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Abstract

Using the index theory of seaweed algebras, we explore various new partition
statistics. We find relations to some well-known families of partitions as well as a
surprising periodicity result.

Mathematics Subject Classifications: 05A17, 17B99

1 Introduction

Comment: This paper may be regarded as complimentary to a recent paper by Seo and
Yee [24]. Their paper is based on a prior arXiv [14] version of this paper, where the
notion of partition statistics based on seaweed algebras is introduced.

Partition statistics are often defined with an eye toward proving a congruence property.
An application of this principal can be found in the proofs of the famous congruence results
of Ramanujan [23], which were eventually established using the rank and crank statistics
[3, 5]. On the other hand, a partition statistic may present itself without prior appeal
to an anticipated congruence property. The recent index theory of seaweed algebras
[10, 11, 12, 15] provides just such an instance. Indeed, seaweed subalgebras of sl(n) —
or simply, seaweeds — which are naturally defined in terms of two compositions of a single
integer n, provide a sort of partition statistic generator.

One begins with a pair (A, ) with A\ a partition and p a composition of n. Since
partitions are compositions, we can use (A, i) to define a seaweed subalgebra of sl(n),
whose index (a non-negative integer) will be taken to be the definition of the index of the
pair (A, p). If v is a “A-based” composition p(\), then the index of the pair (A, () may
be regarded as a partition statistic on A alone. Letting w(\) denote the weight of A, there
are two choices of y naturally associated with a given A, namely, the trivial partition where
p = w(N), and its conjugate u© = 1¥™. It is remarkable that this pedestrian definition
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of an index-based statistic is of double-edged utility, yielding insights into two ostensibly
unrelated theories: the classical study of bijections between restricted partitions and the
more topical study of the enumeration of certain important classes of seaweed algebras.

In the first case, (A, 1), we find a connection to classical partition theory. If P(n)
is the set of partitions of weight n, then the sequence {c’ }°°, defined by

=X € Pn):indjwn(N) =n —i},

for each fixed i is eventually constant — stabilizing at the number of two-colored partitions
of i — 1 (see Theorem 11).

In the second case, we consider seaweeds defined by the pair (A, w(A)). The enumer-
ation of such composition pairs, when the index is zero, is of concern to Lie theorists.
Recent efforts to enumerate pairs of compositions that define a Frobenius (index zero)
seaweed have concentrated on limiting the number of parts in the compositions. For ex-
ample, Duflo and Yu use certain index-preserving operators on the set of compositions
corresponding to a Frobenius seaweed subalgebra of sl(n) to show that if ¢ is the number
of parts in the defining compositions, then the number of such compositions is a rational
polynomial of degree [%] evaluated at n (see [17], Theorem 1.1 (b)). Duflo and Yu's
result is existential in nature. However, if compositions are restricted to partitions and a
modest limit is placed on the size of the parts — rather than the number of parts — the
number of such compositions corresponding to a Frobenius seaweed subalgebra of sl(n)

becomes a periodic function of n (see Theorem 16).

The organization of the paper is as follows. In Section 2 we develop the definitions and
notation for partitions and seaweeds. In Section 3 we use the index theory of seaweeds
to define index-based statistics on partitions and use this new construction to connect
to some well-known classical investigations. We conclude with some open questions and
directions for further study.

2 Preliminaries

In Section 2.1 we review standard combinatorial notation. In Section 2.2 we detail the
recent index theory of seaweed algebras. Throughout this article, we tacitly assume that
all Lie algebras are over the complex numbers.

2.1 Partitions
We follow the notation of Andrews [1] and adopt the following conventions.

Definition 1. A partition X of a positive integer n is a finite non-increasing sequence of
positive integers Ai, A, ..., Ay, such that n =3 " A;. The \; are called the parts of the
partition and w(\) = n is the weight of the partition.

IFrobenius algebras form a distinguished class and have been extensively studied from the point of view
of invariant theory [22] and are of special interest in deformation and quantum group theory resulting
from their connection with the classical Yang-Baxter equation (see [19] and [20]).

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(3) (2020), #P3.1 2



We will often employ the wvector notation for the partition A = (A, Ao, ..., Ap). It
will sometimes be useful to use a frequency notation that makes explicit the number of
times a particular integer occurs as a part of a partition. So, if A = (A, Ag,..., \p), we
alternatively write

\ = (1f12f23f3 . )7

where exactly f; of the \; are equal to 1.

A graphical representation of a partition, called a Ferrers diagram, is helpful to develop
the notion of the conjugate of a partition. More formally, the Ferrers diagram of a partition
A = (A1,...,\n) is a coordinatized set of unit squares in the plane such that the lower
left corner of each square will have integer coordinates (7, j) such that

0212-m+1,0<7 < A4 — L

The conjugate of a partition X is the partition A\“ resulting from exchanging the rows and
columns in the Ferrers diagram associated to A\. The Ferrers diagram of the partition
(4,2,1), as well as its conjugate (3,2,1,1), are illustrated in Figure 1.

Figure 1: Ferrers Diagram of (4,2,1) and (3,2,1,1)

2.2 Seaweed algebras

In this section, we introduce seaweed algebras in sl(n) — the set of all n x n matrices of
trace zero. As we will see, such seaweed algebras are naturally defined in terms of two
compositions of the positive integer n. Recall that a composition of n is an unordered
partition, which we will denote by Aj|Aa| - - |\, to distinguish it from the ordered case in
Definition 1, where there is an order relation on the \.s.

Definition 2. If V' is an n-dimensional vector space with a basis {ey, ..., e,}, let ai|- - |ay,
and by |- - |b; be two compositions of n and consider the flags

{0cvic--CVp1CVp=V and V=WyDW; D ---D>W,={0},
where V; = span{ei, ..., €q4...q4q,} and W = span{ep, y..4p,41,- -, €n}-

The subalgebra of sl(n) preserving these flags is called a seaweed Lie algebra, or simply
CL1| . |am

by| - [by
seaweed. If by = n, the seaweed is called mazimal parabolic.

seaweed, and is denoted by the symbol which we refer to as the type of the
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Remark 3. The preservation of flags in Definition 2 insures that seaweeds are closed under
matrix multiplication, and therefore define an associative algebra, hence also a Lie algebra
under the commutator bracket.

The evocative “seaweed” is descriptive of the shape of the algebra when exhibited in

matrix form. For example, the seaweed algebra % consists of traceless matrices of the

form depicted on the left side of Figure 2, where *’s indicate potential non-zero entries.

2
X
* 3
V1 V2 V3 () Vs Vs

X ok ok ok

s k%
*ook sk sk

Figure 2: A seaweed of type % and its associated meander

The index of a Lie algebra was introduced by Dixmier [16]. Formally, the index of a
Lie algebra g is defined by

ind(g) = min dim(ker(By)),
feg*
where By is the associated skew-symmetric Kirillov form defined by By(z,y) = f([z,y]),
for all x,y € g. The index is an important algebraic invariant of the Lie algebra —
though notoriously difficult to compute. However, in [15], Dergachev and A. Kirillov
developed a combinatorial algorithm to compute the index of a seaweed subalgebra of
sl(n) by counting the number of connected components of a certain planar graph, called
a meander, associated to the seaweed.

To construct a meander, let al'f_‘,‘a’t” be a seaweed. Now label the n vertices of our
meander as vy, Vg, ..., v, from left to right along a horizontal line. We then place edges
above the horizontal line, called top edges, according to a; + - - - + a,, as follows: Partition
the set of vertices into a set partition by grouping together the first a; vertices, then
the next ay vertices, and so on, lastly grouping together the final a,, vertices. We call
each set within a set partition a block. For each block in the set partition determined by
ai1+---+a.,,, add an edge from the first vertex of the block to the last vertex of the block,
then add an edge between the second vertex of the block and the second to last vertex of
the block, and so on within each block. More explicitly, given vertices v;, vy in a block of
size a;, there is an edge between them if and only if j+k = 2(a; +as+---+a;_1) +a; + 1.
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In the same way, place bottom edges below the horizontal line of vertices according to the
blocks in the partition determined by by + - - - + b; (see the right side of Figure 2).

Every meander consists of a disjoint union of cycles and paths. The main result of
[15] is that the index of a seaweed can be computed by counting the number and type of
these components in its associated meander.

Theorem 4. (Dergachev and A. Kirillov, [15]) If p is a seaweed subalgebra of sl(n), then
ind(p) = 20 + P — 1,

where C'is the number of cycles and P is the number of paths in the associated meander.

Example 5. In the example of Figure 2, the meander associated to the seaweed % has
no cycles and consists of a single path — so, has index zero, hence is Frobenius.

While Theorem 4 is an elegant combinatorial result it is difficult to apply in practice.
However, Coll et al in [13] show that any meander can be contracted or “wound-down” to
the empty meander through a sequence of graph-theoretic moves, each of which is uniquely
determined by the structure of the meander at the time of move application. There are
five such moves, only one of which affects the component structure of the meander graph
and is therefore the only move capable of modifying the index of the meander. Since
we will need the explicit winding-down moves in the proof of Theorem 16 we review the
winding-down process.

Lemma 6 (Winding-down). Given a meander M of type %, create a meander
bsl - [by
M'" by exactly one of the following moves.
: : ) bi|ba| - - - |bs
1. Vertical Flip (F,): If ay < by, then M’ has type —————.
a1|a2’ c. ‘am
. L , aglas| - -+ |an,
2. Component Elimination (C(c)): Ifa; = by = ¢, then M' has type Talbal oy
o3| - - - by
3. Rotation Contraction (R): If by < a; < 2by, then M’ has type
bilag|as| - - - |am
(201 — a1)[ba| - by
.. . - / bilas| - - - |am
4. Block Elimination (B): If a; = 2by, then M’ has type ————.
52‘53’ . ‘bt
—92b)Ib cag,
5. Pure Contraction (P): Ifa; > 2by, then M’ has type (@ b1)||b 1||a2|?b3| o
2|03] - - - [0t

For all moves, except the Component Elimination move, M and M’ have the same index.
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Example 7. In this example, the seaweed m is wound-down to the empty meander
using the moves detailed in Lemma 6.

-/@\@-3@

17/3 10[3
10[4]6 3l4/6

LS > RN ¥ ) %)w&'ﬁ’ﬂ‘@‘%’;)@
4)3/3
E T 3B 3 0
17]3

Figure 3: Winding down the meander T0[4]6

In what follows, it is helpful to add a sixth index preserving transformation, Fj,, called a
horizontal flip which takes M to M_
be - - - [b2]by

3 The index of a partition

Let A = (A1, Ag, ..., Ap) be a partition and p = (uq, pa, - . ., i) a composition of n. These
compositions can be used to define the seaweed

B )\1|)\2||)\m

p/\nu_ .
() ICYCIEERT

Now, define the index of the pair (A, ) to be the index of p(A, ), and write ind, (\). If
v is a A-based composition z(A), then ind, ) (A) may be regarded as a partition statistic
on \ alone.

There are two choices for u naturally associated with A, namely, w(\) and its conjugate
1% These yield, respectively, two partition statistics on A defined as follows:

M- [\, ‘ ' Ml A
ind,(x)(A) = ind (%) and ind;woy(A) =ind (%) . (1)

Example 8. Let A = (3,2,1) in (1). An application of Theorem 3 now yields

. . 312|1 ) _ 312[1
indg(A) = ind (%) =0 and indy;e(N\) =ind (W) —3.
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3.1 (A, 1v0)

In this section we investigate, for fixed ¢ and varying n, the sequence of values defined by
the number of partitions A € P(n) such that ind;wn) () = n —i. We find that for each i,
if & ={\ € P(n) : indjuwi)(A) =n — i}, then {c}}°2, is eventually constant, stabilizing
at ¢, which turns out to be a well-known classical value (see Theorem 11). The following
Table 1 illustrates ¢!, for small values of n and 1.

7

S
—
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0
0
0
2
5
9

QYN = OO OO Gt

OO0 | O x| W N
TN H OO
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—_
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(G210 I Hen) Hev) Hen) Nen) Nevl an) Nan) BN |
[\l Nenl] Henl Ren) el Hen) Ren) Ran) Han) N0 o)
=l k=] N =] Nenl Ren] Jen) He) Je) Reu) an) Jl)

[y
=)

7
Table 1: Number of A € P(n) with indjwx (A) = 1.

By coloring partitions, we can better understand the ¢"’s. We will use two colors (red
and blue), to color the parts of a given partition. When enumerating colored partitions,
we will assume that two partitions which are identical, save for their coloring, will be
considered different partitions. So, for example, the partition of the integer 2 given by
(1,1) is different from the partition of the integer 2 given by (1, 1). We also tacitly assume
that in a given colored partition all blue parts of a given size precede all red parts of the
same size (see Example 9). Such colored partitions are called two-colored partitions.

Example 9. The two-colored partitions of 2 are: (2), (2), (1,1), (1,1), and (1,1).

Remark 10. Two-colored partitions make an appearance in Guptas’s 1958 article [21] and
have recently been connected to other diverse objects, such as quandles [8, 9].

The generating function for the number of two-colored partitions of n is well-known and

is given by
1

m>=1

The following theorem connects the current exposition to classical partition theory.

Theorem 11.

. 1
Zc’x’_ :Hm

i1 m>=1
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Proof. The case ¢ = 1 is clear since, by Theorem 4, the only A € P(n) with ind;uwx (A) =
n—1is A = 1". We show that for ¢ > 1 and n > 3i — 3, there is a bijective cor-
respondence between M(i,n) = {\ € P(n) : indjwy(\) = n — i} and P*(i — 1) =
{two-colored partitions of ¢ — 1}. We do this in two steps.

First, we show that, for each i > 1, the values |[M(i,n)| = ¢!, do indeed stabilize to a
fixed value ¢, for n > 3i — 3. Take A = (A\1,...,\;) € M(i,n). By Theorem 4, we know
that

indin(A\) =2C+ P —1=n—i.

Since there are no bottom edges in the meander corresponding to p(A,1"), the meander
contains no cycles nor paths of length greater than two. Thus, ind;»(\) corresponds to
one less than the number of top edges and isolated vertices. Evidently, each part A; of A
contributes [A;/2] to the number of edges and isolated vertices. Thus,

)= S [] 1o

j=1

After substituting 2321 Aj for n, we find that

Xt:%J —i—1. (2)

J=1

Equation (2) implies that A € M(i, n) if and only if the meander corresponding to p(A, 1")
consists of n vertices and ¢ — 1 top arcs. Therefore, ignoring parts of size one provides an
injective map

W M(i,n) = M(i — 1),
where M (i — 1) denotes the set of partitions u = (1, ..., ttm) such that p,, > 1 and the
meander corresponding to p(s, 1“") has i — 1 top arcs. Since the largest partition of
M(i — 1) has weight 3i — 3, we may conclude that ¢ is a bijection, for n > 3i — 3; that
is, the values ¢, stabilize at ¢/ = |[M(i — 1)|, for n > 3i — 3.

Finally, we establish the generating function for ¢!. To this end, we construct a bijec-
tion ¢ : P?(i —1) = M(i —1). Let 0 = (01,...,0,) € P?>(i — 1). Define ¢ by setting
SO(U> = (Ml? s wum)? where

~ J20i+1, o0y is blue;
Hi = 20;, o; 1s red.
By construction, it is clear that (o) € M(i —1). Furthermore, ¢ is invertible, so that ¢
establishes a bijection between P?(i—1) and M(i—1). Thus, ¢~ tot) : M(i,n) — P?(i—1)
provides a bijection, for n > 3¢ — 3. The result follows. O

Remark 12. In [24], Seo and Yee provide an alternative proof of Theorem 11 which relies
on generating functions.
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3.2 (A, w(A)) - the maximal parabolic case

As above, let A = (Aq,..., \;) be an element of P(n). In this section, we consider the
seaweed defined by the pair of compositions (A, w(\)). In contrast to the previous section,
here we investigate the number of partitions A such that ind,)(A) = 0. We naturally
call such partitions, Frobenius partitions. The main theorem of this section, Theorem 16
and Remark 17, remarkably establish that if \; < 7, for ¢ = 1,..., m, then the number of
Frobenius partitions is eventually a periodic function of n.

We begin with three Lemmas which will be helpful in the proof of Theorem 16.

Lemma 13. Let g = ai‘m—l‘l: be a seaweed algebra. If there exists i < j — 1 such that

i=1

Dol == @i, then g is not Frobenius.

Proof. Applying the winding moves (F,) followed by ¢ applications of (P) to the mean-

der corresponding to g results in the meander corresponding to the seaweed algebra of

type % where b; = Z?;lﬂ a; > 0; but this meander consists of at least two
7 J m

components, one corresponding to m, and the other % Thus, by Theorem 4,
3 J— 3 m

ind(g) > 0. [

Lemma 14. Let g = aZan—“Z" be a seaweed algebra. If there exists more than two odd a;’s,

i=1 i

then g 1s not Frobenius.

Proof. Each odd a; contributes a vertex of degree 1 to the meander corresponding to g.
Furthermore, each open path consists of exactly two vertices of degree 1, and no closed
path contains a vertex of degree 1. So, if there are more than two odd a;’s, then the
corresponding meander must contain more than one open path. Therefore, by Theorem 4,
ind(g) > 0. O

Lemma 15 (Theorem 10, [12]). If a is even and ged(a,b) = 1, then the seaweed of type
alal--|alb
Let Py(n,d) be the set of Frobenius partitions A\ = (A1,...,Ay,) € P(n) such that
AN <dforl<i<m.

1s Frobenius.

Theorem 16. If d € {1,2,3,4}, then the values of |Py(n,d)| are eventually periodic.
More precisely,

o Ifn >3, |Py(n,1)] =0.

o Ifn>5,

1, n odd,
0, n even.
o [fn>13,

2, n odd,

0, n even.

Po(n,3)] = {
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o Ifn>17,

[Po(n, 4)| =

[=INSCI RN

n=1( )

n = 2(mod 4);

n=3( )
, n=0(

Proof. The proof heuristic is described as follows. We consider the possible partitions
for each d < 4 — except for those cases considered in Lemma 13 and Lemma 14 — and
determine which partitions are Frobenius.

d=1: ind(%) = |5] > 0 for n > 3. Thus, for n > 3 we have |Py(n,1)| = 0.

d=2,n > 5: Using the results determined for the case d = 1, we consider only
partitions with A\; = 2. After applying Lemma 13 and Lemma 14, the only partitions
remaining are those of the form (1'2/2), which are Frobenius by Lemma 15. Thus, there
is exactly one such Frobenius partition if and only if the weight is odd.

d =3,n > 13: As before, using the results for the cases d = 1 and d = 2, we can
restrict our attention to partitions with A\; = 3. After applying Lemma 13 and Lemma 14,
the only partitions remaining are those of the form (2/23!), which are Frobenius, once
again, by Lemma 15. Thus, as in the case d = 2, there is exactly one such Frobenius
partition if and only if the weight is odd.

d =4,n > 17: Finally, using the results for d = 1, 2, and 3, we consider only partitions
with A\; = 4. After applying Lemma 13 and Lemma 14, we are left with seven cases to
consider.

1. (3'4/4): Partitions of this form are Frobenius by Lemma 15.

2. (3?471): Applying the sequence of moves (F,), (P), (F3). (R), (R), (B). (), (P), (Fy)
to the corresponding meander results in the meander for a partition of the form
(11 f#4), which is found to be Frobenius in case 5 below.

3. (2'474). Applying the sequence of moves (F},), (F,), (P), (F,), (Fy), (B) inductively
to the corresponding meander results in the meander for the seaweed algebra of type
%, which has index 1.

4. (2'31474): Applying the sequence of moves (F,), (P), (Fy), (B),(F,),(R),(B), (Fy)
to the corresponding meander results in the meander for a partition of the form
(114%4), which is found to be Frobenius in case 5 below.

5. (1'4/4): Partitions of this form are Frobenius by Lemma 15.

6. (1'2/2474)  f, > 1: Applying the sequence of moves (F,), (P), (Fy), (P) to the corre-
2|1jn—8
PIRPTIRrE

and is therefore not Frobenius by Theorem 4.

sponding meander results in a seaweed algebra of type which splits into at

1|n—8

least two components, % and ST [a[d[ T’
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7. (1?47): Applying thesequence of moves (1), (), (P), (P), (F,), (Fx), (P), (B), (Fy)
to the corresponding meander results in the meander for a partition of the form
(1'4%4), which was found to be Frobenius in case 5 above.

Thus, there are two Frobenius partitions with weight congruent to 1(mod 4); two with
weight congruent to 2(mod 4); and one with weight congruent to 3(mod 4). O

Remark 17. Similar methods to those used in the proof of Theorem 16 can be used to
establish periodic behavior for d € {5,6,7}. In the case of d = 5, the period is of length
4, while in the cases of d € {6, 7}, the period jumps to 14 (see Example 18).

Example 18. The sequence of values of |Py(n,d)|, for d € {5,6,7}, along with the value
of n at which |Py(n,d)| becomes periodic:

d=5n2>21:17,3,5,3;
d=6,n>37: 14,5,9,3,11,5,11,3,12,5,8, 3;
d="Tn2>41: 19,9,18,7,19,9,17,7,20,9,17,7.

Remark 19. At d = 8 the periodicity stops. This can be seen by considering |Py(n, 8)],
for n = 1(mod 8), where, for n = 8m + 1, we have that ind,(1!42m=*gk) = 0.

4 Conclusion

We use the recent index theory of seaweed algebras to generate partition statistics. Start-
ing with a partition A\, we form a seaweed algebra and define the index of the latter to be
the index of the former. Such seaweeds (and attendant index-based statistics) are defined
by pairing A with a A\-based composition. We consider the two extremal cases defined by

(A, 1) and (A, w(N)).

e In studying pairs (\, 1¥™Y) we establish a relation between our new index based
statistics and the more classical theory of integer partitions in the form of two-
colored partitions.

e As noted in the Introduction, the enumeration of Frobenius seaweeds is of keen
topical interest. In studying pairs (A, w())), we find, remarkably, that the number
of such Frobenius pairs is eventually periodic.

This investigation raises more questions and directions for study. We list a few.

1. (Intermediate composition choices) Other “intermediate” A\-based composition choices
might be of interest. For example, A could be paired with its conjugate. It is
straightforward to verify that

{A € P(n) :indye(N) =n — 1}

is equal to twice the number of self-conjugate partitions of n.
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2. (Congruence relations) Historically, statistics on partitions were motivated by their
utility to witness congruence relations [3, 5, 6, 18]. Do index-based statistics have
similar classical value?

3. (Weighted sums) After the fashion of Euler’s Pentagonal Number Theorem [2] and
other Legendre type theorems [4], index-based statistics could also be incorporated
into weighted sums. Normally in Legendre type theorems, partitions A contribute
a term of the form (—1)"Mg*™ to the weighted sum, where I()\) is the number
of parts of A\. One could instead insist that each partition contributes a term of
the form (—1)mdwen Mg For example, by restricting to partitions with only odd
parts (denoted P(n, Spqq)), considering the sets

en = [{A € P(n, Soqa) : indyn)(A) is even}|

and
on = [{A € P(n, Soaa) : indy(n)(A) is odd}|,

and insisting that all terms in the weighted sum are non-negative, numerical data
suggests the following interesting conjecture.

Conjecture 20.

1
Z len — onlq" = H 1+ (—1)kg2—1"

n=0 k>1

Remark 21. In an attempt to prove Conjecture 20, Seo and Yee [24] established the

following
n 1
—1 f§1 n — €n n _ .
S0 e = TT i

n=0 k>1

In [7], S. Chern appears to have supplied a proof that (—1)'21(0, —e,) > 0, for n > 0,
which completes the proof of Conjecture 20.
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