
Circuit-difference matroids

George Drummond
School of Mathematics and Statistics

University of Canterbury
Christchurch, New Zealand

george.drummond@pg.canterbury.ac.nz

Tara Fife
Max Planck Institute for Mathematics in the Sciences

Leipzig, Germany

fi.tara@gmail.com

Kevin Grace
School of Mathematics
University of Bristol

and
The Heilbronn Institute for Mathematical Research

Bristol, U.K.

kevin.grace@bristol.ac.uk

James Oxley
Department of Mathematics
Louisiana State University

Baton Rouge, U.S.A.

oxley@math.lsu.edu

Submitted: Jan 23, 2020; Accepted: Jul 13, 2020; Published: Jul 24, 2020

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

One characterization of binary matroids is that the symmetric difference of every
pair of intersecting circuits is a disjoint union of circuits. This paper considers
circuit-difference matroids, that is, those matroids in which the symmetric difference
of every pair of intersecting circuits is a single circuit. Our main result shows that
a connected regular matroid is circuit-difference if and only if it contains no pair
of skew circuits. Using a result of Pfeil, this enables us to explicitly determine
all regular circuit-difference matroids. The class of circuit-difference matroids is
not closed under minors, but it is closed under series minors. We characterize the
infinitely many excluded series minors for the class.

Mathematics Subject Classifications: 05B35
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1 Introduction

A matroid M is circuit-difference if C14C2 is a circuit whenever C1 and C2 are distinct
intersecting circuits of M . Evidently, all such matroids are binary. An example of such a
matroid is the tipless binary r-spike, that is, the matroid whose binary representation is
[Ir | Jr− Ir], where Jr is the r× r matrix of all ones. Subsets X and Y of E(M) are skew
if r(X ∪ Y ) = r(X) + r(Y ). It is easy to check that no two circuits of the tipless binary
r-spike are skew. The following is the main result of the paper.

Theorem 1. Let M be a connected regular matroid. Then M is a circuit-difference
matroid if and only if it has no pair of skew circuits.

To see that this theorem does not extend to all binary matroids, consider the matroid
S8 for which a binary representation is shown in Figure 1. In this matroid, {1, 4, 7, 8} and
{2, 3, 5, 6, 8} are circuits whose symmetric difference is the disjoint union of the circuits
{1, 2, 6} and {3, 4, 5, 7}. Thus S8 is not a circuit-difference matroid. However, since
r(S8) = 4 and the only 3-circuits of S8 contain 6, the matroid S8 has no two skew circuits.
Thus one implication of the last theorem fails for arbitrary connected binary matroids.
However, as the next result shows, the other implication does hold in the more general
context. The proof of this lemma will be given in the next section.


1 2 3 4 5 6 7 8

1 0 0 0 1 1 1 0
0 1 0 0 1 1 1 1
0 0 1 0 0 0 1 1
0 0 0 1 1 0 0 1

.

Figure 1: A binary representation for S8.

Lemma 2. Let M be a connected binary matroid. If M has a pair of skew circuits, then
M is not circuit-difference.

The terminology used here will follow [1] with one exception. In [1], the term “series
extension” for matroids is defined as the addition of an element e to a matroid M to create
a matroid M ′ in which {e, f} is a cocircuit where f is an element of M , and M ′/e = M .
It will be expedient here to use the term “series extension” more broadly. We shall call a
matroid M ′ a series extension of M if it is obtained from M by a sequence of one-element
series-extension moves.

Pfeil [2] defined a connected matroid M to be unbreakable if M/F is connected for
every flat F of M . He proved that a matroid is unbreakable if and only if its dual has no
two skew circuits, and he determined all unbreakable regular matroids. Combining Pfeil’s
two results gives the following.
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Theorem 3. A non-empty connected regular matroid M has no two skew circuits if and
only if M is a series extension of one of the following matroids: U0,1, U1,m for some
m > 1; M∗(Kn) for some n > 1; M(K3,3); or R10.

By combining this theorem with our main result, we have the following explicit de-
scription of all regular circuit-difference matroids.

Corollary 4. A regular matroid M is circuit-difference if and only if every component
of M is a series extension of one of the following matroids: U0,1, U1,m for some m > 1;
M∗(Kn) for some n > 1; M(K3,3); or R10.

One can check explicitly, or deduce from the last corollary, that M(K4) is a circuit-
difference matroid, but that M(K4)/e is not circuit-difference for each element e. Thus
the class of circuit-difference matroids is not minor-closed. We shall show that this class
is closed under series minors and will characterize the excluded series minors in Section
4. In the next section, we prove some auxiliary results that will be used in the proofs of
the main results. The proof of Theorem 1 will be given in the third section.

2 Preliminary Results

We begin this section with the proof deferred from the last section.

Proof of Lemma 2. Let C1 and C2 be skew circuits of M , and let D be a circuit that
meets C1 and C2. Since C1 and C2 are skew, |D − (C1 ∪ C2)| > 0. As is easily checked,

D − (C1 ∪ C2) = (C14D) ∩ (C24D).

Thus C14D meets C24D. As their symmetric difference is the disjoint union of the
circuits C1 and C2, we deduce that M is not circuit-difference for either C14D or C24D
is not a circuit, or both are circuits but their symmetric difference is not.

The straightforward proof of the next lemma is omitted.

Lemma 5. Let M be a matroid. If M has a pair of skew circuits, then so does every
series extension of M .

The next result makes repeated use of the fact that if a circuit in a matroid meets a
2-cocircuit, then it contains that 2-cocircuit.

Lemma 6. Let M be a circuit-difference binary matroid and suppose that M ′ is obtained
from M by adding an element e in series to an element f of M . Then M ′ is circuit-
difference.

Proof. Let D1 and D2 be an intersecting pair of circuits of M ′. Suppose first that e ∈
D1 ∩ D2. Then f ∈ D1 ∩ D2 and {D1 − e,D2 − e} is an intersecting pair of circuits of
M ′/e. Thus (D1−e)4(D2−e), which equals D14D2, is a circuit of M ′/e. Hence D14D2
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or (D14D2) ∪ e is a circuit of M ′. Because f /∈ D14D2, the latter cannot occur. Hence
D14D2 is a circuit of M ′.

Assume next that e ∈ D1−D2. Then f ∈ D1−D2. Now, D1− e is a circuit of M ′/e.
Moreover, D2 is a circuit of M ′/e as otherwise M ′ would have a circuit that contains e
and is contained in D2 ∪ e. As such a circuit would avoid f , we have a contradiction. We
now know that (D1 − e)4D2 is a circuit of M ′/e containing f , so D14D2 is a circuit of
M ′.

Finally, assume that e /∈ D1 ∪D2. Then f /∈ D1 ∪D2 and so D1 and D2 are circuits
of M ′/e. Hence so is D14D2. As this set avoids f , it must also be a circuit of M ′ and
the lemma is proved.

In the proof of Theorem 1, we will encounter a matroid with the property that the
complement of every circuit is a circuit. We call such matroids circuit-complementary.
Such matroids that are binary form an interesting subclass of the class of circuit-difference
matroids; they are crucial in Section 4 when considering the excluded series minors for
the latter class.

Lemma 7. Let M be a connected binary matroid that is circuit-complementary. Then M
is a circuit-difference matroid.

Proof. Let C1 and C2 be an intersecting pair of circuits of M . Then C14C2 is a disjoint
union of circuits. If there are at least two circuits in this union, then, since this union
avoids C1∩C2, we violate the property that the complement of every circuit is a circuit.

Again, the proof of the next result is elementary and is omitted.

Lemma 8. Let M be a connected binary matroid that is circuit-complementary.

(i) If {e, f} is a cocircuit of M , then M/e is circuit-complementary.

(ii) If M ′ is a series extension of M , then M ′ is circuit-complementary.

Lemma 9. Let M be a cosimple connected graphic matroid that is circuit-complementary.
Then M ∼= U1,4.

Proof. Let M be M(G), the cycle matroid of the graph G. By Lemmas 2 and 7, M has
no two skew circuits. Let C be a cycle of G. Then E(G) − C is a cycle C ′ of G. Now,
C and C ′ must have exactly two common vertices, otherwise G is not 2-connected or M
has two skew circuits. It follows that G has two vertices u and v that are joined by four
internally disjoint paths where these paths use every edge of G. As M(G) is cosimple, we
deduce that M ∼= U1,4.

The following lemma makes repeated use of the fact that in a loopless 2-connected
graph, the set of edges meeting a vertex is a bond.

Lemma 10. Let M be a cosimple connected cographic matroid and suppose M is circuit-
complementary. Then M ∼= U1,4.
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Proof. Let M be M∗(G), the bond matroid of the graph G. Then G is 2-connected and
simple. Take a vertex v of G and let C1 be the set of edges meeting v. Then C1 is a bond
in G and so is a circuit of M . Thus E(G)−C is also a bond of G. Hence G has a vertex
w that is not adjacent to v. Let C2 be the set of edges meeting w. Then E(G) = C1 ∪C2

and G is isomorphic to K2,n for some n > 2. Let u be a vertex of G other than v or w.
The complement of the set of edges meeting u is a bond of G. Thus n = 2 and G is a
4-cycle. Hence M ∼= U1,4.

Lemma 11. Let M be a connected cosimple regular matroid that is circuit-complementary.
Then M is isomorphic to U1,4 or R10.

Proof. If M is graphic or cographic, then, by Lemmas 9 and 10, M ∼= U1,4. Now assume
that M is neither graphic nor cographic and is not isomorphic to R10. Then, by Seymour’s
Regular Matroids Decomposition Theorem [3], as M is connected, it can be obtained from
graphic matroids, cographic matroids and copies of R10 by a sequence of 2-sums and 3-
sums. Moreover, each matroid that is used to build M occurs as a minor of M .

11.1. M is 3-connected.

If M is not 3-connected, then M has a 2-separation, (X, Y ). Then M is the 2-sum, with
basepoint p say, of matroids MX and MY with ground sets X∪p and Y ∪p, respectively. As
M is connected, so are MX and MY . Suppose X is independent in M . Then MX must be a
circuit with at least three elements. Thus M is not cosimple, a contradiction. We may now
assume that both X and Y contain circuits of M . Hence, by the circuit-complementary
property, both X and Y are circuits of M . As r(X) + r(Y ) = r(M) + 1, we see that
(|X|−1) + (|Y |−1) = r(M) + 1 and, consequently, r∗(M) = |X|+ |Y |− r(M) = 3. Then
M∗ is a rank-3 simple binary connected matroid having X and Y as disjoint cocircuits.
It follows that M∗ is graphic, a contradiction. We conclude that 11.1 holds.

We may now assume that there are matroids M1 and M2 each with at least seven
elements such that E(M1)∩E(M2) is a triangle, T , in both matroids, and M is the 3-sum
of M1 and M2 across this triangle. Moreover, M1 and M2 are both minors of M , and
E(Mi)−T spans T in Mi for each i. Let Xi = E(Mi)−T . Then (X1, X2) is a 3-separation
of M . Suppose X1 is independent in M . As X1 spans T , it follows that M1 has rank |X1|,
so M∗

1 has rank three and has T as a triad. Since M is cosimple, no element of X1 is in a
2-circuit of M∗

1 . As M1 is binary, it follows that |X1| 6 3 so |E(M1)| 6 6, a contradiction.
We conclude by the circuit-complementary property that both X1 and X2 must be circuits
of M . Then, as r(X1) + r(X2) = r(M) + 2, we have r(M) = |X1| + |X2| − 4 so M∗ has
rank four, has (X1, X2) as a 3-separation and has each of X1 and X2 as a cocircuit. Since
M∗ is a disjoint union of cocircuits, it is affine. As M∗ is simple, |E(M∗)| 6 8. But
|Xi| > 4 for each i, so |E(M∗)| = 8 and M∗ ∼= AG(3, 2). This contradicts the fact that
M is regular and thereby completes the proof of the lemma.

Lemma 12. Let M be a connected regular matroid and let X be a series class in M .
Then M\X and M/X cannot both be connected and circuit-complementary.

Proof. Assume that the lemma fails. By Lemma 11, each of M\X and M/X is a series
extension of U1,4 or R10. Note that X is independent in M . For every series extension M ′
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of U1,4 or R10, we have that

(r(M ′), r∗(M ′)) ∈ {(k + 1, 3), (k + 5, 5) : k > 0}.

Thus, for some non-negative integer m,

(r(M\X), r∗(M\X)) ∈ {(m + 1, 3), (m + 5, 5)}.

Now let |X| = t. Then (r(M), r∗(M)) ∈ {(m + t, 4), (m + 4 + t, 6)}. Thus

(r(M/X), r∗(M/X)) ∈ {(m, 4), (m + 4, 6)},

so M/X cannot be a series extension of U1,4 or R10, a contradiction.

Although the following lemma is well known, we include a proof for completeness.

Lemma 13. Let Y be a set in a connected matroid M such that |Y | > 2 and M |Y is
connected. Let W be a minimal non-empty subset of E(M)−Y such that M has a circuit
C such that C ∩ Y 6= ∅ and C − Y = W . Then W is a series class of M |(Y ∪W ).

Proof. This is certainly true if |W | = 1. Now, suppose that w1 and w2 are distinct
elements of W that are not in series in M |(Y ∪W ). Then M |(Y ∪W ) has a circuit K
containing w1 and not w2. As W is independent, K meets Y . But K ∩W ⊆ W − w2.
Thus we have a contradiction to the choice of W . We deduce that every two elements of
W are in series in M |(Y ∪W ). Since M |Y is connected, no element of Y is in series with
an element of W . Thus W is indeed a series class of M |(Y ∪W ).

3 The Proof of Main Theorem

In this section, we prove the main result of the paper.

Proof of Theorem 1. Let M be a regular connected matroid. By Lemma 2, if M has a
pair of skew circuits, then M is not circuit-difference. To prove the converse, consider
all connected regular matroids with no two skew circuits that are not circuit-difference,
and choose M to be such a matroid with the minimum number of elements. Then, by
Lemma 6, M is cosimple. Let C1 and C2 be a pair of intersecting circuits of M such that
C14C2 is not a circuit and |C1 ∪ C2| is a minimum among such pairs. As M |(C1 ∪ C2)
is connected, we must have that E(M) = C1 ∪ C2 by our choice of M . Now, C14C2 is a
disjoint union of at least two circuits.

13.1. If D is a circuit of M contained in C14C2, then (C14C2)−D is a circuit of M .

Clearly, D meets both C1 − C2 and C2 − C1 but contains neither of these sets. The
choice of {C1, C2} implies that C14D is a circuit and hence that (C14D)4C2 is a circuit.
The last set is (C14C2)−D, so 13.1 holds.

Let Z = C14C2. As M has no two skew circuits, M |Z is connected and, by 13.1,
it is circuit-complementary. Thus, by Lemma 11, M |Z is a series extension of U1,4 or of
R10. Let X be a minimal non-empty subset of C1 ∩ C2 such that M has a circuit whose
intersection with C1 ∩ C2 is X. Then, by Lemma 13, X is a series class of M |(Z ∪ X).
Thus every circuit of M |(Z ∪X) that meets X must contain X.
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13.2. Every circuit of M |Z is a circuit of (M |(Z ∪X))/X.

Let D be a circuit of M that is contained in Z. Then D meets both C1 − C2 and
C2−C1 and, by 13.1, Z −D is a circuit of M that also meets both C1−C2 and C2−C1.
Assume that D is not a circuit of (M |(Z ∪X))/X. Then M |(Z ∪X) has a circuit K such
that K ⊆ D∪X and K ∩D 6= D. Thus K meets and so contains X. Hence K −D = X.
As |K ∪D| = |X ∪D| < |C1 ∪C2|, it follows that K4D is a circuit of M and hence that
K4D meets C1 − C2 and C2 − C1.

As |C1∪K| < |C1∪D| < |C1∪C2|, the choice of {C1, C2} implies that C14K is a circuit
C of M and that C14(Z−D) is a circuit C ′ of M . As C and C ′ both contain the non-empty
set (D−K)∩C1 and both avoid the non-empty set (D−K)∩C2, we see that |C ∪C ′| <
|C1 ∪ C2| and C4C ′ is a circuit of M . This circuit is [C14K]4[C14(Z − D)], which
equals K4(Z −D). But the last set is a disjoint union of two circuits, a contradiction.
Thus 13.2 holds.

We know that M |Z is connected and circuit-complementary. Moreover, the choice of
X implies that M |(Z ∪X) has a circuit that meets C1 ∩ C2 in X. Therefore M |(Z ∪X)
is connected. Moreover, by 13.2, (M |(Z ∪X))/X is connected. It follows by Lemma 12
that (M |(Z ∪ X))/X is not circuit-complementary. Thus (M |(Z ∪ X))/X has a circuit
J such that Z − J is not a circuit of (M |(Z ∪X))/X. If J is a circuit of M |Z, then, as
M |Z is circuit-complementary, Z − J is a circuit of M |Z. Thus, by 13.2, we obtain the
contradiction that Z−J is a circuit of (M |(Z ∪X))/X. We deduce that J is not a circuit
of M |Z. Then J ∪ X ′ is a circuit, K, of M |Z for some non-empty subset X ′ of X. By
the choice of X, it follows that X ′ = X. Now, Z = D ∪D′ for some disjoint circuits D
and D′. We deduce using 13.2 that K meets both D and D′ but contains neither. Hence
|K ∪D| < |C1 ∪ C2|, so K4D is a circuit of M . As |D′ ∪ (K4D)| < |C1 ∪ C2|, we see
that D′4(K4D) is a circuit of M , that is, (Z −K) ∪X is a circuit of M . Thus Z − J
is a circuit of (M |(Z ∪X))/X, a contradiction.

4 Excluded Series Minors of Circuit-Difference Matroids

In this section, we show that the class of circuit-difference matroids is closed under series
minors, and we characterize the infinitely many excluded series minors for this class.

Lemma 14. The class of circuit-difference matroids is closed under series minors.

Proof. Let M be a circuit-difference matroid. Evidently, M\e is circuit-difference for all
e ∈ E(M). Now let {e, f} be a cocircuit of M and consider M/e. A circuit C of M/e
contains f if and only if C ∪ e is a circuit of M . Thus the collection C(M/e) of circuits
of M/e is C(M\e) ∪ {C − e : f ∈ C ∈ C(M)}. It is now routine to check that M/e is a
circuit-difference matroid.

Let N5 be the 5-element matroid that is obtained from a triangle by adding single
elements in parallel to exactly two of its elements. This is easily seen to be an excluded
series minor for the class of circuit-difference matroids. Although the next proposition is
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not needed for the proof of the main result of this section, it seems to be of independent
interest.

Proposition 15. A connected binary matroid M has a pair of skew circuits if and only
if M has a series minor isomorphic to N5.

Proof. If M has a series minor isomorphic to N5, then, by Lemma 5, as N5 has a pair of
skew circuits, so does M . For the converse, let C1 and C2 be a pair of skew circuits of
M , and let D be a circuit meeting both such that |D − (C1 ∪ C2)| is a minimum. Let
M ′ = M |(C1 ∪ C2 ∪D). Next we show the following.

15.1. If C1 −D or C1 ∩D contains {x, y}, then {x, y} is a cocircuit of M ′.

Suppose that this fails. Then M ′ has a circuit K that contains x but not y. Assume
first that K meets C2. Then, by the choice of D, we must have that K − (C1 ∪ C2) =
D− (C1∪C2). Then K4D is a disjoint union of circuits that is contained in (C1∪C2)−y
or (C1 ∪ C2)− x. But, for each z in C1, the matroid (M |(C1 ∪ C2))\z has C2 as its only
circuit. As K4D 6= C2, we have a contradiction. We deduce that K avoids C2. As
y /∈ K, we must have that K ∩ (D − (C1 ∪ C2)) is non-empty. Then K4D is a disjoint
union of circuits that does not contain D− (C1∪C2). One such circuit must meet C2∩D
and C1. But this violates the choice of D. Thus 15.1 holds.

By 15.1 and symmetry, we can perform a sequence of series contractions in M ′, re-
ducing each of the sets C1 − D, C1 ∩ D, C2 ∩ D, and C2 − D to a single element. The
resulting matroid is a series minor of M that has two disjoint 2-circuits such that deleting
one element from each leaves a circuit with at least three elements. It follows that M has
N5 as a series minor.

We call a matroid hyperplane-complementary if the complement of every hyperplane is
a hyperplane. One such matroid is the binary affine geometry AG(r−1, 2) of rank at least
two. The next result determines all simple binary hyperplane-complementary matroids.
For all k, every rank-k flat of AG(r − 1, 2) is isomorphic to AG(k − 1, 2).

Lemma 16. A simple rank-r binary matroid M is hyperplane-complementary if and only
if r > 2 and M ∼= AG(r − 1, 2)\X for some set X such that AG(r − 1, 2)|X does not
contain a copy of AG(r − 3, 2).

Proof. Suppose that M is hyperplane-complementary. Then r > 2. Moreover, E(M) is a
disjoint union of cocircuits, so every circuit of M has even cardinality. Hence we can view
M as AG(r − 1, 2)\X for some set X. Let E = E(AG(r − 1, 2)). Then E(M) = E −X.
Assume that AG(r−1, 2)|X contains a copy, Z, of AG(r−3, 2). For y ∈ E−X, consider
the closure, clA(Z ∪ y), of Z ∪ y in AG(r − 1, 2). This closure is a rank-(r − 1) flat of
AG(r − 1, 2) and is thus isomorphic to AG(r − 2, 2). Let Y = clA(Z ∪ y) ∩ (E −X) and
W = (E−X)−Y . Then Y is contained in some copy of AG(r−3, 2), and W is contained
in some copy of AG(r−2, 2). Thus r(Y ) 6 r−2 and r(W ) 6 r−1. Hence W is contained
in a hyperplane W ′ of M whose complement in E(M) is not a hyperplane. Thus M is
not hyperplane-complementary, a contradiction.
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Now let M = AG(r−1, 2)\X where r > 2 and AG(r−1, 2)|X does not contain a copy
of AG(r−3, 2). Let H be a hyperplane of AG(r−1, 2). Then AG(r−1, 2)|H = AG(r−2, 2).
If r(H − X) 6 r − 2, then H − X is contained in some copy of AG(r − 3, 2) that is
contained in H and so, as AG(r − 2, 2) is hyperplane-complementary, X contains a copy
of AG(r − 3, 2). This contradiction implies that the hyperplanes of M are all of the
sets of the form H − X where H is a hyperplane of AG(r − 1, 2). As AG(r − 1, 2) is
hyperplane-complementary, so is M .

Recall that AG(r − 1, 2) is obtained from the projective geometry PG(r − 1, 2) by
deleting a hyperplane, that is, by deleting a copy of PG(r − 2, 2). It is a well-known
consequence of the unique representability of binary matroids that if PG(r − 1, 2)|E1

∼=
PG(r − 1, 2)|E2, then PG(r − 1, 2)\E1

∼= PG(r − 1, 2)\E2. Thus, as all single-element
deletions of PG(r − 2, 2) are isomorphic, there is, up to isomorphism, a unique simple
binary rank-r single-element extension of AG(r− 1, 2). We shall denote this extension by
AG(r − 1, 2) + e.

Let M be the set of all matroids of rank at least three of the form [AG(r−1, 2)+e]\X
such that AG(r− 1, 2)\X is hyperplane-complementary of rank r. Thus N∗5 is the unique
rank-3 member of M while its rank-4 members are the tipped binary 4-spike and a non-
tip deletion thereof, that is, S8. We now show that the duals of the matroids in M are
precisely the excluded series minors for the class of circuit-difference matroids.

Theorem 17. A binary matroid M is an excluded series minor for the class of circuit-
difference matroids if and only if M∗ ∈M.

Proof. Let M be an excluded series minor for the class of circuit-difference matroids. By
Lemma 6, M is cosimple. Let C1 and C2 be intersecting circuits of M such that C14C2

is not a circuit and |C1 ∪ C2| is minimal.

17.1. M∗ ∈M.

Evidently, E(M) = C1 ∪ C2. Then C1 and C2 are the only circuits of M containing
C1 −C2 and C2 −C1, respectively. Now, letting x ∈ C1 ∩C2, suppose that (C1 ∩C2)− x
contains an element y. Then, as x and y are not in series, M has a circuit D containing x
but not y. As D meets both C1 and C2, we have, by the choice of {C1, C2}, that C14D,
C24D, and hence (C14D)4(C24D) are circuits of M . This last circuit is C14C2, so
we have a contradiction. Thus C1 ∩ C2 = {x}.

To see that M/x is circuit-complementary, suppose that C14C2 has a partition

(D1, D2, . . . , Dk)

into circuits of M/x such that k > 3. Then each Di meets C1−C2 and C2−C1. For each i,
we see that Di or Di∪x is a circuit, D′, of M . The choice of {C1, C2} implies that C14D′,
and hence C14D′4C2, is a circuit of M . As (C14C2) −Di is not a circuit of M/x, we
deduce that D′ = Di for all i. Hence the circuit C14Di4C2 of M is the union of k − 1
circuits of M , a contradiction. Thus M/x is circuit-complementary. Therefore, M∗\x is
hyperplane-complementary. As M is cosimple, M∗ is simple. Moreover, M∗ has C1−x and
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C2 − x as hyperplanes, so M∗ has the form [AG(r − 1, 2) + e]\X where AG(r − 1, 2)\X
is hyperplane-complementary of rank r. Since M∗ is connected, r(M∗) > 2. But if
r(M∗) = 2, then M∗ ∼= U2,3, so M ∼= U1,3 and M is circuit-difference, a contradiction.
Thus M∗ ∈M, so 17.1 holds.

To prove the converse, let M∗ = [AG(r − 1, 2) + e]\X where AG(r − 1, 2)\X is
hyperplane-complementary of rank r and r > 3. By Lemma 16, AG(r− 1, 2)|X does not
contain a copy of AG(r−3, 2). Consider AG(r−1, 2) + e and let H0 be the hyperplane of
PG(r− 1, 2) whose deletion gives AG(r− 1, 2). Take a rank-(r− 2) flat F of PG(r− 1, 2)
that is contained in H0 and avoids e. Apart from H0, there are exactly two hyperplanes,
H1 and H2, of PG(r−1, 2) that contain F . Then H1−H0 and H2−H0 are hyperplanes of
AG(r−1, 2)+e, and H1−(H0∪X) and H2−(H0∪X) are hyperplanes of [AG(r−1, 2)+e]\X.
The complements of these two hyperplanes are circuits C1, C2 of M that meet in the
element e. We now note that C14C2 is not a circuit of M otherwise {e} is a hyperplane
of M∗, and we obtain the contradiction that r(M∗) 6 2. Hence M is not circuit-difference.

17.2. If D is a circuit of M\e, then e /∈ cl(D).

Suppose that e ∈ cl(D) for some circuit D of M\e. Then there is a partition {X1, X2}
of D such that Xi is a circuit of M/e for both i. As M/e is circuit-complementary having
X1 and X2 as disjoint circuits, X1 ∪X2 = E(M/e) = E(M)− e. This is a contradiction
as X1 ∪X2 = D $ E(M)− e. Hence 17.2 holds.

17.3. M\f is circuit-difference for all f in E(M).

Suppose some M\f is not circuit-difference. Then it has a pair of intersecting circuits
D1, D2 such that D14D2 contains a pair of disjoint circuits K1, K2. Suppose first that
both D1 and D2 avoid e. Then so do K1 and K2. Thus, by 17.2, none of D1, D2, K1, or
K2 has e is in its closure. Hence all of D1, D2, K1, and K2 are circuits of M/e, so M/e is
not circuit-difference, a contradiction. Hence at least one of D1 and D2 must contain e,
so f 6= e.

Now suppose e ∈ D1−D2 and e ∈ K1. Then D1−e and D2 are intersecting circuits of
M/e with circuits K1−e and K2 in their symmetric difference. This again contradicts the
fact that M/e is circuit-difference. Hence, by symmetry, we must have that e ∈ D1 ∩D2.
Consequently, K1, K2, D1 − e, and D2 − e are circuits of M/e. If D1 ∩ D2 = {e}, then
D1 − e and D2 − e are disjoint. Thus their union is E(M/e). But this union avoids f ,
a contradiction. Hence (D1 ∩D2) − e must be non-empty. But then D1 − e and D2 − e
are intersecting circuits of M/e so their symmetric difference, which equals D14D2, is a
circuit of M/e. However, this symmetric difference contains K1 and K2, which are circuits
of M/e. This contradiction completes the proof of 17.3.

As M∗ is simple, M is cosimple and hence no series contractions can be performed.
Thus, by 17.3, every series minor of M is circuit-difference and the theorem holds.

The next result follows immediately by combining the last theorem with Tutte’s
excluded-minor characterization of binary matroids [4].
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Corollary 18. A matroid M is an excluded series minor for the class of circuit-difference
matroids if and only if M ∼= Un,n+2 for some n > 2, or M∗ can be obtained from AG(r−
1, 2) + e for some r > 3 by deleting some set X such that e 6∈ X and AG(r− 1, 2)|X does
not contain a copy of AG(r − 3, 2).
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