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Abstract

We prove that if µ is a singular cardinal with countable cofinality and 2µ = µ+

then
(
µ+

µ

)
9
(
µ+ ℵ2
µ µ

)
.

Mathematics Subject Classifications: 05C15, 05C63, 03E02

1 Introduction

The polarized partition relation
(
α
β

)
→
(
γ0 γ1
δ0 δ1

)
says that for every coloring c : α × β → 2

there are A ⊆ α,B ⊆ β and i ∈ {0, 1} such that otp(A) = γi, otp(B) = δi and c � (A×B)
is constantly i. If γ0 = γ1 = γ and δ0 = δ1 = δ then we write

(
α
β

)
→
(
γ
δ

)
2
, in which case

we shall say that the relation is balanced.
A central case is α = µ+, β = µ where µ is an infinite cardinal. We shall focus on

the subcase in which µ is a singular cardinal and 2µ = µ+. If κ is an infinite cardinal
and 2κ = κ+ then

(
κ+

κ

)
9
(
κ+

κ

)
2
, and this holds at any infinite cardinal including singular

cardinals as proved in [3]. We say that the strong polarized relation fails at the pair (κ, κ+)
under the local instance of GCH at κ.

However, in many cases one can force the almost strong polarized relation which asserts
that

(
µ+

µ

)
→
(
α
µ

)
2

for every α ∈ µ+. If one forces this relation and then collapses 2µ to µ+

then one obtains
(
µ+

µ

)
→
(
α
µ

)
2

for every α ∈ µ+ with 2µ = µ+, see [5, Claim 3.3] which

is based on an observation of Foreman. Moreover, if µ is a limit of measurable cardinals
then the positive almost strong relation

(
µ+

µ

)
→
(
α
µ

)
2

for every α ∈ µ+ holds in ZFC and

hence compatible with 2µ = µ+, see [13].
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These theorems show that we understand the balanced polarized relation quite well
at successors of singular cardinals. A natural question concerns the intermediate unbal-
anced relation

(
µ+

µ

)
→
(
µ+ α
µ µ

)
under the assumption 2µ = µ+. This question has been

investigated in [3], and the authors proved that if µ > cf(µ) > ℵ0 then 2µ = µ+ implies

the negative relation
(
µ+

µ

)
9
(
µ+ ω
µ µ

)
. Namely, the unbalanced relation behaves much simi-

larly to the strong polarized relation, yielding a negative statement under the assumption
2µ = µ+ already when α = ω in the second color. We indicate that the authors of [3]
assume GCH for this result, but only the local instance at µ is needed for the proof.

Surprisingly, if cf(µ) = ω then
(
µ+

µ

)
→
(
µ+ ω
µ µ

)
even if 2µ = µ+. This is an extremely

rare situation, in which singular cardinals with countable cofinality demonstrate a better
combinatorial relation than cardinals with uncountable cofinality. Nevertheless, Erdős,
Hajnal and Rado proved that if the GCH holds then

(
µ+

µ

)
9
(
µ+ ω2

µ µ

)
whenever µ > cf(µ) =

ω. Unlike the case of cf(µ) > ω, here 2µ = µ+ is insufficient for their argument. The GCH
assumption can be relaxed, but a crucial assumption used within the proof is that 2ω = ω1.
Under this assumption ω2 = (2ω)+ and hence the celebrated Erdős-Rado theorem holds
at ω2, namely ω2 → (ω1)

2
ω. This theorem is essential for proving the negative polarized

relation
(
µ+

µ

)
9
(
µ+ ω2

µ µ

)
.

The employment of the Erdős-Rado theorem invites for a natural question. It is
simple to see that if ω < κ 6 2ω then κ 9 (ω)2ω and acutally κ 9 (3)2ω. One may

wonder, therefore, whether
(
µ+

µ

)
9
(
µ+ κ
µ µ

)
where κ 6 2ω and 2µ = µ+. This question can

be phrased at two levels. In the absolute level one may ask about κ = ω1, and in the
non-absolute level at κ 6 2ω when 2ω > ω1 is forced.

Question 1. Assume that 2µ = µ+ and µ > cf(µ) = ω.

(ℵ) Is it consistent that
(
µ+

µ

)
→
(
µ+ ω1

µ µ

)
?

(i) Is it consistent that
(
µ+

µ

)
→
(
µ+ κ
µ µ

)
for some ω < κ 6 2ω?

Regarding the first part of the question we indicate that Jones proved in [7] that(
µ+

µ

)
→
(
µ+ α
µ µ

)
for every countable ordinal α, thus reaching well-nigh to ω1. Our main

result here is a sharp negative answer to the second part. Namely, if µ > cf(µ) = ω then(
µ+

µ

)
9
(
µ+ ω2

µ µ

)
under the assumption 2µ = µ+, no matter how large is 2ω. This includes,

in particular, cases in which 2µ = µ+ but µ is not strong limit.
In order to prove our result we replace the Erdős-Rado theorem by a statement about

monochromatic paths in complete graphs. We shall use a theorem of Todorčević from [15],
see also [12]. It says that ω2 →ipath (ω)2ω even if 2ω > ω2. On the other hand, ω1 9ipath

(ω)2ω and even ω1 9ipath (ω)2ω,<ω as shown by Todorčević in [16]. Hence concerning the
polarized relation under scrutiny, we do not resolve the focal case of ω1.

Along the refereeing process we learned that the above mentioned path relations were
first proved by Todorčević. Our original manuscript contained similar statements with
our proofs. Since the proofs are quite different (and some of the statements are not
identical) we include a discussion on path relations in the current version. The paper is
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organized in such a way that the new result (concerning the polarized relation) appears
in the first section, and path relations are discussed in the second, so the reader may skip
that part. We are deeply indebted to the referees for pointing to the literature concerning
path relations, and for many other helpful suggestions.

Our notation is mostly standard. We follow [4] with respect to arrows notation. Our
set theoretical notation is coherent, in general, with [6], but we adopt the Jerusalem no-
tation in forcing, so p 6P q reads p is weaker than q. An excellent background concerning
the basics of the polarized relation can be found in [17].

2 Polarized relations

Assume that θ 6 κ. We shall say that κ→ipath (ω)2θ iff for every c : [κ]2 → θ there exist an
increasing sequence (βn : n ∈ ω) of ordinals of κ and a color γ ∈ θ so that c(βn, βn+1) = γ
for every n ∈ ω. We shall say that κ→ipath (ω)2θ,<ω iff for every c : [κ]2 → θ there exists an
increasing sequence (βn : n ∈ ω) of ordinals of κ such that |{c(βn, βn+1) : n ∈ ω}| < ℵ0.
These relations are weakenings of the classical Erdős-Rado theorem. In particular, if
θ = ω and κ = (2ω)+ then κ→ipath (ω)2θ.

Several mathematicians considered these relations, and it seems that Silver, [14], was
the first one to use them. Todorčević proved the following two statements, among many
other, in [15] and [16]. We refer also to [12, Corollary 14] in this context.

Theorem 2. [Todorčević] Path relations.

(ℵ) ω2 →ipath (ω)2ω.

(i) ω1 9ipath (ω)2ω,<ω.

Our purpose in this section is to derive negative polarized relations at singular cardinals
with countable cofinality from instances of the ordinary path relation. We shall need the
following:

Definition 3. Polarized relations with alternatives.

We say that

(
α
β

)
→
(
γ0
δ0
∨ ε0
ζ0

γ1
δ1
∨ ε1
ζ1

)
iff for every coloring c : α × β → 2 there are

i ∈ {0, 1}, A ⊆ α andB ⊆ β such that c′′(A×B) = {i} and either otp(A) = γi, otp(B) = δi
or otp(A) = εi, otp(B) = ζi.

It follows from the definition that if some relation holds with alternatives then it holds
upon omitting one of the alternatives (or more). Of course, one may suggest an alternative
only in one of the colors, as done in the following theorem which is the main result of this
section.

Theorem 4. Assume that:

(ℵ) µ > cf(µ) = ω.

(i) 2µ = µ+.
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(ג) κ→ipath (ω)2ω, or even κ→ipath (ω)2ω,<ω.

Then

(
µ+

µ+

)
9
(
µ+

µ
κ
µ
∨ 1
µ+

)
.

Proof. Let {Bα : α ∈ µ+} enumerate the elements of [µ+]µ. For every 0 < α ∈ µ+

we reenumerate the family {Bβ : β ∈ α} by {Bαε : ε ∈ µ} (possibly with repetitions).
For every 0 < α ∈ µ+ we also reenumerate the ordinals of α by {αη : η ∈ µ}, so our
enumerations are of order type µ.

Now for each α ∈ µ+ and every ε ∈ µ we pick up an ordinal γ(α, ε) ∈ µ+ such that
γ(α, ε) ∈ Bαε−{γ(αη, ζ) : η < ε, ζ 6 ε}. The choice is possible since ε ∈ µ and |Bαε| = µ.
Based on these ordinals we define a coloring c : µ+ × µ+ → 2 as follows:

c(α, β) = 1⇔ ∃ε ∈ µ, β = γ(α, ε).

In order to show that c exemplifies the alleged negative relation we show, first, that
there is no 0-monochromatic product of size µ+ × µ under c. Assume, therefore, that
A,B ⊆ µ+, |A| = µ+ and |B| = µ. Pick up a sufficiently large ordinal α ∈ A so that
B ∈ {Bβ : β < α} and let ε ∈ µ be an ordinal for which B = Bαε. Recall that
γ(α, ε) ∈ Bαε = B, so letting β = γ(α, ε) we see that c(α, β) = 1. It follows that
c � (A×B) is not 0-monochromatic.

Secondly, we show that there is no 1-monochromatic product of size 1 × µ+ under c.
For this end, suppose that α ∈ µ+, H ⊆ µ+ and c � ({α} ×H) is 1-monochromatic. We
must show that the cardinality of H is less than µ+. Notice that H = {β ∈ µ+ : c(α, β) =
1} ⊆ {γ(α, ε) : ε ∈ µ}, hence |H| 6 |{γ(α, ε) : ε ∈ µ}| 6 µ as required.

Finally, let us show that there is no 1-monochromatic product of size κ × µ under c.
Observe that for every α ∈ µ+ we have:

η < ε < µ ∧ γ(αη, ζ) = γ(α, ε)⇒ ε < ζ.

Indeed, αη < α and hence if ζ 6 ε then in the choice of γ(α, ε) we make sure that
γ(α, ε) 6= γ(αη, ζ). So assuming that γ(αη, ζ) = γ(α, ε) we conclude that ε < ζ and hence
the above statement holds. We denote this observation by (∗)α for every α ∈ µ+.

Assume that S ⊆ µ+, |S| < µ and S is infinite. We may concentrate on the first ω
elements of S, so assume that S = {γn : n ∈ ω}. Assume, further, that sup{η ∈ µ : ∃i ∈
ω, γi = (γi+1)η} < µ. Define T (S) = {β ∈ µ+ : ∀α ∈ S, c(α, β) = 1}. We claim that
|T (S)| < µ as well.

For proving this claim fix an ordinal ρ < µ such that sup{η ∈ µ : ∃i ∈ ω, γi =
(γi+1)η} < ρ. Choose any ordinal γ ∈ T (S). By the very definition of T (S) we see that
c(α, γ) = 1 for every α ∈ S. By the definition of the coloring c, for every α ∈ S there is a
unique ordinal ε(α) ∈ µ such that γ = γ(α, ε(α)). We claim that for some α ∈ S we have
ε(α) < ρ.

Assume towards contradiction that the claim fails. Choose a pair of consecutive ordi-
nals α, α′ ∈ S such that α < α′. Fix an ordinal η ∈ µ for which α′η = α. Notice that η < ρ,
by the definition of ρ. Now the assumption toward contradiction implies that η < ε(α′).
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Likewise, γ = γ(α, ε(α)) = γ(α′, ε(α′)). Applying (∗)α′ we conclude that ε(α′) < ε(α).
Since the set S is infinite, if we choose an increasing sequence (αn : n ∈ ω) of elements
of S we produce an infinite decreasing sequence of ordinals (ε(αn) : n ∈ ω). This absurd
confirms the claim.

Hence for every γ ∈ T (S) we fix an ordinal α ∈ S such that γ = γ(α, ε(α)) and ε(α) <
ρ. It follows that T (S) ⊆ {γ(α, ε) : ε < ρ, α ∈ S}. Consequently, |T (S)| 6 |ρ| · |S| < µ.

Suppose that S ⊆ µ+, |S| = κ and c � (S × T ) is 1-monochromatic. This means
that T ⊆ T (S), so suffice it to show that |T (S)| < µ. If we could only show that
sup{η ∈ µ : ∃i ∈ ω, γi = (γi+1)η} < µ then using the fact that |S| = κ < µ we will be
done. In order to prove this bound, let (µn : n ∈ ω) be an increasing sequence of regular
cardinals such that µ =

⋃
n∈ω µn. Define a coloring d : [S]2 → ω as follows:

d(γ, δ) = n⇔ γ < δ ∧ ∃η < µn, γ = δη.

From the assumption κ →path (ω)2ω we infer that there is an increasing sequence (γn :
n ∈ ω) of ordinals in S and a color m ∈ ω such that d(γn, γn+1) = m for every n ∈ ω.
Denote the set {γn : n ∈ ω} by S0. Since S0 ⊆ S we see that T (S0) ⊇ T (S), so it
is sufficient to prove that |T (S0)| < µ. By the definition of d we see that sup{η ∈ µ :
∃i ∈ ω, γi = (γi+1)η} 6 µm < µ and even if we assume only κ →path (ω)2ω,<ω then
sup{η ∈ µ : ∃i ∈ ω, γi = (γi+1)η} 6 µm < µ for some m ∈ ω. Hence |T (S0)| < µ and the
proof is accomplished.

We can address now the second part of Question 1 by eliminating the assumption
2ω = ω1 from the proof of

(
µ+

µ

)
9
(
µ+ ω2

µ µ

)
which appears in [3].

Corollary 5. Suppose that µ > cf(µ) = ω and 2µ = µ+.

Then
(
µ+

µ

)
9
(
µ+ κ
µ µ

)
and even

(
µ+

µ+

)
9
(
µ+ κ
µ µ

)
whenever ω1 < κ.

The problem of
(
µ+

µ

)
→
(
µ+ ω1

µ µ

)
at singular cardinals with countable cofinality under

the assumption 2µ = µ+ remains open. We believe that a positive relation is consistent.
Moreover, in the light of [13] we even raise the possibility that it holds in ZFC under
sufficiently strong assumptions of large cardinals:

Question 6. Suppose that µ is an ω-limit of measurable cardinals.
Is it provable that

(
µ+

µ

)
→
(
µ+ ω1

µ µ

)
?

3 Path relations the hard way

In this section we consider path relations at ω2 and ω1. There is a slight difference
between our concepts and the path relations of Scheepers and Todorčević mentioned in
the previous section, as will be explicated anon. We emphasize that for the main result
of the paper concerning polarized relations one can use the statements of Todorčević.

Path relations were considered in [14] and in [11], as well as in [2]. The latter has been
continued in [1], [9] and [10]. Due to the terminology of [1] we distinguish two notions
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of paths. If the elements of the path are ordinals and they appear in increasing order
then we shall say an increasing path. If the elements of the path are ordinals with no
requirement of being increasing then we shall say a simple path. We use the notation
κ→ipath (ω)2θ in the first case, and κ→path (ω)2θ in the second. Scheepers and Todorčević
dealt with increasing paths, while the paths in this section are simple.

Definition 7. Simple path relations.
Let θ and κ be cardinals.

(ℵ) The relation κ →path (ω)2θ holds iff for every c : [κ]2 → θ there exist a sequence
(βn : n ∈ ω) of distinct ordinals of κ and a color γ ∈ θ so that c(βn, βn+1) = γ for
every n ∈ ω.

(i) The relation κ →path (ω)2θ,<ω holds iff for every c : [κ]2 → θ there exists a sequence
(βn : n ∈ ω) of distinct ordinals of κ such that |{c(βn, βn+1) : n ∈ ω}| < ℵ0.

Here is our first theorem:

Theorem 8. Path relations at the second uncountable cardinal:

(ℵ) ω2 →path (ω)2ω.

(i) If κ 6 2ω then there is a coloring of the ordered pairs of κ with no monochromatic
infinite path.

(ג) For every coloring of the ordered pairs of ω2 there is an infinite path which assumes
at most two colors.

Proof. Beginning with the first part, let c : [ω2]
2 → ω be a coloring, and let χ be a

sufficiently large regular cardinal. Choose an elementary submodel M ≺ (H(χ),∈) of size
ℵ1 so that ω1 ⊆M and ω1, c ∈M . Let δ = ω2∩M be the characteristic ordinal, so δ ∈ ω2

and we choose M in such a way that cf(δ) = ω1.
For every n ∈ ω let Bn = {β ∈ δ : c(β, δ) = n}. Notice that δ =

⋃
n∈ω Bn, so there

exists n0 ∈ ω such that Bn0 is unbounded in δ. By induction on i ∈ ω we choose an
ordinal βi ∈ δ such that the following requirements hold for every i ∈ ω:

(a) β2i ∈ Bn0 .

(b) β2i+1 > β2i.

(c) β2i > β2j+1 for every j < i.

(d) c(β2j, β2i+1) = n0 for every j 6 i.

The choice is possible since Bn0 is unbounded in δ and since cf(δ) = ω1. For part (d)
we use elementarity. Now the sequence (β2i, β2i+3 : i ∈ ω) forms a monochromatic path
where consecutive ordinals are colored by n0, thus part (ℵ) has been proved.
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For part (i) fix an uncountable cardinal κ 6 2ω. Let T be the full binary tree of
height ω, and let (bα : α ∈ κ) enumerate κ-many distinct ω-branches of T . We shall
define a coloring c over the ordered pairs of κ using ω + ω colors. Given two distinct
ordinals α, β ∈ κ let m = m(α, β) ∈ ω be the departure level of bα and bβ. Namely,
bα � m = bβ � m but bα(m) 6= bβ(m). Now let c(α, β) = m0 iff bα(m) = 0 ∧ bβ(m) = 1
and let c(α, β) = m1 iff bα(m) = 1 ∧ bβ(m) = 0. Notice that if c(α, β) = m` then
c(β, α) = m1−`, so the order is crucial here.

It follows that there is no monochromatic infinite path under c, and actually no 3-path
which is monochromatic. Indeed, if α, β, γ ∈ κ and c(α, β) = c(β, γ) then bα � m = bβ �
m = bγ � m for some m ∈ ω. But then necessarily {c(α, β), c(β, γ)} = {m0,m1}.

We move to part (ג) which says that one can limit the above negative examples to
two colors only along the path. To see this, choose M ≺ (H(χ),∈) as in the proof of part
(ℵ), and let δ, Bn0 be as there.

For every m ∈ ω let Bm
n0

= {β ∈ Bn0 : c(δ, β) = m} and pick up m0 ∈ ω for which Bm0
n0

is unbounded in δ. By induction on i ∈ ω we choose βi as in the first part of the proof, but
for each i ∈ ω we add the requirement that c(β2i+1, β2j) = m0 for every j 6 i. Elementarity
guarantees that this is possible, recalling the definition of the set Bm0

n0
. As before, the path

will be (βi : i ∈ ω) and one can verify that {c(βi, βi+1), c(βi+1, βi) : i ∈ ω} = {m0, n0} as
required.

If 2ω = ω1 then the above statements are immediate, so the main point of the above
theorem is that it holds in ZFC. In particular, ω2 →path (ω)2ω holds even if 2ω > ω2.
The following theorem and corollary show that such a relation is impossible when ω1 is
deemed. Moreover, even weak homogeneity is excluded. We emphasize that this result
follows from [16, 6.8], as pointed out by one of the referees. Our method of proof is to
employ a forcing argument, and then to claim that it holds in ZFC by absoluteness.

Theorem 9. (ZFC):
There exists a coloring c : [ω1]

2 → ω such that for every finite subset {α0, . . . , αm} ⊆ ω1

and every v ⊆ {0, . . . ,m} such that 〈α` : ` ∈ v〉 is an increasing sequence, it is true that
|v| < max{c(α`, α`+1) : ` < m}.

Proof. We define a forcing notion Q. A condition p ∈ Q is a pair (u, f) = (up, fp) so
that u ∈ [ω1]

<ω, f : [u]2 → ω and if v ⊆ {0, . . . ,m}, {α0, . . . , αm} ⊆ u and (α` : ` ∈ v) is
increasing then |v| < max{f(α`, α`+1) : ` < m}. For the forcing order, if p, q ∈ Q then
p 6Q q iff p ⊆ q, that is up ⊆ uq and f q � [up]2 = fp. Intuitively, conditions in Q are finite
approximations to the function which we try to force.

For every α ∈ ω1 let Dα = {p ∈ Q : α ∈ up}. Let us show that Dα is dense for every
α ∈ ω1. Suppose that α ∈ ω1 and p /∈ Dα, namely α /∈ up. Let uq = up ∪ {α}, f q � [up]2 =
fp. If β ∈ up then let f q(α, β) = |up| + 1 + |up ∩ β|. One can verify that q = (uq, f q)
satisfies p 6 q ∈ Dα so Dα is dense.

In Lemma 10 below we shall prove that Q is ccc, so forcing with Q preserves cardinals.
Let G ⊆ Q be V -generic. Define c =

⋃
{fp : p ∈ G}. By the density of each Dα we see

that dom(c) = [ω1]
2. By the directness of G we see that c is a function. By the definition

of the conditions we see that c exemplifies the required statement.
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The coloring c has been forced, but we argue that such a coloring already exists in
ZFC. To see this, notice that the existence of our coloring is expressible as an existence
statement of a model of some formula ψ ∈ Lω1ω(Q) where Q is the quantifier of there exist
uncountably many. Indeed, the statement of the theorem asserts that there is a coloring
over an uncountable domain. This can be expressed using the quantifier Q. Now for every
m ∈ ω we can express the property stated in the theorem by a first order formula. Using
the infinitary logic Lω1ω we can form a conjuction of these statements for every m ∈ ω,
so there is a formula ψ ∈ Lω1ω(Q) as required. By [8] we conclude that such a coloring
exists in the ground model, so we are done.

Recall that a forcing notion Q is ccc iff |A| 6 ℵ0 whenever A is an antichain of Q. In
order to accomplish the proof we need the following:

Lemma 10. The forcing notion Q is ccc.

Proof. We commence with a general claim about projecting conditions in Q to a countable
ordinal. Suppose that 0 < δ < ω1 and δ is a limit ordinal. Suppose that q ∈ Q and let
p = q � δ, that is up = uq ∩ δ and fp = f q � [up]2. Notice that p = (up, fp) ∈ Q and
p 6Q q.

Choose an increasing function h : uq → δ such that h � up is the identity function.
Notice that h′′uq is bounded in δ since δ is a limit ordinal. We shall define a condition p[δ]
as follows. First, let up[δ] be h′′q. Second, if ε, ζ ∈ up[δ] and α, β satisfy ε = h(α), ζ = h(β)
then let fp[δ](ε, ζ) = f q(α, β). We indicate that p[δ] = (up[δ] , fp[δ]) ∈ Q and p 6 p[δ].

We argue that p[δ] ‖ q. Let us justify this statement and then explain how to derive
the chain condition from it. Our purpose is to define a condition r so that q, p[δ] 6 r. Let
ur = up[δ] ∪ uq. Let f r � [up[δ] ]2 = fp[δ] and f r � [uq]2 = f q, upon noticing that on the
common part of up we assign the same values and on the rest we have disjoint sets so the
information is not contradictory. It remains to define f r over mixed pairs, so assume that
α ∈ up[δ] − up and β ∈ uq − up. We let f r(α, β) = |ur| + 2 + |ur| · (|ur ∩ α| + |ur ∩ β|).
Finally, let r = (ur, f r).

It is clear that p[δ], q 6 r once we show that r ∈ Q, so we must prove that r satisfies
the defining property of our conditions. Suppose, therefore, that v ⊆ {0, . . . ,m}, {α` : ` 6
m} ⊆ ur and 〈α` : ` ∈ v〉 is strictly increasing. We argue that |v| < max{f r(α`, α`+1) :
` < m}. In order to prove this, we consider three cases.

Case 1 : For some ` < m, {α`, α`+1} * up[δ] ∧ {α`, α`+1} * uq.
In this case we see that |v| 6 |ur| < f r(α`, α`+1) 6 max{f r(α`, α`+1) : ` < m} by the

definition of f r over mixed pairs.

We are left with all the cases in which for every ` < m either {α`, α`+1} ⊆ up[δ] or
{α`, α`+1} ⊆ uq. Hence from now on we assume that Case 1 fails. Let us remark that it
is fairly possible that for some k, ` < m we will have {αk, αk+1} ⊆ up[δ] ∧ {αk, αk+1} * uq

while {α`, α`+1} ⊆ uq ∧ {α`, α`+1} * up[δ] . For example, if α0 ∈ up, α1 ∈ uq − up[δ] , α2 ∈ up
and α3 ∈ up[δ]−uq then {α0, α1} ⊆ uq∧{α0, α1} * up[δ] while {α1, α2} ⊆ up[δ] ∧{α1, α2} *
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uq. However, for this to happen we must have a non-monotonic sequence of αs, as we
must fall back in up in the middle of the process. Hence if v ⊆ {0, . . . ,m} and 〈α` : ` ∈ v〉
is increasing then necessarily {α` : ` ∈ v} ⊆ up[δ] or {α` : ` ∈ v} ⊆ uq. We remain,
therefore, with two cases:

Case 2 : {α` : ` ∈ v} ⊆ up[δ] .
We wish to use the fact that up[δ] is a condition and apply it to v. But the fact that

{α` : ` ∈ v} ⊆ up[δ] does not guarantee that α` ∈ up[δ] for every ` 6 m, so the assumption
of the case is insufficient for this plain argument. Still, we can argue as follows. For each
` 6 m let β` = α` if α` ∈ up[δ] and let β` = h(α`) if α` /∈ up[δ] (in which case α` ∈ uq − up).
Notice that {β` : ` 6 m} ⊆ up[δ] . We claim that ` < m⇒ β` 6= β`+1.

To see this, fix ` < m. If α`, α`+1 ∈ up[δ] then β` = α` 6= α`+1 = β`+1. If α`, α`+1 ∈ uq
then β` = h(α`) 6= h(α`+1) = β`+1 since α` 6= α`+1 and h is one-to-one. If α` ∈ up[δ]

and α`+1 /∈ up[δ] then α`+1 ∈ uq − up[δ] and we can assume that α` /∈ uq (otherwise
α`, α`+1 ∈ uq, a case which was covered before), so α` ∈ up[δ] − uq. But then {α`, α`+1} *
up[δ] ∧ {α`, α`+1} * uq so this is covered in Case 1. If α` ∈ uq and α`+1 /∈ uq we use a
similar argument. So we conclude that ` < m⇒ β` 6= β`+1.

Notice further that f r(β`, β`+1) = f r(α`, α`+1) whenever ` < m. Now since {α` :
` ∈ v} ⊆ up[δ] we have β` = α` for every ` ∈ v. Hence {β` : ` ∈ v} is increasing and
|v| < max{f r(β`, β`+1) : ` < m} = max{f r(α`, α`+1) : ` < m} as p[δ] ∈ Q.

Case 3 : {α` : ` ∈ v} ⊆ uq.
This is similar to the previous case.

We conclude, therefore, that r ∈ Q which shows that p[δ] and q are compatible.
Having established this general claim let us prove the chain condition. Assume towards
contradiction that {qα : α ∈ ω1} is an antichain in Q. For every limit ordinal α ∈ ω1 let
pα = qα ∩ α. Using Fodor’s lemma we see that for some stationary subset S ⊆ ω1 which
consists of limit ordinals and a fixed condition p we have α ∈ S ⇒ pα = p. We shrink S
further by assuming that all the conditions in {qα : α ∈ S} are pairwise isomorphic. It
means that if |uqα | = nα for every α ∈ S then nα = n for some fixed n ∈ ω and for all the
elements of S. Moreover, the order pattern of the elements of every uqα is assumed to be
the same pattern for all the elements of S.

Now choose ζ, η ∈ S so that ζ < η and uqζ ⊆ η. Let δ be a limit ordinal such that
p ⊆ δ. It follows that p

[δ]
ζ and qη are compatible, where p

[δ]
ζ is the projection of pζ to the

countable ordinal δ. But then qζ and qη are also compatible, a contradiction.

We can derive now our conclusion about path relations at ω1. We indicate that the
above lemma fails while trying to apply the same forcing notion to higher cardinals. This
might serve as an evidence to the possibility that the polarized relation

(
µ+

µ

)
→
(
µ+ ω1

µ µ

)
for a singular cardinal with countable cofinality is consistent and maybe even provable
under the assumption that 2µ = µ+.

Corollary 11. ω1 9path (ω)2ω,<ω.

the electronic journal of combinatorics 27(2) (2020), #P2.8 9



Proof. Let c : [ω1]
2 → ω be as guaranteed in Theorem 9. We claim that c exemplifies the

negative relation ω1 9path (ω)2ω,<ω. To see this, assume by way of contradiction that (αn :
n ∈ ω) is a counterexample. Namely, there is m ∈ ω so that |{c(α`, α`+1) : ` ∈ ω}| = m.
Hence there is a natural number n ∈ ω such that c(α`, α`+1) < n for every ` ∈ ω.

By induction on ` ∈ ω we choose j(`) ∈ ω such that if k < ` then j(k) < j(`) and
αj(k) < αj(`). Applying the conclusion of Theorem 9 to the sequence (α` : ` 6 j(n)) and
the set v = {j(`) : ` 6 n} we see that |v| = n + 1 < max{c(α`, α`+1) : ` 6 j(n)} < n, a
contradiction.
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