.

3.1.2 Upper bounds

As mentioned in the introduction, the quantity N con
d -ary(k) = dk−1+k−1 is an upper bound

for N con
[d] (k). We can dramatically improve the base of the exponential by describing an

explicit construction for a family {Λd(k)} of contiguous k-universal [d]-trees.
The construction of Λd(k) is recursive. We first let Λd(1) be a single vertex. For

2 6 k 6 d, we construct Λd(k) by attaching the subtrees Λd(1),Λd(2), . . . ,Λd

(⌊
k
2

⌋
− 1
)
,

then Λd(k−1), then Λd

(⌈
k
2

⌉
− 1
)
,Λd

(⌈
k
2

⌉
− 2
)
, , . . . ,Λd(1) to the root, in that order from

left to right. For k > d, we construct Λd(k) by attaching the subtrees Λd(k − d), Λd(k −
d+1), . . . ,Λd

(
k −

⌊
d
2

⌋
− 2
)
, then Λd(k−1), then Λd

(
k −

⌈
d
2

⌉
− 1
)
,Λd

(
k −

⌈
d
2

⌉
− 2
)
, . . . ,

Λd(k − d) to the root, in that order from left to right. The proof that these trees are in
fact k-supertrees is similar in spirit to the proof of Theorem 5.

Theorem 9. Let d > 2 and k > 1 be integers. For every k-vertex [d]-tree T , there is a
contiguous embedding T ∗ of T in Λd(k) such that the root of T ∗ coincides with the root of
Λd(k).

Proof. We proceed by strong induction on k, where the base case k = 1 is trivial. For
the induction step, we begin with the case in which 2 6 k 6 d. Let T be a [d]-tree on
k vertices. Let T1, . . . , T` be the subtrees of the root of T , from left to right. Of these
` trees, let Tm be one with the most vertices. We embed T1, . . . , T` into the subtrees
of the root of Λd(k) in a greedy way, with a preference for subtrees farther to the left.
We consider two cases based on the size of Tm. If |Tm| >

⌈
k
2

⌉
, then by the induction

hypothesis, we can embed Tm in the subtree of the root of Λd(k) that is isomorphic to
Λd(k − 1) (with the roots coinciding). The remaining subtrees, which contain at most⌊
k
2

⌋
− 1 vertices in total, can easily be embedded in the smaller subtrees of the root of

Λd(k). Otherwise, |Tm| 6
⌈
k
2

⌉
− 1 6

⌊
k
2

⌋
. In this case, we let f(1) = |T1| and, for

2 6 i 6 `, let f(i) = max{1 + f(i− 1), |Ti|}. Note that f is strictly increasing. We have

f(r) 6
r∑
i=1

|Ti| 6 k − 1− (`− r)

for each r, where the second inequality uses the fact that |Ti| > 1 for all i. In particular,
f(`) 6 k − 1. We now claim that we can embed each Tr in the f(r)th subtree of the root
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of Λd(k) (with the roots coinciding). This is certainly possible when f(r) 6
⌊
k
2

⌋
by the

induction hypothesis because f(r) > |Tr|. It is also possible when f(r) >
⌊
k
2

⌋
because

f(r) 6 k − 1 − (` − r). (These two statements also use the fact that |Tm| 6
⌊
k
2

⌋
.) This

completes the argument when 2 6 k 6 d.
We now assume k > d. Let T be a [d]-tree on k vertices, and let T1, . . . , T` be the

subtrees of its root, from left to right. Again, we have |T1|+· · ·+|T`| = k−1. As above, it is
easy to dispense with the case in which some |Ti| > k−

⌈
d
2

⌉
, so we restrict our attention to

the case where |Ti| 6 k−
⌈
d
2

⌉
−1 6 k−

⌊
d
2

⌋
−1 for all i. Let g(1) = max{1, |T1|−(k−d)+1},

and for 2 6 i 6 `, let g(i) = max{1 + g(i− 1), |Ti| − (k − d) + 1}. Note that g is strictly
increasing and

g(r) 6
r∑
i=1

max{1, |Ti| − (k − d) + 1}

for every r. In particular, if we let hs denote the number of trees in the set T1, . . . , T`
with exactly s vertices, then for r = ` we get

g(`) 6
∑̀
i=1

max{1, |Ti| − (k − d) + 1} =
k−d∑
s=1

hs +
∑

s>k−d+1

(s− (k − d) + 1)hs

=
∑
s>1

shs−
k−d∑
s=1

(s−1)hs−
∑

s>k−d+1

(k−d−1)hs = k−1−
k−d∑
s=1

(s−1)hs−
∑

s>k−d+1

(k−d−1)hs.

If hs > 1 for some s > k − d+ 1, then this shows that g(`) 6 d. Otherwise, we have

g(`) 6 k − 1−
k−d∑
s=1

(s− 1)hs = k − 1−
∑
s>1

(s− 1)hs

= k − 1−
∑
s>1

shs +
∑
s>1

hs = k − 1− (k − 1) + ` 6 d.

In either case, g(`) 6 d. Since g is strictly increasing, g(r) 6 d − (` − r) for all r ∈
{1, . . . , `}.

We now claim that we can embed each Tr in the g(r)th subtree of the root of Λd(k)
(with the roots coinciding). As above, this is possible whenever g(r) 6

⌈
d
2

⌉
because

g(r) > |Tr|−(k−d)+1. It is also possible when g(r) >
⌈
d
2

⌉
because g(r) 6 d−(`−r).

We can also describe the sizes of these k-universal [d]-trees. Let Ld(k) denote the
number of vertices in Λd(k). The following enumeration follows directly from the definition
of Λd(k).

Proposition 10. For fixed d > 2, the sequence Ld(k) has the starting value Ld(1) = 1.
For 2 6 k 6 d, we have the recurrence

Ld(k) = 1 + Ld(k − 1) +

b k2c−1∑
i=1

Ld(i) +

d k2e−1∑
i=1

Ld(i).
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For k > d, we have the recurrence

Ld(k) = 1 + Ld(k − 1) +

k−b d2c−2∑
i=k−d

Ld(i) +

k−d d2e−1∑
i=k−d

Ld(i).

Corollary 11. Let

pd(x) = 1− x−
d∑

i=b d2c+2

xi −
d∑

i=d d2e+1

xi.

Let ρd = 1/xd, where xd is the smallest positive real root of pd(x). For each fixed d, we
have

N con
[d] (k) 6 Ld(k) = (ρd + o(1))k.

Furthermore, as d→∞, we have

ρd = 1 +
4 log d

d
− 4 log log d

d
+ o

(
log log d

d

)
.

Proof. The inequality N con
[d] (k) 6 Ld(k) follows immediately from Theorem 9. To see that

Ld(k) = (ρd + o(1))k, we let Gd(x) =
∑

k>1 Ld(k)xk. Using the recurrence in Proposition
10, it is straightforward to check that Gd(x) is a rational function with denominator
pd(x). Since Gd(x) has nonnegative coefficients, it follows from Pringsheim’s theorem [22,
Chapter IV] that xd is the radius of convergence of Gd(x). This means that Ld(k) =
(ρd + o(1))k.

To prove the last statement of the corollary, we consider only the case in which d is
odd; the argument is similar when d is even. All asymptotics are as d → ∞. First, note
that

pd(x) = 1− x− 2(x
d+1
2

+1 + x
d+1
2

+2 + · · ·+ xd) = 1− x− 2
xc+1 − x2c

1− x
,

where c = d+1
2

. We have
(1− xd)2 − 2xc+1

d + 2x2cd = 0.

The additional substitution xd = 1− εd
c

(where clearly εd > 0 since Ld(k) is growing with
k) gives (εd

c

)2
− 2

(
1− εd

c

)c+1

+ 2
(

1− εd
c

)2c
= 0.

One can show that xd → 1, so εd
c
→ 0. Now, 2

(
1− εd

c

)c+1
= 2e−εd + o(e−εd) and

2
(
1− εd

c

)2c
= o(e−εd). This means that(εd

c

)2
= 2e−εd(1 + o(1))

and
εd
c

=
√

2e−εd/2(1 + o(1)).
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Rearranging, we find that
εd
2
eεd/2 =

c√
2

(1 + o(1)).

Therefore,

εd = 2W

(
c√
2

(1 + o(1))

)
= 2 log c− 2 log log c+ o(log log c),

where W is the Lambert W function. The desired result follows.

3.2 Noncontiguous containment

The following theorem relates noncontiguous k-universal [d]-trees with noncontiguous k-
universal d-ary plane trees. In particular, it shows that the minimum sizes of these trees
differ by at most a constant factor.

Theorem 12. For all integers d > 2 and k > 1, we have

Nnon
[d] (k) 6 Nnon

d -ary(k) 6 d(Nnon
[d] (k)− 1) + 1.

Proof. The first inequality is straightforward because if we are given a noncontiguous k-
universal d-ary plane tree T′, then we can obtain a noncontiguous k-universal [d]-tree T
by “forgetting” the exact types of all of the edges in T′. In other words, we interpret T′

as a [d]-tree.
For the second inequality, suppose T is a noncontiguous k-universal [d]-tree on n

vertices. We obtain a noncontiguous k-universal d-ary plane tree T′ on d(n − 1) + 1
vertices by doing the following for each edge e in T. Among all edges with the same
parent vertex as e, suppose e is the ith from the left. We replace the edge e (along with
its endpoints) with a d-ary plane tree path on d edges whose topmost edge has type i and
whose remaining edges have types 1 through d, skipping i. Note that |T′| = d(|T|−1)+1
since each of the |T| − 1 edges in T has become d edges in T′.

We claim that T′ is in fact a noncontiguous k-universal d-ary plane tree. Let T ′ be
a d-ary plane tree on k vertices, and let T be the corresponding [d]-tree that is obtained
by forgetting the types of the edges in T ′. By hypothesis, T noncontiguously contains
T . For each edge e′ in T ′, let e be the corresponding edge in T . Let e be the edge in T
that corresponds to e in the noncontiguous embedding of T in T. Recall that e becomes
d edges, one of each type, in T′; let e′ be the edge among these with the same type as
e′. Color every such edge e′ blue, and color all other edges of T′ red. It is clear that if
we contract away all of the red edges, the blue edges will form a copy of T ′, so it remains
only to show that a sequence of legal contractions exists.

We begin by contracting every red edge whose bottom vertex is a leaf. We continue
this process until every leaf is incident to a blue edge. We contract the remaining red
edges, starting with those at the greatest depth (i.e., farthest from the root) and working
our way upwards. So we can always assume that all edges of greater depth than our red
edges of interest are blue. If the top vertex of a red edge has no other nonempty subtree,
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then we can legally contract that red edge. We are now left with the case where the
top vertex v of our red edge r has multiple children. Consider the nonempty subtrees
of v, from left to right. If r is not adjacent to another red edge, then we can contract r
immediately. Otherwise, there are consecutive red edges r1, . . . , rs (s > 2). We will show
that there is some ri that we can legally contract; we will then be able to sequentially
contract the remaining edges by induction.

Let each ri have edge type ai. Let bi denote the minimum type of a (necessarily blue)
edge directly below ri, and let ci denote the maximum type of a (necessarily blue) edge
directly below ri. It follows from our construction that

a1 < · · · < as and b1 6 c1 < b2 6 c2 · · · < bs 6 cs.

The condition for being able to legally contract r1 is c1 < a2, and the condition for being
able to legally contract rs is as−1 < bs. For 2 6 i 6 s− 1, the conditions for being able to
contract ri are ai−1 < bi and ci < ai+1. Assume (for contradiction) that we cannot legally
contract any of the edges r1, . . . , rs. Since we cannot contract r1, we must have c1 > a2.
Since we cannot contract r2, we must have either a1 > b2 or c2 > a3. In the first case, we
get

b2 6 a1 < a2 6 c1 < b2,

which is a contradiction, so we conclude that c2 > a3. Similarly, since we cannot contract
a3, we have either a2 > b3 or c3 > a4, and the first possibility yields a contradiction in
the same way. Continuing this line of reasoning, we arrive at cs−1 > as. Then

as−1 < as 6 cs−1 < bs

tells us that we can legally contract rs, so we are done. This demonstrates that we can
legally contract all of the red edges.

Now that we have established this connection between d-ary plane trees and [d]-trees,
we revisit the construction of the trees ξd(k) from Section 2.2. Because [d]-trees have
more “flexibility” than d-ary plane trees, we can use a slightly better (and simpler!)
construction to beat the first inequality in Theorem 12. We call these new noncontiguous
k-universal [d]-trees Ξd(k).

First, we use the path on 2 vertices instead of the d-crescent. If d > 2, we define
the modified d-vertebra to be the [d]-tree on 4 vertices in which the root has 3 children;
when d = 2, the modified 2-vertebra is the [2]-tree with 5 vertices in which the root has 2
children and the left child of the root has 2 children. As in the case of the d-vertebra, we
can identify the left, middle, and right children of the modified vertebra in the obvious
way. We then construct the mth spine exactly as in Section 2.2.

Our recursive definition of the families Ξd(k) resembles the presentation of Section 2.2.
We begin with the following base cases:

• Let Ξd(1) consist of a single vertex.

• Let Ξd(2) be the path on 2 vertices (scil., the analogue of the crescent).
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• Obtain Ξd(3) from the path on 2 vertices by giving the bottom vertex 2 children.

The construction for larger k is recursive and differs for d = 2 and d > 2. If d = 2, then

for k > 4, we obtain Ξ2(k) from the
(⌊

k
2

⌋
− 1
)th

2-spine as follows:

1. For each 1 6 i 6
⌊
k
2

⌋
− 2, glue a copy of Ξ2(i) to each of the left and right leaves of

the ith modified 2-vertebra.

2. Glue a copy of Ξ2(
⌊
k
2

⌋
−1) to the right leaf of the

(⌊
k
2

⌋
− 1
)th

(i.e., lowest) modified
2-vertebra.

3. Glue a copy of Ξ2(
⌈
k
2

⌉
− 1) to the left leaf of the

(⌊
k
2

⌋
− 1
)th

modified 2-vertebra.

4. Glue a copy of Ξ2(
⌈
k
2

⌉
) to the center leaf of the

(⌊
k
2

⌋
− 1
)th

modified 2-vertebra.

If d > 2, then for k > 4, we obtain Ξd(k) from the
(⌊

k
2

⌋
− 1
)th

d-spine as follows:

1. For each 1 6 i 6
⌊
k
2

⌋
− 2, glue a copy of Ξd(i) to each of the left and right leaves of

the ith modified d-vertebra.

2. Glue a copy of Ξd(
⌊
k
2

⌋
− 1) to the right leaf of the

(⌊
k
2

⌋
− 1
)th

(i.e., second-lowest)
modified d-vertebra.

3. Glue a copy of Ξd(
⌈
k
2

⌉
− 1) to the left leaf of the

(⌊
k
2

⌋
− 1
)th

modified d-vertebra.

4. Glue a copy of Ξd(
⌈
k
2

⌉
) to the center leaf of the

⌊
k
2

⌋th
(i.e., lowest) modified d-

vertebra.

5. Glue a copy of Ξd

(⌊
k+1
4

⌋)
to each of the left and right leaves of the

⌊
k
2

⌋th
d-vertebra.

For k > 4, we still say that the tail of Ξd(k) is the copy of Ξd(
⌈
k
2

⌉
) that is glued to the

center leaf of the bottom of the spine in step (4). We remark that the trees Ξ3(k),Ξ4(k), . . .
are all identical.

We omit the proof of the following theorem because it is identical to the proof of
Theorem 5.

Theorem 13. For any integers d > 2 and k > 1, the tree Ξd(k) noncontiguously contains
all [d]-trees with k vertices.

Also as before, simple counting gives a recursive formula for the number of vertices in
Ξd(k), which we denote M ′

d(k).

Proposition 14. For fixed d, the sequence M ′
d(k) has the initial conditions

M ′
d(1) = 1, M ′

d(2) = 2, M ′
d(3) = 4.

For k > 4, it obeys the recurrence

M ′
d(k) = 2 + (3 + δd,2)

(⌊
k
2

⌋
− δd,2

)
+ 2

b k2c−2∑
i=1

(M ′
d(i)− 1) +M ′

d

(⌊
k
2

⌋
− 1
)
− 1

+M ′
d

(⌈
k
2

⌉
− 1
)
− 1 +M ′

d

(⌈
k
2

⌉)
− 1 + 2(1− δd,2)

(
Md

(⌊
k+1
4

⌋)
− 1
)
.
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The proof of Corollary 7 carries through to show that M ′
d(k) = k

1
2
log2(k)(1+o(1)).

Corollary 15. For fixed d > 2, we have

Nnon
[d] (k) 6M ′

d(k) = k
1
2
log2(k)(1+o(1)).

4 Conclusions

In Section 2, we found the exact values of N con
d -ary(k) for all d > 2 and k > 1. Furthermore,

the lower and upper bounds that we obtained for N con
[d] (k) are relatively close to each other.

By contrast, our lower and upper bounds for Nnon
d -ary(k) and Nnon

[d] (k) are far apart. This is
largely because it is difficult to obtain good lower bounds for the sizes of noncontiguous
universal objects, which is also true in the setting of universal permutations. It would be
nice to have better methods for producing lower bounds. Of course, we also encourage
the interested reader to try improving our upper bounds.

Theorem 12 leads us naturally to ask the following.

Question 16. Fix d > 2. Does the limit

lim
k→∞

Nnon
d -ary(k)

Nnon
[d] (k)

exist, and, if so, what is its value?

Theorem 8 and Corollary 11 suggest that N con
[d] (k) has an exponential growth rate. It

would be interesting to know its value, beyond the bounds d
1
d and ρd provided.

Question 17. Fix d > 2. Does the limit

lim
k→∞

N con
[d] (k)

1
k

exist, and, if so, what is its value?

The articles [10–14] investigate universal trees, where the trees under consideration
are unrooted and nonplane. In this setting, a tree T contains a tree T if T is an induced
subgraph of T . It would likely be interesting to consider analogous questions in a non-
contiguous framework. More precisely, say that a tree T noncontiguously contains a tree
T if it is possible to obtain T by performing a sequence of edge contractions on T . In
this setting, what is the smallest size of a tree that noncontiguously contains all k-vertex
trees?

There has also been recent interest in pattern containment/avoidance in labeled rooted
trees [6, 18]. It would be interesting to examine universal trees in these contexts, as well.

the electronic journal of combinatorics 27(2) (2020), #P2.7 24



Acknowledgements

The authors would like to thank Joe Gallian for hosting them at the University of Min-
nesota, Duluth, where much of this research was conducted with partial support from
NSF/DMS grant 1659047 and NSA grant H98230-18-1-0010. The authors also would like
to thank the anonymous referee for helpful comments. The first author was additionally
supported by a Fannie and John Hertz Foundation Fellowship and an NSF Graduate
Research Fellowship.

References

[1] M. Albert, M. Engen, J. Pantone, and V. Vatter, Universal layered permutations.
Electron. J. Combin., 25 (2018) #P3.23.

[2] N. Alon, Asymptotically optimal induced universal graphs. Geom. Funct. Anal., 27
(2017), 1–32.

[3] S. Alstrup, H. Kaplan, M. Thorup, and U. Zwick, Adjacency labeling schemes and
induced-universal graphs. Proc. STOC 2015, 625–634.

[4] R. A. Arratia, On the Stanley-Wilf conjecture for the number of permutations avoid-
ing a given pattern. Electron. J. Combin., 6 (1999), #N1.

[5] D. A. Ashlock and J. Tillotson, Construction of small superpermutations and minimal
injective superstrings. Congr. Numer., 93 (1993), 91–98.

[6] J.-L. Baril, S. Kirgizov, V. Vajnovszki, Patterns in treeshelves. Discrete Math., 340
(2017), 2946–2954.
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