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Abstract

This paper determines all pairs (D, G) where D is a non-symmetric 2-(v, k, λ)
design with (r, λ) = 1 and G is the almost simple flag-transitive automorphism
group of D with an exceptional socle of Lie type. We prove that if T E G 6 Aut(T )
where T is an exceptional group of Lie type, then T must be the Ree group or
Suzuki group, and there are five classes of designs D.

Mathematics Subject Classifications: 05B05, 05B25, 20B25

1 Introduction

A 2-(v, k, λ) design D is a pair (P ,B), where P is a set of v points and B is a set of
k-subsets of P , called blocks, such that any two points are contained in exactly λ blocks.
A flag is an incident point-block pair (α,B). An automorphism of D is a permutation
of P which leaves B invariant. The design is non-trivial if 2 < k < v − 1 and non-
symmetric if v < b. All automorphisms of the design D form a group called the full
automorphism group of D, denoted by Aut(D). Let G 6 Aut(D), then D or G is called
point (block, flag)-transitive if G acts transitively on the set of points (blocks, flags), and
point-primitive if G acts primitively on P . Note that a finite primitive group is almost
simple if it is isomorphic to a group G for which T ∼= Inn(T ) 6 G 6 Aut(T ) for some
non-abelian simple group T .

Let G 6 Aut(D) and r be the number of blocks incident with a given point. In [4],
P. Dembowski proved that if G is a flag-transitive automorphism group of a 2-design D
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with (r, λ) = 1, then G is point-primitive and P. H. Zieschang [30] proved that G must
be of almost simple or affine type. Such 2-designs have been studied in [1, 26, 27, 28, 29],
where the socle of G is an elementary abelian p-group, a sporadic group or an alternating
group, respectively. In this paper, we continue to study the non-symmetric case that the
socle of G is an exceptional simple group of Lie type. We get the following:

Theorem 1. Let D be a non-symmetric 2-(v, k, λ) design with (r, λ) = 1 and G an almost
simple flag-transitive automorphism group of D. If the socle T of G is an exceptional Lie
type group in characteristic p and q = pe, then for some block B of D one of the following
holds:

(1) T = 2G2(q) with q = 32n+1 > 27 and D is one of the following:

(i) the Ree unital of order q with TB = Z2 × L2(q);

(ii) a 2-(q3 + 1, q, q − 1) design with TB = Q1 : K;

(iii) a 2-(q3 + 1, q, q − 1) design with TB = Z2 × (Q2 : 〈k2〉);

(iv) a 2-(q3 + 1, q2, q2 − 1) design with TB = Q′ : K,

where Q ∈ Syl3(T ), k ∈ K and Q1, Q2 and K are defined in Section 3.

(2) T = 2B2(q) with q = 22n+1 > 8, and D is a 2-(q2 + 1, q, q − 1) design with TB =
Z(Q) : K, where Q ∈ Syl2(T ) and K = Zq−1 ∼= F∗q.

Remark. (1) The five designs in Theorem 1 are non-symmetric. Here we just list the
block stabilizer TB for each design, and it is easily known from the proof of Propositions
24 and 26 (Section 3) that T acts 2-transitively on points set of D and the point stabilizer
Tα is the parabolic subgroup of T .

(2) The constructions of these designs are in Section 3. Moreover, if (α,B) is any flag
of the Ree unital UR(q) = (P ,B) in part (1)(i), then the design in (1)(iii) is (P ,B′) with
B′ = (B − {α})T and T = 2G2(q).

(3) Two designs in part (1)(ii) and (iii) have the same parameters (v, b, r, k, λ) =
(q3 + 1, q2(q3 + 1), q3, q, q− 1), but we do not know if these two designs are isomorphic till
now.

2 Preliminary results

We first give some preliminary results about designs and almost simple groups.

Lemma 2. ([27, Lemma 2.2]) For a 2-(v, k, λ) design D, it is well known that

(1) bk = vr;

(2) λ(v − 1) = r(k − 1);
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(3) v 6 λv < r2;

(4) if G 6 Aut(D) is flag-transitive and (r, λ) = 1, then r | (|Gα|, v − 1) and r | d, for
any non-trivial subdegree d of G.

Lemma 3. If G and D satisfy the hypothesis of Theorem 1, then for every α ∈ P and
B ∈ B we have the following:

(1) G = TGα and |G| = f |T | where f is a divisor of |Out(T )|;

(2) |G : T | = |Gα : Tα| = f ;

(3) |GB| divides f |TB|, and |GαB| divides f |TαB| for any flag (α,B).

Proof. Since G is an almost simple primitive group, (1) holds and (2) follows from (1).
Note that T E G, so |BT | divides |BG| and |(α,B)T | divides |(α,B)G|. It follows that
|GB : TB| divides f and |GαB : TαB| divides f and so (3) holds.

Lemma 4. ([4, 2.2.5]) Let D be a 2-(v, k, λ) design. If the parameters k, r, λ of D satisfies
r = k + λ and λ 6 2, then D is embedded in a symmetric 2-(v + k + λ, k + λ, λ) design.

Lemma 5. ([4, 2.3.8]) Let D be a 2-(v, k, λ) design and G 6 Aut(D). If G is 2-transitive
on points and (r, λ) = 1, then G is flag-transitive.

Lemma 6. Let A, B, C be subgroups of group G. If B 6 A, then

|A : B| > |(A ∩ C) : (B ∩ C)|.

Lemma 7. ([15]) If T is a simple group of Lie type in characteristic p acting on the set
of cosets of a maximal parabolic subgroup, then T has a unique subdegree which is a power
of p, except that T is Ld(q), Ω+

2m(q) (m is odd) or E6(q).

Lemma 8. [24, 1.6] (Tits Lemma) If T is a simple group of Lie type in characteristic p,
then any proper subgroup of index prime to p is contained in a parabolic subgroup of T .

In the following, np denotes the p-part of n and np′ denotes the p′-part of n for a
positive integer n, namely, np = pt where pt | n but pt+1 - n, and np′ = n/np.

Lemma 9. If G and D satisfy the hypothesis of Theorem 1, then |G| < |Gα|3. Moreover,
if Gα is non-parabolic and maximal, then |G| < |Gα||Gα|2p′ and |T | < |Out(T )|2|Tα||Tα|2p′.

Proof. By Lemma 2(4), r divides every non-trivial subdegree of G, hence r divides |Gα|
and |G| < |Gα|3 by Lemma 2(3). If Gα is not parabolic, then p divides v = |G : Gα|
by Lemma 8. Since r divides v − 1, (r, p) = 1 and so r divides |Gα|p′ . It follows that
r 6 |Gα|p′ , and hence |G| < |Gα||Gα|2p′ by Lemma 2(3) again. Now by Lemma 3(2), we
have that |T | < |Out(T )|2|Tα||Tα|2p′ .
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Lemma 10. ([18, Theorem 2, Table III]) If T is a finite simple exceptional group of
Lie type such that T 6 G 6 Aut(T ) and Gα is a maximal subgroup of G such that
T0 = Soc(Gα) is not simple, then one of the following holds:

(1) Gα is parabolic;

(2) Gα is of maximal rank;

(3) Gα = NG(E), where E is an elementary abelian group given in [3, Theorem 1(II)];

(4) T = E8(q) with p > 5, and T0 is either A5 × A6 or A5 × L2(q);

(5) T0 is as in Table 1.

Table 1: The cases in Lemma 10(5)

T T0
F4(q) L2(q)×G2(q)(p > 2, q > 3)
Eε

6(q) L3(q)×G2(q), U3(q)×G2(q)(q > 2)
E7(q) L2(q)× L2(q)(p > 3), L2(q)×G2(q)(p > 2, q > 3),

L2(q)× F4(q)(q > 3), G2(q)× Sp6(q)
E8(q) L2(q)× Lε3(q)(p > 3), L2(q)×G2(q)×G2(q)(p > 2, q > 3),

G2(q)× F4(q), L2(q)×G2(q
2)(p > 2, q > 3)

Lemma 11. ([17, Theorem 3]) Let T be a finite simple exceptional group of Lie type and
G a group such that T 6 G 6 Aut(T ). Let Gα be maximal in G and the socle T0(q) of
Gα be a simple group of Lie type over Fq(q > 2). If 1

2
rank(T ) < rank(T0), then except

cases that (T, T0) is (E8,
2A5(5)) or (E8,

2D5(3)), one of the following holds:

(1) Gα is a subgroup of maximal rank;

(2) T0 is a subfield or twisted subgroup;

(3) T = E6(q) and T0 = C4(q)(q odd) or F4(q).

Lemma 12. ([20, Theorem 1.2]) Let T be a finite simple exceptional group of Lie type
and G a group such that T 6 G 6 Aut(T ). Let Gα be maximal in G and the socle T0(q)
of Gα be a simple group of Lie type over Fq(q > 2). If rank(T0) 6 1

2
rank(T ), we have the

following bounds:

(1) if T = F4(q), then |Gα| < 4q20 logp q;

(2) if T = Eε
6(q), then |Gα| < 4q28 logp q;
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(3) if T = E7(q), then |Gα| < 4q30 logp q;

(4) if T = E8(q), then |Gα| < 12q56 logp q.

In all cases, |Gα| < 12|G| 513 logp q.

The following lemma gives a method to check the existence of design.

Lemma 13. ([27]) For a given (v, b, r, k, λ) and group G, the existence of design D with
such values as parameters and G as a primitive flag-transitive automorphism group is
equivalent to the following four steps hold:

(1) G is a primitive group on v points set P;

(2) G has at least one subgroup H of order |G|/b;

(3) H has one orbit O of length k on the point-set P such that |OG| is b;

(4) the number of blocks which incident with any two points is the constant.

Then (P , OG) is a 2-design admitting G as a primitive flag-transitive automorphism group.

We now give some information about the Ree group 2G2(q) with q = 32n+1 and its
subgroups, which are from [6, 9, 13] and would be used in Section 3.

Set m = 3n+1, so m2 = 3q. The Ree group 2G2(q) is generated by Q,K and τ , where Q
is Sylow 3-subgroup of 2G2(q), K = {diag(tm, t1−m, t2m−1, 1, t1−2m, tm−1, t−m) | t ∈ F∗q} ∼=
Zq−1 and τ 2 = 1 such that τ inverts K. It is well-known that |2G2(q)| = q3(q3 + 1)(q− 1).

Lemma 14. (1) ([13]) 2G2(q) is 2-transitive with degree q3 + 1.

(2) ([5, p.252]) The stabilizer of one point is Q : K, and N2G2(q)(Q) = Q : K.

(3) ([9, p.292]) The stabilizer K of two points is cyclic of order q − 1 and the stabilizer
of three points is of order 2.

(4) ([9, p.292]) The Sylow 2-subgroup of 2G2(q) is elementary abelian with order 8.

Lemma 15. ([11],[6, Lemma 3.3]) Let M be a maximal subgroup of 2G2(q). Then either
M is conjugate to M6 := 2G2(3

`) for some divisor ` of 2n + 1, or M is conjugate to one
of the subgroups Mi in the Table 2:

Moreover, we see that from [6], the Sylow 3-subgroup Q can be identified with the
group consisting of all triples (α, β, γ) from Fq with multiplication:

(α1, β1, γ1)(α2, β2, γ2) = (α1 + α2, β1 + β2 − α1α
m
2 , γ1 + γ2 − αm1 αm2 − α2β1 + α1α

m+1
2 ).

It is easy to check that (0, 0, γ)(0, β, 0) = (0, β, γ). Set Q1 = {(0, 0, γ)|γ ∈ Fq} and
Q2 = {(0, β, 0)|β ∈ Fq}, then Q1

∼= Q2
∼= Z2n+1

3 .
Denote the center, Frattini subgroup and the derived subgroup of Q by Z(Q), Φ(Q),

Q′, respectively. From [6], Q′ = Φ(Q) = Q1 × Q2, Z(Q) = Q1 and Q′ is an elementary
abelian 3-group. For any (α, β, γ) ∈ Q and k ∈ K,

(α, β, γ)k = (kα, k1+mβ, k2+mγ).
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Table 2: The maximal subgroups of 2G2(q)

Group Structure Remarks
M1 Q : K the normalizer of Q in 2G2(q)
M2 Z2 × L2(q) the centralizer of an involution in 2G2(q)
M3 (Z2

2 ×D(q+1)/2) : Z3 the normalizer of a four-subgroup
M4 Zq+m+1 : Z6 the normalizer of Zq+m+1

M5 Zq−m+1 : Z6 the normalizer of Zq−m+1

Lemma 16. ([6, 13]) If Q, M1, Q2, M2 and K defined as above, then

(1) the normalizer of every subgroup of Q is contained in M1;

(2) Q2 is a Sylow 3-subgroup of M2 and NM2(Q2) = Z2 × (Q2 : 〈k2〉) with 〈k〉 = K.

Lemma 17. ([6, Lemma 3.2]) The following hold for the cyclic subgroup K:

(1) K is transitive on Q1 \ {1} acting by conjugation;

(2) K has two orbits (0, 1, 0)K, (0,−1, 0)K on Q2 \ {1} acting by conjugation.

According to Lemma 17, we know that H1:= Q1 : K is a subgroups of M1. Moreover,
(0, 0, γ)K = Q1 \ {1} and (0, β, 0)K ∪ (0,−β, 0)K = Q2 \ {1} for any non-identity element
(0, 0, γ) of Q1 and (0, β, 0) of Q2.

Let M2 be a representative of the second case (as list in Table 2) of maximal subgroup
of 2G2(q) and Q2 be the Sylow 3-subgroup of M2. If Q is the Sylow 3-subgroup of 2G2(q)
such that Q2 6 Q, then for the normalizer NM2(Q2) of Q2 in M2 and the normalizer
M1 = Q : K of Q in 2G2(q), we have the following conclusions.

Lemma 18. Let H be a subgroup of M2 such that |H| = q(q − 1). Then

(1) H is conjugate to NM2(Q2);

(2) NM2(Q2) 6M1 and NM2(Q2) is not conjugate to H1;

(3) H is contained in a conjugacy of M1.

Proof. Let H 6M2 such that |H| = q(q−1). Note that M2
∼= Z2×L2(q) and |NM2(Q2)| =

q(q−1). Then by the list of maximal subgroups of L2(q) we know that H ∼= NM2(Q2). Let
σ be an automorphism from NM2(Q2) to H. Then Qσ

2 EH since Q2ENM2(Q2). Moreover,
since q | |H|, the Sylow 3-subgroup of H is conjugate to Q2 in M2 and so Qσ

2 = Qc
2 EH

for some c ∈M2. It follows that

H 6 NM2(Q
c
2) = NM2(Q2)

c.

Therefore, H = NM2(Q2)
c and (1) holds.

By Lemma 16(1), NM2(Q2) 6 M1. Suppose that NM2(Q2) is conjugate to H1 in M1.
Then NM2(Q2) = Hu

1 = Q1 : Ku for some u ∈M1, which implies that Q1 ENM2(Q2) and
Q1 ×Q2 6 NM2(Q2), a contradiction. So (2) holds and (3) follows from (1) and (2).
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Lemma 19. Let H be a subgroup of M1 such that |H| = q(q − 1). Then H = A : Ku for
the Sylow 3-subgroup A of H and some u ∈M1.

Proof. Obviously, M1 is solvable, so H is solvable. Let K1 be a subgroup of order q− 1 of
H. Since |M1| = q3(q − 1), K1 and K are two Hall subgroups of M1, which implies that
K1 = Ku for some u ∈ M1 by [8, Chapter 6, Theorem 4.1]. Let A = H ∩ Q. We have
AEH by QEM1 and A ∩K1 = 1. Hence H = A : Ku for some u ∈M1.

Lemma 20. Let H be a subgroup of M1 such that |H| = q(q − 1). Then H is conjugate
to H1 or NM2(Q2) in M1.

Proof. By Lemma 19, we have H = A : Ku where A is a Sylow 3-subgroup of H and
so Hu−1

= Au
−1

: K. Clearly, Au
−1
6 Q since A 6 Q and u ∈ M1. Let F be a maximal

subgroup of Q such that Au
−1
6 F . If Au

−1∩ Q′ = 1, then by Lemma 6 and the fact
Q′ 6 F , |F : Au

−1 | > |F ∩ Q′ : Au
−1 ∩ Q′| = q2, and so |F | > q3, a contradiction.

Therefore, Au
−1∩ Q′ 6= 1.

If Au
−1 ∩ Q′ has an element (0, 0, γ) such that γ 6= 0, then (0, 0, γ)K = Q1 \ {1} ⊆

Au
−1 \{1} and so Au

−1
= Q1 which implies that Hu−1

= H1. Similarly, if Au
−1 ∩Q′ has an

element (0, β, 0) such that β 6= 0, then Au
−1

= Q2. Hence Hu−1
= Q2 : K. In particular,

NM2(Q2)
c = Q2 : K for some c ∈M1 by Lemma 19. Then Hu−1

= NM2(Q2)
c.

Suppose that Au
−1 ∩ Q′ has an element (0, β, γ) such that β 6= 0 and γ 6= 0. Note

that (0, β, γ)−1 = (0,−β,−γ) ∈ Au−1 ∩ Q′. Since |Au−1| = q, (0, β, γ)K = (0,−β,−γ)K

and so (0, β, γ)k = (0,−β,−γ) for some k ∈ K, which implies that (0, β, 0)k = (0,−β, 0),
contradicts Lemma 17(2).

Corollary 21. Let H 6 2G2(q) and |H| = q(q− 1), then H is conjugate in 2G2(q) to H1

or NM2(Q2).

Proof. By Lemma 15, H is contained in a conjugacy of M1 or M2. The result follows
immediately from Lemmas 18 and 20.

Lemma 22. Let H 6 2G2(q) and |H| = q2(q − 1), then H is conjugate in 2G2(q) to
Q′ : K.

Proof. Since Q′ char Q E M1, so Q′ : K is a subgroup of M1 with order q2(q − 1).
Suppose that H 6 2G2(q) and |H| = q2(q − 1). By Lemma 15, we have Hg−1

6 M1.
Similar as the proof of Lemma 19, we get that Hg−1

has the structure A : K where A is
the Sylow 3-subgroup of Hg−1

. Let F be a maximal subgroup of Q satisfying A 6 F . Since
|F : A| > |F ∩Qi : A∩Qi|, we have |A∩Qi| > 1, which implies Qi = (A∩Qi)

K 6 AK = A
for i = 1, 2. So Q′ 6 A, and it follows that Q′ = A and Hg−1

= Q′ : K in M1.

Similarly, we have the following result on the Suzuki group 2B2(q) by [7] and [5, p.250].

Lemma 23. Suppose that Q is the Sylow 2-subgroup of 2B2(q) and M1 = Q : K is the
normalizer of Q. Let H 6 2B2(q) and |H| = q(q − 1). Then H is conjugate in 2B2(q) to
Z(Q) : K.
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3 Proof of Theorem 1

3.1 T is the Ree group

Proposition 24. Let G and D satisfy hypothesis of Theorem 1 and B be a block. If
T = 2G2(q) with q = 32n+1, then D is the Ree unital or one of the following:

(1) D is a 2-(q3 + 1, q, q − 1) design with TB = Q1 : K or Z2 × (Q2 : 〈k2〉) ;

(2) D is a 2-(q3 + 1, q2, q2 − 1) design with TB = Q′ : K.

This proposition will be proved into two steps. We first assume that there exists
a design satisfying the assumptions and obtain the possible parameters (v, b, r, k, λ) in
Lemma 25, then prove the existence of the designs using Lemma 13.

Lemma 25. Let G and D satisfy the hypothesis of Theorem 1. If T = 2G2(q) with
q = 32n+1, then (v, b, r, k, λ) = (q3+1, q2(q3+1), q3, q, q−1) or (q3+1, q(q3+1), q3, q2, q2−1)
or D is the Ree unital.

Proof. Let Tα := Gα ∩ T . Since G is primitive on P , then Tα is one of the cases in
Lemma 15 by [11]. By Lemma 9, we know that the cases that Tα = Z2

2 × D(q+1)/2

and Zq±m+1 : Z6 are impossible. If Tα = Z2 × L2(q), then v = q2(q2 − q + 1) and
(|Tα|, v− 1) = (q(q2 − 1), q4 − q3 + q2 − 1) = q− 1. But since r divides f(|Tα|, v− 1), r is
too small to satisfy v < r2. Similarly, Tα cannot be 2G2(3

`).
Therefore Tα = Q : K and v = q3 + 1. Moreover, from [5, p.252], T is 2-transitive on

P , so T is flag-transitive by Lemma 5. Hence we may assume that G = T = 2G2(q). The
equations in Lemma 2 show

b =
λv(v − 1)

k(k − 1)
=
λq3(q3 + 1)

k(k − 1)
,

then by the flag-transitivity of T , we have

|TB| =
|T |
b

=
(q − 1)k(k − 1)

λ
.

Let M be a maximal subgroup of T such that TB 6M . Then since |TB| | |M | and q > 27,
M is either M1 or M2 as shown in Lemma 15.

If TB 6 M1, then k(k − 1) | λq3. Furthermore, since (r, λ) = 1 and so λ | (k − 1)
by Lemma 2(2). Therefore λ = k − 1, and it follows that r = v − 1 = q3 and k | q3.
Note that M1 is point stabilizer of T in this action. So there exists η such that M1 = Tη
and TB 6 Tη. However, the flag-transitivity of T implies η /∈ B. For any point γ ∈ B,
TγB 6 Tηγ. By Lemma 14, |Tηγ| = q − 1, and so |TγB| | (q − 1). On the other hand, from

|BTγ | = |Tγ : TγB| 6 |BGγ | = |Gγ : GγB| = r = q3,

we have TγB = Tηγ 6 TB. Since the stabilizer of three points is of order 2 by Lemma
14, the size of Tηγ-orbits acting on P \ {η, γ} is q − 1 or 1

2
(q − 1). This, together with
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Tηγ 6 TB and η /∈ B, implies that k − 1 = a( q−1
2

) for an integer a. Recall that k | q3 and
k < r, we get k = q or k = q2. If k = q, then

b = q2(q3 + 1), r = q3, λ = q − 1.

If k = q2, we have
b = q(q3 + 1), r = q3, λ = q2 − 1.

Now we deal with the case that TB 6M2 by the similar method in [10, Theorem 3.2].
If TB is a solvable subgroup of M2

∼= Z2×L2(q), then TB must map into either Z2×A4,
Z2 ×Dq±1 or Z2 × ([q] : Z q−1

2
). Obviously, the former two cases are impossible. For the

last case, TB . Z2 × ([q] : Z q−1
2

) and so TB is a subgroup of H 6 M2, where the order of

H is q(q−1). Hence by Lemma 18(3), this case can be reduced to the case that TB 6M1.
If TB is non-solvable, then it is embedded in Z2 × L2(q0) with q`0 = q = 32n+1. The

condition that |TB| divides |Z2×L2(q0)| forces q0 = q and so TB is isomorphic to Z2×L2(q)
or L2(q).

If TB ∼= Z2 × L2(q), then TB = M2 and so b = q2(q2 − q + 1). Hence, from Lemma 2,
we have k | q(q+ 1), q2 | r and r | q3. Since k > 3, TB cannot acting trivially on the block
B by the fact that the stabilizer of three points is of order 2. Moreover, since q+ 1 is the
smallest degree of any non-trivial action of L2(q), we have k = λ(v−1)

r
+ 1 > q + 1. If the

design D is a linear space, then D is the Ree unital (see [10]) with parameters

(v, b, r, k, λ) = (q3 + 1, q2(q2 − q + 1), q2, q + 1, 1)

and T is flag-transitive with the block stabilizer M2.
If λ > 1, then we claim that λ = k − 1. Clearly, λ | (k − 1) as (r, λ) = 1 by Lemma

2(2). If 3 | (k− 1) and (k, 3) = 1, then since k | q(q+ 1) and k > q+ 1, we have k = q+ 1
and so λ | q, which contradicts (r, λ) = 1 as q2 | r. Hence (k − 1, 3) = 1. Moreover,
(k − 1) | λq3 implies that (k − 1) | λ. So we have λ = k − 1.

Let ∆1, ∆2,. . ., ∆t be the orbits of M2 with the action that T is 2-transitive on q3 + 1
points. Since M2 is the block stabilizer of the Ree unital, it has an orbit of size q + 1.
Without loss of generality, let |∆1| = q+ 1. On one hand, recall that k | q(q+ 1) and T is
flag transitive, TB = M2 has at least one orbit with size less than q(q + 1). On the other
hand, we show that |∆i| > q(q + 1) for all i such that i 6= 1 in the following and obtain
the desired contradiction. For any point δ such that δ ∈ P \∆1, we claim that (M2)δ is
a 2-group. Let p be a prime divisor of |(M2)δ| and P be a Sylow p-subgroup of (M2)δ.
If p 6= 2 and p 6= 3, then since (M2)δ 6 Tδ, we have p | (q − 1). Obviously, since ∆1 is
an orbit of M2 and P 6 (M2)δ, and so P acts invariantly on ∆1 and P \∆1. Note that
the length of any nontrivial P -orbit divided by p, so P fixes at least two points in ∆1.
Moreover, P also fixes δ. Therefore P fixes at least three points of P , which is impossible
as the order of the stabilizer of three points is 2 by Lemma 14(3). If p = 3, since P
fixes the point δ ∈ P \ ∆1 and |P \ ∆1| = q3 − q, then P fixes at least three points in
P \∆1, which is also impossible. As a result, (M2)δ is a 2-group. The fact that the Sylow
2-subgroup of T is of order 8 implies that the sizes of the M2-orbits ∆i (i 6= 1) are at least
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and hence larger than q(q + 1), which contradicts the fact k | q(q + 1). Therefore,
TB 6∼= Z2 × L2(q). Similarly, TB 6∼= L2(q). Thus when TB is a non-solvable subgroup in
M2, D is a Ree unital.

Proof of Proposition 24 We use Lemma 13 to prove the existence of the design
with parameters listed in Lemma 25.

Assume that (v, b, r, k, λ) = (q3 + 1, q2(q3 + 1), q3, q, q − 1). Then from Corollary 21
we known that there are only two conjugacy classes of subgroups of order q(q − 1) in T
and H1 = Q1 : K 6 Tα and NM2(Q2) = Z2 × (Q2 : 〈k2〉) be representatives, respectively.

First, we consider the orbits of H1. Let γ 6= α be the point fixed by K. Since
K 6 H1, then Kγ = K 6 (H1)γ 6 Tαγ = K, which implies (H1)γ = Tαγ and so

|H1 : (H1)γ| = |γH1| = q. It is easy to see that |δH1| 6= q for any point δ 6= α or γ.
Therefore, H1 has only one orbit of size q. Let B1 = γH1 .

Now we show that H1 = TB1 , which implies |BT
1 | = b. Since H1 6 TB1 and B1 =

γH1 = γTB1 , then |H1 : (H1)γ| = |TB : TγB1 | = q. If K = (H1)γ < TγB1 , then 3 divides
|TγB1 : TδγB1 | for any δ ∈ B1 \ {γ} by Lemma 14(3). It follows that 3 | (q − 1), a
contradiction. As a result, K = (H1)γ = TγB1 and so H1 = TB1 . Let B1 := BT

1 . Therefore
|B1| = |T : H1| = b. Let B1 be the set of blocks.

Finally, since T is 2-transitive on P , the number of blocks which incident with two
points is a constant. Hence D1 = (P ,B1) is a 2-(q3 + 1, q, q − 1) design admitting T as a
flag transitive automorphism group by Lemma 13.

In a similar way, we can construct the design D2 satisfying all hypothesis when the
subgroup is NM2(Q2) = Z2 × (Q2 : 〈k2〉). However, at this stage we do not know if D1

and D2 are isomorphic.

3.2 T is the Suzuki group

Proposition 26. Let G and D satisfy hypothesis of Theorem 1. If T = 2B2(q) with
q = 22n+1, then D is a 2-(q2 + 1, q, q − 1) design with TB = Z(Q) : K where Q ∈ Syl2(T )
and K = Zq−1.

Proof. Let T = 2B2(q) with order (q2 + 1)q2(q− 1). Then |G| = f(q2 + 1)q2(q− 1) where
f divides |Out(T )|. By [7] or [25], the order of Gα is one of the following:

(1) fq2(q − 1);

(2) 2f(q − 1);

(3) 4f(q ±
√

2q + 1);

(4) f(q20 + 1)q20(q0 − 1) with q`0 = q.

Since |G| < |Gα|3, we first have that |Gα| 6= 2f(q−1). If |Gα| = 4f(q±
√

2q+1), then
from the inequality |G| < |Gα|3, we get f(q2+1)q2(q−1) < (4f)3(2q)3, and so q2+q+1 6
43f 223. It follows that q + 1 < 4323 and q = 27, 25 or 23 by f 6 |Out(T )| = 2n + 1 and
q = p2n+1. If q = 27, then |G| = f214(214 − 1)(27 − 1) > f 343(27 + 24 + 1)3 = |Gα|3 where
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f = 7 or 1, a contradiction. If q = 25, then v = 198400 or 325376 for |Gα| = 4f(q+
√

2q+1)
or 4f(q−

√
2q+ 1) respectively. By calculating (|Gα|, v− 1), since r divides (|Gα|, v− 1),

we know that r is too small. Similarly, we get q 6= 23.
If |Gα| = f(q20 + 1)q20(q0 − 1) with q`0 = q, then the inequality |G| < |Gα||Gα|2p′

forces m = 3. So v = (q40 − q20 + 1)q40(q20 + q0 + 1). Since r divides (|Gα|p′ , v − 1), then

r 6 |Gα|p′ 6 fq30 < q
9/2
0 . From v < r2, we get (q40− q20 + 1)q40(q20 + q0 + 1) < r2 < q90, which

is impossible.
Now assume that |Gα| = fq2(q−1). Then v = q2+1 and T is 2-transitive by [5, p.250].

Hence, T is flag-transitive by Lemma 5. Similarly, we have |TB| = |T |
b

= k(k−1)(q−1)
λ

. Let
M be the maximal subgroup of T such that TB 6 M . The fact that |TB| divides |M |
implies that |M | = q2(q− 1) and k(k− 1) divides λq2. Similar to the proof of Lemma 25,
we have TγB = Tαγ with the order q − 1. Furthermore, we get

(v, b, r, k, λ) = (q2 + 1, q(q2 + 1), q2, q, q − 1).

Next we prove the existence of the design with above parameters by Lemma 13. Firstly,
from Lemma 23 we know that the Suzuki group has a unique conjugacy class of subgroups
of order q(q − 1), let H := Z(Q) : K 6 Tα be the representative.

Note that K is the stabilizers of two points in 2B2(q) by [9, p.187]. Let γ 6= α be the
point fixed by K and B = γH . A similar argument to that of Proposition 24 implies that
B is the only H-orbit of length q and H = TB. Let B = BT be the set of blocks. Finally,
since T is 2-transitive on P , the number of blocks which incident with two points is a
constant. Hence D = (P ,B) is a 2-(q2 + 1, q, q−1) design admitting T be a flag transitive
automorphism group by Lemma 13.

3.3 T is one of the remaining families

In this subsection, let

T = {2F4(q),
3D4(q), G2(q), F4(q), E

ε
6(q), E7(q), E8(q)}.

We will prove that there are no new design arise when T ∈ T .
Firstly, we show that Gα cannot be a parabolic subgroup of G for any T ∈ T .

Lemma 27. Let G and D satisfy hypothesis of Theorem 1. If T ∈ T , then Gα cannot be
a parabolic subgroup of G.

Proof. By Lemma 7, for all cases that T ∈ T \ E6(q), there is a unique subdegree which
is a power of p, so r is a power of p by Lemma 2(4). We can easily check that r is too
small and the condition r2 > v cannot be satisfied. If T = E6(q), for the cases where G
contains a graph automorphism and Gα ∩ T is P2 or P4 Lemma 7 still applies (see [23,
p.345]) and can also be ruled out similarly. If Gα ∩ T is P3 with type A1A4, then

v =
(q3 + 1)(q4 + 1)(q9 − 1)(q6 + 1)(q4 + q2 + 1)

(q − 1)
.
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Since r divides (|Gα|, v− 1), we have r | eq(q− 1)5(q5− 1) and so r is too small to satisfy
r2 > v. If Gα ∩ T is P1 with type D5, then

v =
(q8 + q4 + 1)(q9 − 1)

q − 1
.

From [14], we know that there exists two non-trivial subdegrees:

d =
q(q3 + 1)(q8 − 1)

(q − 1)
and d′ =

q8(q4 + 1)(q5 − 1)

(q − 1)
.

Since (d, d′) = q(q4 + 1), we have r | q(q4 + 1) by Lemma 2(4), which contradicts with
r2 > v.

Let T1 = {F4(q), E
ε
6(q), E7(q), E8(q)}.

Lemma 28. Suppose that G and D satisfy the hypothesis of Theorem 1. If T ∈ T1 and
Gα is non-parabolic, then Gα cannot be a maximal subgroup of maximal rank.

Proof. If Gα is non-parabolic and of maximal rank, then for any T ∈ T1, we have a
complete list of Tα := Gα ∩ T in [16, Tables 5.1-5.2]. All subgroups in [16, Table 5.2] and
some cases in [16, Table 5.1] can be ruled out by the inequality |T | < |Out(T )|2|Tα||Tα|2p′
in Lemma 9. Since r divides (|Gα|, v − 1), for the remaining cases we have that r2 < v, a
contradiction.

For example, if T = F4(q) with order q24(q2 − 1)(q6 − 1)(q8 − 1)(q12 − 1). Then Tα is
one of the following: (1) 2.(L2(q)×PSp6(q)).2 (q odd); (2) d.Ω9(q); (3) d2.PΩ+

8 (q).S3; (4)
3D4(q).3; (5) Sp4(q

2).2 (q even); (6) (Sp4(q)×Sp4(q)).2 (q even); (7) h.(Lε3(q)×Lε3(q)).h.2,
with d = (2, q − 1) and h = (3, q − ε).

If Tα = 2.(L2(q)× PSp6(q)).2 with q odd, then

|Tα| = q10(q2 − 1)2(q4 − 1)(q6 − 1) and v = q14(q4 + 1)(q4 + q2 + 1)(q6 + 1).

Since (q2 + 1) | v and (q4 + q2 + 1) | v, (|Gα|, v− 1) | |Out(T )|(q2− 1)4 and so r2 < q9 < v,
a contradiction.

If Tα = 2.PΩ9(q) with q odd, then

|Tα| = q16(q2 − 1)(q4 − 1)(q6 − 1)(q8 − 1) and v = q8(q8 + q4 + 1).

Since q | v, (q4 + q2 + 1) | v, v − 1 ≡ 2 (mod q4 − 1), we get r divides 24|Out(T )|(q4 + 1)
and so r2 < v, a contradiction.

Cases (3)-(6) can be ruled out similarly, and Case (7) cannot occur because of |T | <
|Out(T )|2|Tα||Tα|2p′ .

Lemma 29. Suppose that G and D satisfy the hypothesis of Theorem 1. If T ∈ T1 and
Gα is non-parabolic, then T0 = Soc(Gα ∩ T ) is simple and T0 = T0(q0) ∈ Lie(p).

Proof. Assume that T0 = Soc(Gα ∩T ) is not simple. Then by Lemma 10 and Lemma 28,
one of the following holds:
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(1) Gα = NG(E), where E is an elementary abelian group given in [3, Theorem 1(II)];

(2) T = E8(q) with p > 5, and T0 is either A5 × A6 or A5 × L2(q);

(3) T0 is as in Table 1.

From [3, Theorem 1(II)], we check that all subgroups in Case (1) are local and too
small to satisfy |T | < |Out(T )|2|Tα||Tα|2p′ .

The order of subgroup in Case (2) is too small.
For Case (3), since Gα is not simple and not local by [3, Theorem 1], Gα is of maximal

rank by [23, p.346], which has already been ruled out in Lemma 28. Therefore, T0 is
simple.

Now assume that T0 = T0(q0) 6∈ Lie(p). Then for all T , we find the possibilities of T0
in [19, Table 1]. Some cases can be ruled out by the inequality |T | < |Out(T )|2|Tα||Tα|2p′ .
In each of the remaining cases, since r must divides (|Gα|, v − 1), r is too small to
satisfy v < r2. For example, assume that T = F4(q). If T0 6∈ Lie(p), then according
to [19, Table 1], it is one of the following: A5−10, L2(7), L2(8), L2(13), L2(17), L2(25),
L2(27), L3(3), U3(3), U4(2), Sp6(2), Ω+

8 (2), 3D4(2), J2, J2, A11(p = 11), L3(4)(p = 3),
L4(3)(p = 2), 2B2(8)(p = 5), M11(p = 11). Since |G| < |Gα|3, T0 is A9(q = 2), A10(q = 2),
Sp6(2)(q = 2), Ω+

8 (2)(q = 2, 3), 3D4(2)(q = 2, 3), J2(q = 2) or L4(3)(q = 2). But, since
r | (|Gα|, v − 1), we have r2 < v for all these cases, which is a contradiction.

Lemma 30. Suppose that G and D satisfy the hypothesis of Theorem 1. If T0 = T0(q0)
is a simple group of Lie type and Gα is non-parabolic, then T 6∈ T1.

Proof. First assume that T = F4(q). If rank(T0) >
1
2
rank(T ), then by Lemma 11 and

Lemma 28, the only possible cases of Gα∩T satisfying |G| < |Gα|3 are F4(q
1
2 ) and F4(q

1
3 )

when q0 > 2. If Gα∩T = F4(q
1
2 ), then v = q12(q6 +1)(q4 +1)(q3 +1)(q+1) > q26. Since q,

q+1, q2+1 and q3+1 are factors of v, then r | 2e(q−1)2(q3−1)2 by r | (|Gα|, v−1), which

implies that r2 < v, a contradiction. If Gα ∩ T = F4(q
1
3 ), then since p | vr divides |Gα|p′ ,

which also implies r2 < v. When q0 = 2, the subgroups T0(2) with rank(T0) >
1
2
rank(T )

that satisfy |G| < |Gα|3 are Aε4(2), B3(2), B4(2), C3(2), C4(2) or Dε
4(2). But in each case,

r | (|Gα|, v− 1) forces r2 < v, a contradiction. If rank(T0) 6 1
2
rank(T ), then from Lemma

12, we have |Gα| < 4q20 logp q. By further checking the orders of groups of Lie type, we
find that if |Gα| < 4q20 logp q, then |Gα|p′ < q12, and so |Gα||Gα|2p′ < |G|, contrary to
Lemma 9.

For T = Eε
6(q), if rank(T0) >

1
2
rank(T ), then when q0 > 2, by Lemma 11 the only

possibilities are Eε
6(q

1
2 ), Eε

6(q
1
3 ), C4(q) and F4(q). But in all these cases, simple calculation

shows that r are too small to satisfy v < r2. When q0 = 2, since |G| < |Gα|3, the
possible subgroups T0(2) of Eε

6(2) are Aε5(2), B4(2), C4(2), Dε
4(2) and Dε

5(2). However,
the facts that r | (|Gα|, v − 1) and v < r2 implies that all these cases are impossible.
If rank(T0) 6 1

2
rank(T ), then from Lemma 12, we have |Gα| < 4q28 logp q. Considering

the orders of groups of Lie type, we see that |Gα|p′ < q17, and so |Gα||Gα|2p′ < |G|, a
contradiction.
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Assume that T = E7(q). If rank(T0) 6 1
2
rank(T ), then by Lemma 12 |Gα|3 6 |G|, a

contradiction. If rank(T0) >
1
2
rank(T ), then when q0 > 2, B by Lemma 11, the only cases

Gα ∩ T satisfying |G| < |Gα|3 are Gα ∩ T = E7(q
1
s ), where s = 2 or 3. But in all cases we

have r2 < v. If q0 = 2, then the possible subgroups T0(2) of E7(2) such that |G| < |Gα|3
are Aε6(2), Aε7(2), B5(2), C5(2), Dε

5(2) and Dε
6(2). However, the facts that r | (|Gα|, v− 1)

and v < r2 implies that all these cases are impossible.
Assume that T = E8(q). If rank(T0) 6 1

2
rank(T ), then by Lemma 12 we get |Gα|3 <

|G|, a contradiction. Therefore, rank(T0) >
1
2
rank(T ). If q0 > 2, then Lemma 11 implies

Gα ∩ T = E8(q
1
s ), with s = 2 or 3. However in both cases we get a small r with r2 < v,

a contradiction. If q0 = 2, all subgroups satisfying |Gα|3 > |G| are Aε8(2), B7(2), B8(2),
C7(2), C8(2), Dε

8(2) and Dε
7(2). But for all these cases we have r2 < v.

Lemma 31. If T = G2(q) with q = pe > 2, then Gα cannot be a non-parabolic maximal
subgroup of G.

Proof. Suppose that T = G2(q) with q > 2 since G2(2)′ = PSU3(3). All maximal
subgroups of G can be found in [11] for odd q and in [2] for even q.

Assume that Gα be a non-parabolic maximal subgroup of G. First we deal with the
case where Gα ∩ T = SLε3(q).2 with ε = ±. Then we have v = 1

2
q3(q3 + ε1). By Lemma 2

and [23, Section 8] we conclude that r divides (q3−ε1)
2

for odd q (cf. [23, Section 4, Case 1,
i = 1]) and r divides (q3− ε1) for even q (cf. [23, Section 3, Case 8]). The case that q odd
is ruled out by v < r2. If q is even, then r = q3 − ε1. This, together with k < r, implies
k − 1 = λ q

3+ε2
2

, and so λ = 1 or λ = 2. From the result of [23] we known that λ 6= 1. If
λ = 2, then since k < r, we have ε = −. It follows that k = q3 − 1 and r = q3 + 1. This
is impossible by Lemma 4 and [22, Theorem 1].

Now, if Gα ∩ T = 2G2(q) with q = 32n+1 > 27, then v = q3(q + 1)(q3 − 1). Note that
q | v and (q2 − 1, v − 1) = 1, we have (|Gα|, v − 1) | e(q2 − q + 1), and it follows that
r2 < v, a contradiction.

The cases that Gα ∩ T is G2(q0) or (SL2(q) ◦ SL2(q)) · 2 can be ruled out similarly.
Using the inequality |G| < |Gα|3 and the fact that r divides (|Gα|, v − 1), we find r

too small to satisfy r2 > v for every other maximal subgroup.

Lemma 32. If T = 2F4(q), then Gα cannot be a non-parabolic maximal subgroup.

Proof. Let T = 2F4(q) and Gα be a non-parabolic maximal subgroup of G. Then from
the list of the maximal subgroups of G in [21], there are no subgroups Gα satisfying
|G| < |Gα||Gα|2p′ , except for the case q = 2. For the case q = 2, Gα ∩ T is L3(3).2 or
L2(25). However in each case, since r divides (|Gα|, v − 1), and so r is too small.

Lemma 33. If T = 3D4(q), then Gα cannot be a non-parabolic maximal subgroup.

Proof. If T = 3D4(q) and Gα is a non-parabolic maximal subgroup of G, then all possibil-
ities of Gα∩T are listed in [12]. However, for all cases, the fact that r divide (|Gα|, v− 1)
give a small r which cannot satisfy the condition v < r2. For example, if Gα ∩ T is G2(q)
of order q6(q2− 1)(q6− 1), then v = q6(q8 + q4 + 1). Since q | v and (q4 + q2 + 1) | v, then
r | 3e(q2 − 1)2, which contradicts with v < r2.
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Lemma 34. Suppose that G and D satisfy the hypothesis of Theorem 1. If the socle
T ∈ T , then Gα cannot be a non-parabolic maximal subgroup.

Proof. It is follows from Lemmas 28−33.

Now Theorem 1 is an immediate consequence of Propositions 24-26 and of Lemmas
27 and 34.
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