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Abstract

We compute the asymptotic induced matching number of the k-partite k-uniform
hypergraphs whose edges are the k-bit strings of Hamming weight k/2, for any large
enough even number k. Our lower bound relies on the higher-order extension of
the well-known Coppersmith–Winograd method from algebraic complexity theory,
which was proven by Christandl, Vrana and Zuiddam. Our result is motivated by
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the study of the power of this method as well as of the power of the Strassen sup-
port functionals (which provide upper bounds on the asymptotic induced matching
number), and the connections to questions in tensor theory, quantum information
theory and theoretical computer science. Our proof relies on a new combinatorial
inequality that may be of independent interest. This inequality concerns how many
pairs of Boolean vectors of fixed Hamming weight can have their sum in a fixed
subspace.

Mathematics Subject Classifications: 05D99

1 Introduction

1.1 Asymptotic induced matchings

We study in this paper an asymptotic parameter of k-partite k-uniform hypergraphs: the
asymptotic induced matching number. For k ∈ N, a k-partite k-uniform hypergraph, or
k-graph for short, is a tuple of finite sets V1, . . . , Vk together with a subset Φ of their
cartesian product:

Φ ⊆ V1 × · · · × Vk.

Whenever possible we will leave the vertex sets Vi implicit and refer to the k-graph by its
edge set Φ. For any k ∈ N we use the notation [k] := {1, 2, . . . , k}. Let Φ be a k-graph.
We say a subset Ψ of Φ is induced if Ψ = Φ ∩ (Ψ1 × · · · × Ψk) where for each i ∈ [k] we
define the marginal set Ψi := {ai : a ∈ Ψ}. We call Ψ a matching if any two distinct
elements a, b ∈ Ψ are distinct in all k coordinates, that is, ∀i ∈ [k] : ai 6= bi. The subrank 1

or induced matching number Q(Φ) is defined as the size of the largest subset Ψ of Φ that
is an induced matching, that is,

Q(Φ) := max{|Ψ| : Ψ ⊆ Φ,Ψ = Φ ∩ (Ψ1 × · · · ×Ψk), ∀a 6= b ∈ Ψ ∀i ∈ [k] ai 6= bi}.

For example, consider the 3-graph

Φ = {(1, 1, 1), (2, 2, 2), (3, 3, 3)} ⊆ [3]× [3]× [3].

Here Φ is itself an induced matching, and so Q(Φ) = 3. Next, let

Φ = {(1, 1, 1), (2, 2, 2), (3, 3, 3), (1, 2, 3)} ⊆ [3]× [3]× [3].

Now the subset {(1, 1, 1), (2, 2, 2)} ⊆ Φ is an induced matching and there is no larger
induced matching in Φ, and so Q(Φ) = 2.

In order to define the asymptotic induced matching number, we define the Kronecker
product of any two k-graphs Φ ⊆ V1 × · · · × Vk and Ψ ⊆ W1 × · · · ×Wk as the k-graph

Φ�Ψ :=
{(

(a1, b1), . . . , (ak, bk)
)

: a ∈ Φ, b ∈ Ψ
}

⊆ (V1 ×W1)× · · · × (Vk ×Wk),

1The term subrank originates from an analogous parameter in the theory of tensors, see Section 1.4.1.
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and we naturally define the power Φ�n = Φ � · · · � Φ. The asymptotic subrank or the
asymptotic induced matching number of the k-graph Φ is defined as

˜Q(Φ) := lim
n→∞

Q(Φ�n)1/n.

This limit exists and equals the supremum supn∈N Q(Φ�n)1/n by Fekete’s lemma [25].
We study the following basic question:

Problem 1. Given Φ what is the value of ˜Q(Φ)?

A priori, for Φ ⊆ V1×· · ·×Vk we have the upper bound Q(Φ) 6 mini |Vi| and therefore
it holds that ˜Q(Φ) 6 mini |Vi|, since |V ×ni | = |Vi|

n.
Problem 1 has been studied for several families of k-graphs, in several different con-

texts: the cap set problem [12, 33, 19, 23, 24], approaches to fast matrix multiplica-
tion [32, 4, 5, 28], arithmetic removal lemmas [21, 14], property testing [15, 17], quan-
tum information theory [35, 36], and the general study of asymptotic properties of ten-
sors [34, 7, 8]. We finally mention the related result of Ruzsa and Szemerédi which says
that the largest subset E ⊆

(
n
2

)
such that (E×E×E)∩{({a, b}, {b, c}, {c, a}) : a, b, c ∈ [n]}

is a matching, has size n2−o(1) 6 |E| 6 o(n2) when n goes to infinity [27], see also [2, Equa-
tion 2].

1.2 Result

We solve Problem 1 for a family of k-graphs that are structured but nontrivial. For
k > n let λ = (λ1, . . . , λn) ` k be an integer partition of k with n nonzero parts, that
is, λ1 > λ2 > · · · > λn > 0 and

∑n
i=1 λi = k. We define the k-graph

Φλ := {s ∈ [n]k : type(s) = λ}

where the expression type(s) = λ means that s is a permutation of the k-tuple

(1, . . . , 1︸ ︷︷ ︸
λ1

, 2, . . . , 2︸ ︷︷ ︸
λ2

, . . . , n, . . . , n︸ ︷︷ ︸
λn

).

For example, the partition λ = (1, 1) ` 2 corresponds to the 2-graph

Φ(1,1) = {(2, 1), (1, 2)} ⊆ [2]× [2]

and the partition λ = (2, 2) ` 4 corresponds to the 4-graph

Φ(2,2) = {(2, 2, 1, 1), (2, 1, 2, 1), (2, 1, 1, 2), (1, 2, 2, 1), (1, 2, 1, 2), (1, 1, 2, 2)} ⊆ [2]×4.

It was shown in [7] that ˜Q(Φ(k−1,1)) = 2H((1−1/k,1/k)) for every k ∈ N>3 where H is the
Shannon entropy in base 2. As a natural continuation of that work we study ˜Q(Φ(k/2,k/2))

for even k ∈ N. Since Φ(k/2,k/2) ⊆ [2]×k we have ˜Q(Φ(k/2,k/2)) 6 2. Clearly, the 2-graph
Φ(1,1) is itself a matching, and so ˜Q(Φ(1,1)) = 2. It was shown in [7] that also ˜Q(Φ(2,2)) = 2.
Our new result is the following extension:
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Theorem 2. Let k ∈ N>2 be even and large enough. Then ˜Q(Φ(k/2,k/2)) = 2.

In other words, we prove that for every large enough even k ∈ N>2 there is an induced
matching Ψ ⊆ Φ�n(k/2,k/2) of size |Ψ| = 2n−o(n) when n goes to infinity.

Moreover, we numerically verified that ˜Q(Φ(k/2,k/2)) = 2 also holds for all even integers
k 6 2000. We conjecture that ˜Q(Φ(k/2,k/2)) = 2 for all even k. More generally, we
conjecture (cf. [35] and [7, Question 1.3.3]) that log2 ˜Q(Φλ) equals the Shannon entropy
of the probability distribution obtained by normalising the partition λ. We will discuss
further motivation and background in Section 1.4.

1.3 Methods

We prove Theorem 2 by applying the higher-order Coppersmith–Winograd (CW) method
from [7] to the k-graph Φ(k/2,k/2). This method is an extension of the work of Coppersmith
and Winograd [10] and Strassen [32] from the case k = 3 to the case k > 4. It provides
a construction of large induced matchings in k-graphs via the probabilistic method, and
we prove Theorem 2 by analysing the size of these induced matchings.

Theorem 3 (Higher-order CW method [7]). Let Φ ⊆ V1×· · ·×Vk be a nonempty k-graph
for which there exist injective maps αi : Vi → Z such that for all a ∈ Φ the equality

α1(a1) + · · ·+ αk(ak) = 0

holds. For any R ⊆ Φ× Φ let r(R) be the rank over Q of the |R| × k matrix with rows

{α(x)− α(y) : (x, y) ∈ R},

where α(x) := (α1(x1), . . . , αk(xk)) ∈ Zk. Then

log2 ˜Q(Φ) > max
P∈P

(
H(P )− (k − 2) max

R∈R

maxQ∈QR,(P1,...,Pk)
H(Q)−H(P )

r(R)

)
(1)

where the parameters P , R and Q are taken over the following domains:

• P is the set of probability distributions on Φ

• R is the set of subsets of Φ × Φ that are not a subset of {(x, x) : x ∈ Φ} and
moreover satisfy ∃i ∈ [k]∀(x, y) ∈ R : xi = yi

• QR,(P1,...,Pk) is the set of probability distributions on R ⊆ Φ × Φ with marginal dis-
tributions equal to P1, . . . , Pk, P1, . . . , Pk respectively.

Here for P ∈ P we denote by P1, . . . , Pk the marginal probability distributions of P on
the components V1, . . . , Vk respectively, and H denotes Shannon entropy.
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Let λ ` k be any integer partition of k with n nonzero parts. We can apply Theorem 3
to the k-graph Φ = Φλ as follows. For every a ∈ Φλ the equality

k∑
i=1

ai =
n∑
j=1

jλj (2)

holds, since the element j occurs λj times in a. Let α1, . . . , αk−1 be identity maps Z→ Z
and let αk : Z → Z : x 7→ x −

∑n
j=1 jλj. Then, because of (2), ∀a ∈ Φλ : α1(a1) + · · · +

αk(ak) = 0. (Note that with this choice of maps α1, . . . , αk we have that α(x) − α(y)
equals x− y for every (x, y) ∈ R.) Therefore Theorem 3 can be applied to obtain a lower
bound on ˜Q(Φλ) for any partition λ. The difficulty now lies in evaluating the right-hand
side of (1).

Let us return to the case λ = (k/2, k/2). To prove Theorem 2 via Theorem 3 we will
show for every large enough even k ∈ N and Φ = Φ(k/2,k/2) that the right-hand side of (1)
is at least 2, using the aforementioned choice of injective maps α1, . . . , αk. In Section 2
we prove that this follows from the following statement, which may be of interest on its
own.

Theorem 4. For any large enough even k ∈ N>4 and subspace

V ⊆ {x ∈ Fk2 : xk = 0} ⊆ Fk2

the inequality∣∣{(x, y) ∈ Fk2 × Fk2 : |x| = |y| = k
2
, x− y ∈ V

}∣∣ 6 (k − 1

k/2

)dimF2(V )

k−2
+1

(3)

holds. Here |x| denotes the Hamming weight of x ∈ Fk2.

In Section 3 we prove Theorem 4 for low-dimensional V by carefully splitting the left-
hand side of (3) into two parts and upper bounding these parts. In Section 4 we prove
Theorem 4 for high-dimensional V using Fourier analysis, Krawchouk polynomials and an
upper bound on the size of Hamming layers in subspaces. We thus prove Theorem 4 and
hence Theorem 2. While in our current proof the tools for the low- and high-dimensional
cases are used complementarily, it may be possible that the full Theorem 2 can be proven
by cleverly using only the low-dimensional tools or only the high-dimensional tools.

1.4 Motivation and background

Our original motivation to study the asymptotic induced matching number of k-graphs
comes from a connection to the study of asymptotic properties of tensors. In fact, the
interplay in this connection goes both directions. The purpose of this section is to discuss
the asymptotic study of tensors and the connection with the asymptotic induced matching
number. Reading this section is not required to understand the rest of the paper.
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1.4.1 Asymptotic rank and asymptotic subrank of tensors

The asymptotic study of tensors is a field of its own that started with the work of Strassen
[30, 31, 32] in the context of fast matrix multiplication. We begin by introducing two
fundamental asymptotic tensor parameters: asymptotic rank and asymptotic subrank.

Let F be a field. Let a ∈ Fn1⊗· · ·⊗Fnk and b ∈ Fm1⊗· · ·⊗Fmk be k-tensors. We write
a 6 b if there are linear maps Ai : Fmi → Fni for i ∈ [k] such that a = (A1⊗ · · · ⊗Ak)(b).
For n ∈ N let {en : j ∈ [n]} be the standard basis of Fn. For n ∈ N define the k-tensor

〈n〉 :=
n∑
i=1

ei ⊗ · · · ⊗ ei ∈ (Fn)⊗k.

The rank of the k-tensor a is defined as R(a) := min{n ∈ N : a 6 〈n〉}. The subrank of
the k-tensor a is defined as

Q(a) := max{n ∈ N : 〈n〉 6 a}. (4)

One can think of tensor rank as a measure of the complexity of a tensor, namely the “cost”
of the tensor in terms of the diagonal tensors 〈n〉. It has been studied in several contexts,
see, e.g., [6, 20]. In this language, the subrank is the “value” of the tensor in terms of 〈n〉
and as such is the natural companion to tensor rank. It has its own applications, which
we will elaborate on after having discussed the asymptotic viewpoint.

Writing a and b in the standard basis as a =
∑

i ai ei1⊗· · ·⊗eik , b =
∑

j bj ej1⊗· · ·⊗ejk ,
the tensor Kronecker product a� b is the k-tensor defined by

a� b :=
∑
i,j

aibj (ei1 ⊗ ej1)⊗ · · · ⊗ (eik ⊗ ejk) ∈ (Fn1 ⊗ Fm1)⊗ · · · ⊗ (Fnk ⊗ Fmk).

In other words, the k-tensor a � b is the image of the 2k-tensor a ⊗ b under the natural
regrouping map Fn1⊗· · ·⊗Fnk ⊗Fm1⊗· · ·⊗Fmk → (Fn1⊗Fm1)⊗· · ·⊗ (Fnk ⊗Fmk). The
asymptotic rank of a is defined as ˜R(a) := limn→∞R(a�n)1/n and the asymptotic subrank
of a is defined as ˜Q(a) := limn→∞Q(a�n)1/n. These limits exist and equal the infimum

infn R(a�n)1/n and the supremum supn Q(a�n)1/n, respectively. This follows from Fekete’s
lemma and the fact that R(a� b) 6 R(a) R(b) and Q(a� b) > Q(a) Q(b).

Tensor rank is known to be hard to compute [16] (the natural tensor rank decision
problem is NP-hard). Not much is known about the complexity of computing subrank,
asymptotic subrank and asymptotic rank. It is a long-standing open problem in alge-
braic complexity theory to compute the asymptotic rank of the matrix multiplication
tensor. The asymptotic rank of the matrix multiplication tensor corresponds directly to
the asymptotic algebraic complexity of matrix multiplication. The asymptotic subrank of
3-tensors also plays a central role in the context of matrix multiplication, for example in
recent work on barriers for upper bound methods on the asymptotic rank of the matrix
multiplication tensor [9, 1]. As another example, in combinatorics, the resolution of the
cap set problem [12, 33] can be phrased in terms of the asymptotic subrank of a well-
chosen 3-tensor, cf. [7], via the general connection to the asymptotic induced matching
number that we will review now.
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The subrank of k-tensors as defined in (4) and the subrank of k-graphs as defined in
Section 1.1 are related as follows. For any k-tensor a =

∑
i ai ei1⊗· · ·⊗eik ∈ Fn1⊗· · ·⊗Fnk

we define the k-graph supp(a) as the support of a in the standard basis:

supp(a) := {i ∈ [n1]× · · · × [nk] : ai 6= 0}.

It is readily verified that the subrank of the k-graph supp(a) is at most the subrank of
the k-tensor a, that is, Q(supp(a)) 6 Q(a). The reader may also verify directly that
supp(a� b) = supp(a)� supp(b). Therefore, the asymptotic subrank of the support of a
is at most the asymptotic subrank of the k-tensor a, that is,

˜Q(supp(a)) 6 ˜Q(a). (5)

We can read (5) in two ways. On the one hand, given any k-tensor a we may find lower
bounds on ˜Q(a) by finding lower bounds on ˜Q(supp(a)). On the other hand, given any
k-graph Φ ⊆ [n1]× · · · × [nk] the asymptotic subrank ˜Q(Φ) is upper bounded by ˜Q(a) for
any tensor a ∈ Fn1 ⊗ · · · ⊗ Fnk (over any field F) with support equal to Φ, that is,

˜Q(Φ) 6 min
field F

min
a∈Fn1⊗···⊗Fnk :

supp(a)=Φ ˜Q(a). (6)

We do not know whether the inequality in (6) can be strict. We will discuss these two
directions in the following two sections.

1.4.2 Upper bounds on asymptotic subrank of k-tensors

Let us focus on the task of finding upper bounds on the asymptotic subrank of k-tensors.
One natural strategy is to construct maps φ : {k-tensors over F} → R>0 that are sub-
multiplicative under the tensor Kronecker product �, normalised on 〈n〉 to n, and mono-
tone under 6, that is, for any k-tensors a and b and for any n ∈ N:

φ(a� b) 6 φ(a)φ(b) (7)

φ(〈n〉) = n (8)

a 6 b⇒ φ(a) 6 φ(b). (9)

The reader verifies directly that for any such map φ the inequality ˜Q(a) 6 φ(a) holds.
Strassen in [32], motivated by the study of the algebraic complexity of matrix multi-

plication, introduced an infinite family of maps

ζθ : {k-tensors over F} → R>0

parametrised by probability vectors θ ∈ Rk
>0,

∑k
i=1 θi = 1. The maps ζθ are called the

upper support functionals. We will not define them here. Strassen proved that each
map ζθ satisfies conditions (7), (8) and (9). Thus

˜Q(a) 6 min
θ
ζθ(a). (10)
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Tao, motivated by the study of the cap set problem, proved in [33] that subrank is
upper bounded by a parameter called slice rank, that is, Q(a) 6 slicerank(a). We do
not define slice rank here. While slice rank is easily seen to be normalised on 〈n〉 and
monotone under 6, slice rank is not sub-multiplicative (see, e.g., [8]). However, it still
holds that

˜Q(a) 6 lim inf
n→∞

slicerank(a�n)1/n.

It turns out [34, 8] that

lim sup
n→∞

slicerank(a�n)1/n 6 min
θ
ζθ(a).

No examples are known for which this inequality is strict. It is known that for so-called
oblique tensors holds lim supn→∞ slicerank(a�n)1/n = minθ ζ

θ(a) [8].

1.4.3 Lower bounds on asymptotic subrank of k-graphs

We now consider the task of finding lower bounds on the asymptotic subrank of k-graphs.
For k = 3 the CW method introduced by Coppersmith and Winograd [10] and extended
by Strassen [32] gives the following. Let Φ ⊆ V1 × V2 × V3 be a 3-graph for which there
exist injective maps αi : Vi → Z such that ∀a ∈ Φ: α1(a1) + α2(a2) + α3(a3) = 0. Then

log2 ˜Q(Φ) > max
P∈P

min
i∈[3]

H(Pi) (11)

where P is the set of probability distributions on Φ. The inequality

log2 ˜Q(Φ) 6 max
P∈P

min
i
H(Pi),

follows from using (5) and using the support functionals as upper bound on the asymptotic
subrank of tensors. Thus, the CW method is optimal whenever it can be applied.

Theorem 3 extends the CW method from k = 3 to higher-order tensors, that is, k > 4.
Contrary to the situation for k = 3, the lower bound produced by Theorem 3 is not known
to be tight.

1.4.4 Type tensors

As an investigation of the power of the higher-order CW method (Theorem 3) and of the
power of the support functionals (Section 1.4.2) we study the asymptotic subrank of the
following family of tensors and their support. While we do not have any immediate “ap-
plication” for these tensors, we feel that they provide enough structure to make progress
while still showing interesting behaviour.

Let λ ` k be an integer partition of k with n nonzero parts. Recall the definition of
the k-graph Φλ from Section 1.1. We define the tensor Tλ as the k-tensor with support Φλ

and all nonzero coefficients equal to 1, that is,

Tλ :=
∑
s∈Φλ

es1 ⊗ · · · ⊗ esk ∈ (Fn)⊗k.
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In general, it follows from (5) and evaluating the right-hand side of (10) for a = Tλ and
the uniform θ = (1/k, . . . , 1/k) that

˜Q(Φλ) 6 ˜Q(Tλ) 6 2H(λ/k).

It was shown in [7] that

˜Q(Φ(k−1,1)) = ˜Q(T(k−1,1)) = 2H((1−1/k,1/k))

for every k ∈ N>3 using Theorem 3. (The same result was essentially obtained in [17].)
In [7] it was moreover shown that

˜Q(Φ(2,2)) = ˜Q(T(2,2)) = 2

using Theorem 3. As mentioned before, our main result (Theorem 2) is that for any large
enough even k ∈ N>2 it holds that

˜Q(Φ(k/2,k/2)) = ˜Q(T(k/2,k/2)) = 2. (12)

We conjecture that (12) holds for all even k ∈ N. We numerically verified this up to
k 6 2000 by verifying the statement of Theorem 4 for k 6 2000. Unfortunately, with our
current analysis it seems infeasible to numerically verify the statement of Theorem 4 up
to the value of k from which our proof works.

More generally we conjecture that ˜Q(Φλ) = ˜Q(Tλ) = 2H(λ/k) holds for all partitions
λ ` k, where H denotes the Shannon entropy and λ/k denotes the probability vector
(λ1/k, . . . , λn/k). The strong connection between Theorem 4 and Theorem 2 that makes
our proof work relies on the fact that (k/2, k/2) is uniform. For larger uniform partitions
(k/p, . . . , k/p) the bottleneck in extending our current proof is our use of Boolean Fourier
analysis.

In quantum information theory, the tensors T(m,n), when normalized, correspond to
so-called Dicke states (see [11, 29, 35], and, e.g., [3]). Namely, in quantum information
language, Dicke states are (m+ n)-partite pure quantum states given by

D(m,n) :=
1√(
m+n
m

)T(m,n) =
1√

(m+ n)!

∑
π∈Sm+n

π
(
|0〉⊗m ⊗ |1〉⊗n

)
where the sum is over all permutations π of the k = m + n parties. Roughly speaking,
our result, Theorem 2, amounts to an asymptotically optimal k-party stochastic local
operations and classical communication (SLOCC) protocol for the problem of distilling
GHZ-type entanglement from a subfamily of the Dicke states. More precisely, letting
GHZ = 1√

2
(|0〉⊗k + |1〉⊗k) be the k-party GHZ state, Theorem 2 says that for k large

enough the maximal rate β such that n copies of D(k/2,k/2) can be transformed via SLOCC
to βn− o(n) copies of GHZ equals 1 when n goes to infinity, that is,

(D(k/2,k/2))
⊗n SLOCC−−−−→ GHZ⊗n−o(n)

and this rate is optimal.
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2 Reduction to counting

We now begin working towards the proof of Theorem 2. The goal of this section is to
reduce Theorem 2 to Theorem 4 by applying Theorem 3.

Lemma 5. Theorem 4 implies Theorem 2.

Proof. We will use the higher-order CW method Theorem 3 to show that Theorem 4
implies Theorem 2. Let Φ = Φ(k/2,k/2) = {x ∈ {0, 1}k : |x| = k/2}. Let α1, . . . , αk−1 be
the identity map Z → Z and let αk : Z → Z : x 7→ x − k/2. With this definition of α
we have for all a ∈ Φ satisfied the condition

∑
i αi(ai) = 0 from Theorem 3. As in the

statement of Theorem 3, for R ∈ R let r(R) be the dimension of the Q-vector space

SpanQ{α(x)− α(y) : (x, y) ∈ R} = SpanQ{x− y : (x, y) ∈ R}.

Let P be the uniform distribution on Φ. Then Theorem 3 gives

log2 ˜Q(Φ) > H(P )− (k − 2) max
R∈R

maxQ∈QR,(P1,...,Pk)
H(Q)−H(P )

r(R)

= log2

(
k

k/2

)
− (k − 2) max

R∈R

maxQ∈QR,(P1,...,Pk)
H(Q)− log2

(
k
k/2

)
r(R)

,

For any Q ∈ QR,(P1,...,Pk) we have that H(Q) is at most the Shannon entropy of the
uniform distribution on R. We thus obtain

log2 ˜Q(Φ) > log2

(
k

k/2

)
− (k − 2) max

R∈R

log2 |R| − log2

(
k
k/2

)
r(R)

. (13)

It remains to upper bound the maximisation over R ∈ R in (13). We define the set

Φ′ = {x ∈ {0, 1}k−1 : |x| = k/2− 1}.

For R ∈ R let r2(R) be the dimension of the F2-vector space

SpanF2
{α(x)− α(y) : (x, y) ∈ R} = SpanF2

{x− y : (x, y) ∈ R}.

By assumption Theorem 4 is true. This means

∀R′ ⊆ Φ′×2 log2 |R′| 6
(r2(R′)

k − 2
+ 1
)

log2

(
k − 1

k/2− 1

)
=
r2(R′)

k − 2
log2

(
k − 1

k/2− 1

)
+ log2

(
k − 1

k/2− 1

)
=
r2(R′)

k − 2
log2

(
k − 1

k/2− 1

)
+ log2

1
2

(
k

k/2

)
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that is

∀R′ ⊆ Φ′×2 log2(2 |R′|) 6 r2(R′)

k − 2
log2

(
k − 1

k/2− 1

)
+ log2

(
k

k/2

)
. (14)

For any R ∈ R there is a subset R′ ⊆ Φ′×2 with |R| 6 2 |R′| and r2(R) = r2(R′).
Namely, one constructs R′ as follows. Without loss of generality ∀(x, y) ∈ R : x1 = y1.
For every (x, y) ∈ R, if x1 = y1 = 1, then add ((x2, . . . , xk), (y2, . . . , yk)) to R′, and if
x1 = y1 = 0, then add the negated tuple ((1, . . . , 1)− (x2, . . . , xk), (1, . . . , 1)− (y2, . . . , yk))
to R′. Therefore, (14) implies

∀R ∈ R log2 |R| 6
r2(R)

k − 2
log2

(
k − 1

k/2− 1

)
+ log2

(
k

k/2

)
=
r2(R)

k − 2

(
log2 2

(
k − 1

k/2− 1

)2

− log2

(
k

k/2

))
+ log2

(
k

k/2

)
that is

∀R ∈ R log2 |R| − log2

(
k

k/2

)
6
r2(R)

k − 2

(
log2 2

(
k − 1

k/2− 1

)2

− log2

(
k

k/2

))
that is

∀R ∈ R
log2 |R| − log2

(
k
k/2

)
r2(R)

6
log2 2

(
k−1
k/2−1

)2 − log2

(
k
k/2

)
k − 2

. (15)

Combining (15) with (13) and using r2(R) 6 r(R) gives

log2 ˜Q(φ) > log2

(
k

k/2

)
−
(

log2 2

(
k − 1

k/2− 1

)2

− log2

(
k

k/2

))
= log2 2

(
k − 1

k/2− 1

)
− log2 2

(
k − 1

k/2− 1

)2

+ log2 2

(
k − 1

k/2− 1

)
= log2

(
k − 1

k/2− 1

)
− 2 log2

(
k − 1

k/2− 1

)
+ log2

(
k − 1

k/2− 1

)
+ 1

= 1.

This proves the lemma.

3 Case: low dimension

To prove Theorem 2 it remains to prove Theorem 4. Our proof of Theorem 4 is divided
into two cases. In this section we prove the low-dimensional case.

Theorem 6. For any large enough even k ∈ N and subspace V ⊆ {x ∈ Fk2 : xk = 0} ⊆ Fk2
such that dimF2(V ) 6 11k/12, the inequality∣∣{(x, y) ∈ Fk2 × Fk2 : |x| = |y| = k

2
, x− y ∈ V

}∣∣ 6 (k − 1

k/2

)dimF2(V )

k−2
+1

holds.
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We set up some notation. Let k ∈ 2N and Φ = {x ∈ Fk2 | |x| = k/2}. We will
think of Fk−1

2 as the subspace where the last component is 0. We want to prove: for any
V 6 Fk−1

2 6 Fk2 the inequality

|R| 6
(
k − 1

k/2

) r
k−2

+1

(16)

holds for all r 6 11k
12

, where R = {(x, y) ∈ Φ2 | x− y ∈ V, xk = yk = 0} and r = dimF2 V .
The proof of (16) is divided into three claims that deal with different ranges for r, namely,
r = 0, r ∈ {2, . . . , k

2 log k
} and r ∈ { k

2 log k
, . . . , 11k/12}. The first claim is trivial:

Claim 7. Inequality (16) holds when r = 0.

Proof. One verifies directly that (16) becomes an equality when r = 0.

We prepare to deal with r > 2. Without loss of generality, we may assume that every
vector in V has even weight. To upper bound |R| we introduce the function

f(k,m) =

{(
m
m/2

)(
k−m−1
(k−m)/2

)
if m is even and 0 6 m 6 k − 2

0 otherwise
(17)

which counts the number of pairs (x, y) ∈ Φ2 such that x − y is an arbitrary but fixed
vector with Hamming weight m. This function has the following properties.

Proposition 8.

1. For any even 0 < m < k it holds that f(k,m) = f(k, k −m).

2. f(k,m) strictly decreases in m for even 0 6 m 6 k/2.

3. f(k, 0) =
(
k−1
k/2−1

)
=
(
k−1
k/2

)
.

4. f(k, 0) > f(k, k − 2) = f(k, 2) > f(k, k − 4) = f(k, 4) > · · · .

Proof. Claim (3) one verifies directly. For (1) we verify that

f(k, k −m) =

(
k −m

(k −m)/2

)(
m− 1

m/2− 1

)
= 2

(
k −m− 1

(k −m)/2− 1

)
1

2

(
m

m/2

)
= f(k,m).

For (2) we verify that

f(k,m)

f(k,m+ 2)
=

(
m
m/2

)(
k−m

(k−m)/2

)(
m+2

(m+2)/2

)(
k−m−2

(k−m−2)/2

)
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=
m!

(m
2

!)2

(k −m)!

(k−m
2

!)2

/
(m+ 2)!

(m+2
2

!)2

(k −m− 2)!

(k−m−2
2

!)2

=
(k −m)(k −m− 1)

(m+ 1)(m+ 2)

(m
2

+ 1)2

(k−m
2

)2

=
m+ 2

m+ 1

k −m− 1

k −m
,

which is > 1 when (m + 2)(k −m − 1) > (m + 1)(k −m), that is, when k/2 − 2 > m.
Claim (4) follows from (1) and (2).

Using the definition of f(k,m), we can write |R| in (16) as follows: suppose V has am
vectors of weight m, then

|R| =
k−1∑
m=0

amf(k,m). (18)

To get an upper bound on |R|, we fix some even s ∈ {2, . . . , k/2} and in the terms with
f(k,m) > f(k, s) we replace am by

(
k−1
m

)
, while in the remaining terms we replace f(k,m)

by f(k, s). This gives, using Proposition 8 (4),

|R| 6 f(k, 0) +
s−2∑
m=2
m even

[(
k − 1

k −m

)
+

(
k − 1

m

)]
f(k,m) + f(k, s)

k−s∑
m=s

am

6 f(k, 0) +
s−2∑
m=2
m even

[(
k − 1

m− 1

)
+

(
k − 1

m

)]
f(k,m) + 2rf(k, s)

=
s−2∑
m=0
m even

(
k

m

)
f(k,m) + 2rf(k, s).

(19)

Now our goal is to understand for which values of k, r, s the inequality

s−2∑
m=0
m even

(
k

m

)
f(k,m) + 2rf(k, s) 6

(
k − 1

k/2

) r
k−2

+1

(20)

holds. In particular, if for every k and r 6 11k/12, there exists such an s, then (16) and
hence Theorem 6 holds.

First we replace (20) by a stronger but simpler inequality. Divide both sides of (20)
by
(
k−1
k/2−1

)
and bound the right-hand side from below as follows using Stirling’s formula

2r
(
π(k + 1)

2

)− r
2(k−2)

6

(
2k−1√

π(k + 1)/2

) r
k−2

6

(
k − 1

k/2− 1

) r
k−2

. (21)
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Thus (20) is implied by

s−2∑
m=0
m even

(
k
m

)
f(k,m)(
k−1
k/2−1

) +
2rf(k, s)(

k−1
k/2−1

) 6 2r
(
π(k + 1)

2

)− r
2(k−2)

(22)

Claim 9. Inequality (16) holds for every k > 27, and r ∈ {2, . . . , k
2 log k
}.

Proof. Let s = 2. The left-hand side of (22) equals

1 + 2r · 2

(
k−3

(k−2)/2

)(
k−1
k/2

) = 1 + 2r
1

2

k

k − 1
. (23)

Since 2−r 6 1
4
, we see that (22) is implied by

1

4
+

1

2

k

k − 1
6

(
π(k + 1)

2

)− r
2(k−2)

. (24)

This is equivalent to

r 6 2(k − 2)
log
(

1
1/4+k/(2(k−1))

)
log(π/2 · (k + 1))

. (25)

We use that for k large enough it holds that 1
1/4+k/(2(k−1))

> 13/10, 2(k − 2) > 5
3
k, and

log(π/2 · (k + 1)) · 3

5
· 1

log(13/10)
6 2 log(k)

to see that the right-hand side of (25) is at least k/(2 log k).

Claim 10. Inequality (16) holds for k large enough and every r ∈ { k
2 log k

, . . . , 11k/12}.

To prepare for the proof of Claim 10 we now further simplify the left-hand side of (22)
via (

k
m

)
f(k,m)(
k−1
k/2−1

) =

(
k
m

)(
m
m/2

)(
k−m−1
(k−m)/2

)(
k−1
k/2−1

)
=

k!m!(k −m− 1)!(k/2− 1)!(k/2)!

m!(k −m)!
(
m
2

!
)2 k−m

2
!
(
k−m

2
− 1
)

!(k − 1)!

=
k(k/2− 1)!

(k −m)m
2

!
(
k−m

2
− 1
)

!

(
k/2

m/2

)

=
k
2
(k/2− 1)!

k−m
2

m
2

!
(
k−m

2
− 1
)

!

(
k/2

m/2

)
=

(
k/2

m/2

)2

(26)
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and

f(k, s)(
k−1
k/2−1

) =

(
s

s/2

)( k−s−1
(k−s)/2

)(
k−1
k/2−1

)
=

(
s

s/2

) (k − s− 1)!
(
k
2
− 1
)

!k
2
!

k−s
2

!
(
k−s

2
− 1
)

!(k − 1)!

= 2−s
(
s

s/2

) 2s/2
k
2
!

k−s
2

!

2−s/2
(k − 1)!

(k − s− 1)!

(
k−s

2
− 1
)

!(
k
2
− 1
)

!

= 2−s
(
s

s/2

) s/2−1∏
i=0

k − 2i

k − 2i− 1
= 2−s

(
s

s/2

) s/2−1∏
i=0

(
1 +

1

k − 2i− 1

)
.

(27)

We have the upper bound
(
s
s/2

)
6 2s

√
2
πs

. In the product of s/2 terms, each term is at

least 1 and the largest term is the last one. Since s 6 k/2, we can use k− s− 1 > k/2− 1
to get

1 6
s/2−1∏
i=0

(
1 +

1

k − 2i− 1

)
6

(
1 +

1

k − s− 1

)s/2
6

(
1 +

1

k/2− 1

)k/4
6 2 (28)

for all k > 4. Plugging in (26),(27) into (22), we see that (20) is implied by

s−2∑
m=0
m even

(
k/2

m/2

)2

+ 2r
√

8

πs
6 2r

(
π(k + 1)

2

)− r
2(k−2)

, (29)

that is, (20) is implied by

2−r
s−2∑
m=0
m even

(
k/2

m/2

)2

+

√
8

πs
6

(
π(k + 1)

2

)− r
2(k−2)

. (30)

To further upper bound the left-hand side of (30) we use the following lemma, which we
will prove later.

Lemma 11. For any even k and 2 6 s 6 k/2 the following inequality holds:

s∑
m=0
m even

(
k/2

m/2

)2

s∑
m=0
m even

(
k

m

) 6
4√
π
·

√
k

s(k − s)
(31)
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Remark 12. Numerics suggest that the optimal constant in the above inequality is
√

2/π
instead of 4/

√
π.

Assuming that r satisfies
s−2∑
m=0
m even

(
k

m

)
6 2r (32)

we have

2−r
s−2∑
m=0
m even

(
k/2

m/2

)2

+

√
8

πs
6 2−r

4√
π
·

√
k

s(k − s)

s∑
m=0
m even

(
k

m

)
+

√
8

πs

6
4√
π
·

√
k

s(k − s)
+

√
8

πs

6
4√
π
·
√

2

s
+

√
8

πs
= 3

√
8

πs
,

(33)

where the first inequality used Lemma 11, the second inequality used (32), and the third
inequality used k

k−s 6 2 (which holds, since s 6 k/2). Thus, assuming (32), we have
that (30) is implied by

3

√
8

πs
6

(
π(k + 1)

2

)− r
2(k−2)

. (34)

In other words, if there is an s > 24 > 72
π

= 22.9183 . . . such that

log
s−2∑
m=0
m even

(
k

m

)
6 r 6 (k − 2)

log s− log 72
π

log(k + 1) + log π
2

, (35)

then (30) holds. We further upper bound the left-hand side of (35) by

log
s−2∑
m=0
m even

(
k

m

)
6 log

s−2∑
m=0

(
k

m

)
6 kh

( s
k

)
. (36)

Here h(p) := −p log2(p) − (1 − p) log2(1 − p) is the binary entropy function. Hence the
bound in (35) is implied by

kh
( s
k

)
6 r 6 (k − 2)

log s− log 72
π

log(k + 1) + log π
2

. (37)

Proof of Claim 10. Use the bound of (37) with s = 2bkβ/2c to get that inequality (16)
holds for β ∈ (0, 1), k > max{241/β, 21/(1−β)}, and

kh(kβ−1) 6 r 6 (k − 2)
log(kβ − 2)− log 72

π

log(k + 1) + log π
2

. (38)
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Fix β = 1 − 2 log log k
log k

. For this choice of β, we have k > 241/β for every k > 3500 and

clearly k > 21/(1−β) for every k > 3, thereby satisfying the requirements for (38). Now
observe that

kh(kβ−1) = kh
( 1

log2 k

)
6

4k

log2 k
log log k 6

k

2 log k
, (39)

where the first inequality uses the fact that for every x ∈ (0, 1/2] it holds that h(x) 6
2x log 1

x
, and the second inequality holds for every k > 13 ·1012. Next, for k large enough

(k − 2)
log(kβ − 2)− log 72

π

log(k + 1) + log π
2

> (k − 2)
log(kβ − 2)− log 72

π

log(2k)
> (k − 2)

log(kβ − 2)− 5

log(2k)

> (k − 2)
log kβ − 6

log(2k)
.

(40)

For very large k, observe that

(k − 2)
log kβ − 6

log(2k)
>

11k

12
, (41)

since the left-hand side divided by k goes to 1 when k goes to infinity. Putting together
equations (41) and (39) along with (38), we prove the claim.

Proof of Lemma 11. We will make use of the following variant of Stirling’s formula
(due to Robbins [26]), valid for all positive integers n:

√
2πn

nn

en
e

1
12n+1 < n! <

√
2πn

nn

en
e

1
12n . (42)

First we bound the ratio of the individual terms (assuming m 6= 0) as(
k/2

m/2

)2

(
k

m

) =
k
2
!2m!(k −m)!
m
2

!2 k−m
2

!2k!

6
1√
2π

√√√√ k2

4
m(k −m)
m2

4
(k−m)2

4
k

(
k
2

)k
mm(k −m)k−m(

m
2

)m (k−m
2

)k−m
kk

· exp

{
1

3k
+

1

12m
+

1

12(k −m)
− 2

6m+ 1
− 2

6(k −m) + 1
− 1

12k + 1

}
6

√
2

π

√
k

m(k −m)
,

(43)
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since the third factor is 1 and the argument of the exponential is negative if 2 6 m 6 k
2
.

Now let us turn to the ratio of the sums. Let 0 < c1 < 2c1 < c2 <
1
2

be fixed constants.
Assume first that 2 6 s 6 c2k. The denominator can be bounded from below by its last
term, while the numerator can be bounded from above as

s∑
m=0
m even

(
k/2

m/2

)2

=

s/2∑
i=0

(
k/2

i

)2

=

s/2∑
j=0

(
k/2

s/2− j

)2

6
s/2∑
j=0

(
k/2

s/2

)2(
s

k − s

)2j

6
∞∑
j=0

(
k/2

s/2

)2(
s

k − s

)2j

=

(
k/2

s/2

)2
(k − s)2

k(k − 2s)

6

(
k/2

s/2

)2
(1− c2)2

1− 2c2

,

(44)

where in the first inequality we have used(
k/2

n

)
(
k/2

n+ 1

) =
n+ 1
k
2
− n
6

s
2
− 1 + 1

k
2
− s

2
+ 1
6

s

k − s
(45)

for n+ 1 6 s/2. Combining with (43) we arrive at the estimate

s∑
m=0
m even

(
k/2

m/2

)2

s∑
m=0
m even

(
k

m

) 6
1− c2

1− 2c2

(
k/2

s/2

)2

(
k

s

) 6
1− c2

1− 2c2

√
2

π

√
k

s(k − s)
. (46)

Now we turn to the case when c2k 6 s 6 k/2. Split the sum in the numerator into

two at m ≈ c1k. For m 6 bc1kc we use the simple bound
(
k/2
m/2

)2
6
(
k
m

)
, while for

m > bc1kc+ 1 > c1k we use (43) to get(
k/2

m/2

)2

(
k

m

) 6

√
2

π

√
k

m(k −m)
6

√
2

π

1√
k

1√
c1(1− c1)

. (47)

Introducing

A =

2bc1k/2c∑
m=0
m even

(
k

m

)
, B =

s∑
m=2bc1k/2c+2

m even

(
k

m

)
. (48)
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The estimate

s∑
m=0
m even

(
k/2

m/2

)2

s∑
m=0
m even

(
k

m

) 6
A+

√
2
π

1√
k

1√
c1(1−c1)

B

A+B
=

√
2
π

1√
k

1√
c1(1−c1)

+ A
B

1 + A
B

6

√
2

π

1√
k

1√
c1(1− c1)

+
A

B

(49)

follows. The ratio (
k

n

)
(

k

n− 1

) =
k − n+ 1

n
=
k + 1

n
− 1 (50)

is monotonically decreasing in n, therefore, by induction(
k

b− t

)
(

k

a− t

) >
(
k

b

)
(
k

a

) (51)

whenever a 6 b. Apply this with a = 2bc1k/2c, b = s and t = 2bc1k/2c −m to get

A =

2bc1k/2c∑
m=0
m even

(
k

m

)
=

2bc1k/2c∑
m=0
m even

(
k

m+ s− 2bc1k/2c

) (
k
m

)(
k

m+s−2bc1k/2c

)
6

2bc1k/2c∑
m=0
m even

(
k

m+ s− 2bc1k/2c

)( k
2bc1k/2c

)(
k
s

)
=

(
k

2bc1k/2c

)(
k
s

) s∑
m=s−2bc1k/2c

m even

(
k

m

)
6

(
k

2bc1k/2c

)(
k
s

) B,

(52)

that is,

A

B
6

(
k

2bc1k/2c

)(
k
s

) 6 2k(h(c1)−h(s/k))

√
8k
s

k

(
1− s

k

)
6 2k(h(c1)−h(c2))

√
2k. (53)

We now look for a constant C that satisfies√
2

π

1√
k

1√
c1(1− c1)

+ 2k(h(c1)−h(c2))
√

2k 6 C ·

√
k

s(k − s)
(54)
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when c2k 6 s 6 k/2. Equivalently, we need√
2

π

√
s

k

(
1− s

k

)
1√

c1(1− c1)
+
√

2 · 2k(h(c1)−h(c2))k

√
s

k

(
1− s

k

)
6 C. (55)

Using
√

s
k

(
1− s

k

)
6 1

2
and that 2k(h(c1)−h(c2))k has a global maximum at k = 1

ln 2
1

h(c2)−h(c1)
,

an upper bound on the left-hand side is

1√
2π

1√
c1(1− c1)

+
1√

2e ln 2

1

h(c2)− h(c1)
. (56)

In particular, with c1 = 0.09711 . . . and c2 = 0.39252 . . . we get C = 2.25503 . . . < 4√
π
.

4 Case: high dimension

Finally, in this section we consider the remaining high-dimensional case.

Theorem 13. For any large enough even k ∈ N>4 and subspace

V ⊆ {x ∈ Fk2 : xk = 0} ⊆ Fk2

such that dimF2(V ) > 11(k − 1)/12, the inequality∣∣{(x, y) ∈ Fk2 × Fk2 : |x| = |y| = k
2
, x− y ∈ V

}∣∣ 6 (k − 1

k/2

)dimF2(V )

k−2
+1

holds. Here |x| denotes the Hamming weight of x ∈ Fk2.

4.1 Preliminaries

Our proof of Theorem 13 uses Fourier analysis on the Boolean cube Fn2 = {0, 1}n, the
Krawchouk polynomials, an upper bound on the size of Hamming layers in subspaces and
some elementary bounds for expressions involving binomial coefficients.

4.1.1 Fourier transform

For z ∈ {0, 1}n define the function χz : {0, 1}n → R by χz(x) = (−1)z·x where we use
the notation z · x =

∑
i zixi. These so-called characters form an orthonormal basis for

the space of functions {0, 1}n → R for the inner product 〈f, g〉 = 1
2n

∑
x f(x)g(x). For a

function f : {0, 1}n → R define f̂ : {0, 1}n → R by f̂(z) = 〈f, χz〉 = 1
2n

∑
x f(x)χz(x).

The function f̂ is the Fourier transform of f . Then f(x) =
∑

z f̂(z)χz(x), which is called
the Fourier expansion of f . One verifies that for any functions f, g : {0, 1}n → R we have
the identity ∑

x,y

f(x)f(y)g(x+ y) = 22n
∑
z

f̂(z)2ĝ(z) (57)
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with sums over x, y ∈ {0, 1}n and z ∈ {0, 1}n, and where we recall that the addition
in {0, 1}n is modulo 2. Indeed, by taking the Fourier expansion of f and g, then using
χU(x+ y) = χU(x)χU(y), and then using the orthonormality of the characters, we find∑

x,y

f(x)f(y)g(x+ y) =
∑
x,y

∑
S,T,U

f̂(S) f̂(T ) ĝ(U)χS(x)χT (y)χU(x+ y)

=
∑
S,T,U

f̂(S) f̂(T ) ĝ(U) 2n〈χS(x), χU(x)〉 2n〈χT (y), χU(y)〉

= 22n
∑
S,T,U

f̂(S) f̂(T ) ĝ(U) [S = U ] [T = U ]

= 22n
∑
S

f̂(S) f̂(S) ĝ(S).

Here [S = U ] is the indicator function that is 1 when S = U and 0 otherwise.

4.1.2 Krawchouk polynomials

For 0 6 k 6 n define the function

Kn
k : {0, 1}n → R

as the sum of the characters χz with z ∈ {0, 1}n and |z| = k, that is

Kn
k (x) =

∑
|z|=k

χz(x).

The function Kn
k (x) depends only on the Hamming weight |x| and can thus be in-

terpreted as a function on integers 0 6 t 6 n. This function may be written as
Kn
k (t) =

∑k
j=0(−1)j

(
t
j

)(
n−t
k−j

)
and this defines a real polynomial of degree k, called the

kth Krawchouk polynomial. We will use the following expression for the “middle” Kraw-
chouk polynomial for odd n.

Lemma 14 (Proposition 4.4 in [13]). Let n be odd and t ∈ {0, . . . , n}. Then

Kn
n−1
2

(t) = (−1)bt/2c
(

n

(n− 1)/2

)((n− 1)/2

bt/2c

)
(
n

t

) .

We will encounter the Krawchouk polynomials in the following way. For any 0 6 k 6 n
define the function wnk : {0, 1}n → {0, 1} by wnk (z) = [|z| = k]. Then

ŵnk (z) =
1

2n

∑
x

wnk (x)(−1)x·z =
1

2n
Kn
k (|z|). (58)
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We will use the following observation later. Let A ⊆ {0, 1}n. The characteristic
function f : {0, 1}n → {0, 1} of A is defined by f(x) = [x ∈ A]. Now suppose A is a linear
subspace. Let A⊥ := {y ∈ {0, 1}n : y · x = 0 for all x ∈ A} be the orthogonal complement
of A. The Fourier transform of f is given by

f̂(z) =
[z ∈ A⊥]

|A⊥|
. (59)

Indeed, f̂(z) = 1
2n

∑
x∈A(−1)x·z and, if z ∈ A⊥, then this sum equals 1

2n
|A|. On the other

hand, if z 6∈ A⊥, say x0·z = 1, then
∑

x∈A(−1)x·z =
∑

x∈A(−1)(x+x0)z = (−1)
∑

x∈A(−1)x·z

so the sum equals zero.

4.1.3 Size of Hamming layers

Given a subspace V ⊆ {0, 1}n of dimension d and an integer 0 6 t 6 n, let Vt ⊆ V be the
elements with (Hamming) weight t, let V6t ⊆ V be the elements with weight at most t
and let V>t ⊆ V be the elements with weight at least t. We want to upper bound the size
of Vt and the size of Vn−t.

In the first version of this paper that appeared on the arXiv we used a consequence
of the KKL inequality [18] from [22] to get the upper bound |Vt| 6 (2e ln(2)d/t)t for
1 6 t 6 ln(2)d. The following slightly better upper bound that we learned from Swastik
Kopparty simplifies the proofs that follow, and it has a short proof.

Lemma 15. Let V ⊆ {0, 1}n be a subspace of dimension d. Then

|Vt| 6 |V6t| 6
t∑
i=0

(
d

i

)
and |Vn−t| 6 |V>n−t| 6

n∑
i=n−t

(
d

i

)
=

t∑
i=0

(
d

i

)
.

If 1 6 t 6 d, then
t∑
i=0

(
d

t

)
6

(ed)t

tt
.

Proof. We pick a basis of V and write the basis elements as columns of an n×d matrix M .
We may assume (after column operations and row permutations) that the bottom d× d
block of this matrix is the identity matrix. The top (n− d)× d block is arbitrary.

We will upper bound |V6t|. The bottom d coefficients of each column of M have
exactly 1 one. The bottom d coefficients of any sum of k columns of M have exactly k
ones (and potentially also ones in the top n − d coefficients). Thus for this sum to have
weight at most t we require k 6 t. There are

∑t
i=0

(
d
i

)
ways to choose those vectors, and

so |V6t| 6
∑t

i=0

(
d
i

)
.

We want to upper bound |V>n−t|, the number of vectors in V with at least n − t
ones. That is, we want to upper bound the number of vectors in V with at most t zeros.
The bottom d coefficients of each column of M have exactly d − 1 zeros. The bottom d
coefficients of any sum of k columns of M have exactly d− k zeros (and potentially also
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zeros in the top n− d coefficients). Thus for this sum to have at most t zeros, we require
d− k 6 t, that is, k > d− t. There are

∑d
i=d−t

(
d
i

)
ways to choose those vectors, and thus

|V>n−t| 6
∑d

i=d−t
(
d
i

)
=
∑t

i=0

(
d
t

)
.

The sum of binomial coefficients we upper bound as follows:

t∑
i=0

(
d

i

)
6

t∑
i=0

di

i!
=

t∑
i=0

di

ti
ti

i!
6
dt

tt

∞∑
i=0

ti

i!
6
dt

tt
et,

using that d/t > 1.

4.1.4 Bounds involving binomial coefficients

Lemma 16. Let n be even.

(i) If 0 6 m 6 n/3, then (
n/2
m

)(
n+1

2m+1

) 6 2

(
2m+ 1

2(n−m+ 1)

)m+1

.

(ii) If 1 6 m 6 (n+ 1)/3, then (
n/2
m

)(
n+1
2m

) 6 ( m

n−m+ 1

)m
.

Proof. We expand the binomial coefficients as fractions of factorials:(
n/2
m

)(
n+1

2m+1

) =
(n/2)!(2m+ 1)!(n− 2m)!

m!(n/2−m)!(n+ 1)!

=
(n/2) · · · (n/2−m+ 1)

(n+ 1) · · · (n−m+ 2)
· (2m+ 1) · · · (m+ 1)

(n−m+ 1) · · · (n− 2m+ 1)

6 2

(
2m+ 1

2(n−m+ 1)

)m+1

where in the last inequality we upper bounded each of the first m terms by 1/2 and each
of the last m+ 1 terms by (2m+ 1)/(n−m+ 1) using the assumption m 6 n/3. We do
the same for the other inequality:(

n/2
m

)(
n+1
2m

) =
(n/2)!(2m)!(n+ 1− 2m)!

m!(n/2−m)!(n+ 1)!

=
(n/2) · · · (n/2−m+ 1)

(n+ 1) · · · (n−m+ 2)
· (2m) · · · (m+ 1)

(n−m+ 1) · · · (n− 2m+ 2)

6

(
m

n−m+ 1

)m
where in the last inequality we upper bounded each of the first m terms by 1/2 and each
of the last m terms by (2m)/(n−m+ 1) using the assumption 1 6 m 6 (n+ 1)/3.
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4.2 Proof of Theorem 13

Proof of Theorem 13. Let n ∈ N be large enough. Let V ⊆ {0, 1}n be a subspace of
dimension at least 11n/12. We will prove that

∣∣{(x, y) ∈ ({0, 1}n)×2 : |x| = |y| = n−1
2
, x+ y ∈ V

}∣∣ 6 ( n
n−1

2

)1+
dimF2 (V )

n−1

. (60)

This proves the theorem. To see this, in the theorem statement, set k = n + 1, ignore
the (n + 1)th coordinate, and note that the size of

{
(x, y) ∈ ({0, 1}n)×2 : |x| = |y| =

n−1
2
, x + y ∈ V

}
equals the size of

{
(x, y) ∈ ({0, 1}n)×2 : |x| = |y| = n+1

2
, x + y ∈ V

}
via

the bijection that flips the bits of x and y.
Let f : {0, 1}n → {0, 1} be the characteristic function of V , that is, f(x) = [x ∈ V ].

Recall that we defined the function wnk : {0, 1}n → {0, 1} by wnk (x) = [|x| = k]. Using
equation (57) the left-hand side of (60) can be rewritten as∣∣{(x, y) ∈ ({0, 1}n)×2 : |x| = |y| = n−1

2
, x+ y ∈ V

}∣∣
=
∑
x,y

wnn−1
2

(x)wnn−1
2

(y)f(x+ y)

= 22n
∑
z

ŵnn−1
2

(z)2f̂(z)

with sums over x, y ∈ {0, 1}n and z ∈ {0, 1}n. Since ŵnk (z) = 1
2n
Kn
k (|z|) (see (58)) and

f̂(z) = 1
2n
|V | · [z ∈ V ⊥] (see (59)) we have

22n
∑
z

ŵnn−1
2

(z)2f̂(z) =
|V |
2n

∑
z

Kn
n−1
2

(|z|)2 [z ∈ V ⊥]. (61)

Recall that (V ⊥)t denotes the subset of V ⊥ consisting of vectors with Hamming weight t.
We rewrite the right-hand side of (61) as a sum over the Hamming weight t = |z| ∈
{0, . . . , n}.

|V |
2n

∑
z

Kn
n−1
2

(|z|)2 [z ∈ V ⊥] =
|V |
2n

∑
t

Kn
n−1
2

(t)2
∣∣(V ⊥)t

∣∣ . (62)

By Lemma 14 we have

Kn
n−1
2

(t)2 =

(
n

(n− 1)/2

)2

(
(n− 1)/2

bt/2c

)2

(
n

t

)2
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which we use to rewrite (62) as

|V |
2n

(∑
t

Kn
n−1
2

(t)2
∣∣(V ⊥)t

∣∣) =
|V |
2n

(
n
n−1

2

)2(∑
t

(
(n−1)/2
bt/2c

)2(
n
t

)2

∣∣(V ⊥)t
∣∣)

=
|V |
2n

(
n
n−1

2

)2(
1 + [1n ∈ V ⊥] +

∑
16t6n−1

(
(n−1)/2
bt/2c

)2(
n
t

)2

∣∣(V ⊥)t
∣∣). (63)

We assumed that dim(V ) > 11n/12. Since the statement of the theorem is directly
verified to be true when dim(V ) = n−1 we may in addition assume that dim(V ) < n−1.
We define c = n− dim(V ). Then 2 6 c 6 n/12. Let

f(n, c) := 40
c2

n2
+
(2c

n

)c
.

In Lemma 17 and Lemma 18 below we will prove the inequalities

∑
16t6n−1

(
(n−1)/2
bt/2c

)2(
n
t

)2

∣∣(V ⊥)t
∣∣ 6 f(n, c) (64)

2 + f(n, c) 6 2c
(
n
n−1

2

) 1−c
n−1

. (65)

These inequalities show that (63) is upper bounded as follows:

|V |
2n

(
n
n−1

2

)2(
1 + [1n ∈ V ⊥] +

∑
16t6n−1

(
(n−1)/2
bt/2c

)2(
n
t

)2

∣∣(V ⊥)t
∣∣)

6
|V |
2n

(
n
n−1

2

)2(
2 + f(n, c)

)
6
|V |
2n

(
n
n−1

2

)2

2c
(
n
n−1

2

) 1−c
n−1

=

(
n
n−1

2

)1+
dim(V )
n−1

which proves the theorem.

Lemma 17. Let n be odd. For 2 6 c 6 n/12 such that dim(V ) = n− c we have

∑
16t6n−1

(
(n−1)/2
bt/2c

)2(
n
t

)2

∣∣(V ⊥)t
∣∣ 6 f(n, c).

with

f(n, c) := 40
c2

n2
+
(2c

n

)c
.
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Proof of Lemma 17. We first upper bound the sum over t ∈ [1, c− 1] ∪ [n− c+ 1, n− 1]
and afterwards the sum over the remaining t’s. We use

(
(n−1)/2
bt/2c

)
=
(

(n−1)/2
b(n−t)/2c

)
and then

apply Lemma 15 to get

c∑
t=1

(
(n−1)/2
bt/2c

)2(
n
t

)2

∣∣(V ⊥)t
∣∣ +

n−1∑
t=n−c

(
(n−1)/2
bt/2c

)2(
n
t

)2

∣∣(V ⊥)t
∣∣

=
c∑
t=1

(
(n−1)/2
bt/2c

)2(
n
t

)2

(∣∣(V ⊥)t
∣∣+
∣∣(V ⊥)n−t

∣∣)

6 2
c∑
t=1

(
(n−1)/2
bt/2c

)2(
n
t

)2

(
ec

t

)t
. (66)

Because of the floor in (66), we upper bound the sum over even t and the sum over odd
t separately. For the even part we use Lemma 16 (ii) and replace t by 2t to get

c∑
t=1
even

(
(n−1)/2
t/2

)2(
n
t

)2

(
ec

t

)t
6

c∑
t=1
even

(
t

2n− t

)t(
ec

t

)t

=
c∑
t=1
even

(
ec

2n− t

)t
.

For the odd part we use Lemma 16 (i), use 4( t
2n−t+1

) 6 1, shift t by 1, and use ec 6 2n− t
to get

c−1∑
t=1
odd

(
(n−1)/2
(t−1)/2

)2(
n
t

)2

(
ec

t

)t
6

c−1∑
t=1
odd

4

(
t

2n− t+ 1

)t+1(
ec

t

)t

6
c−1∑
t=1
odd

(
t

2n− t+ 1

)t(
ec

t

)t

=
c−1∑
t=1
odd

(
ec

2n− t+ 1

)t

=
c∑
t=1
even

(
ec

2n− t

)t+1

6
c∑
t=1
even

(
ec

2n− t

)t
.
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We upper bound both the even and the odd part as follows, replacing t by 2t and using
t 6 c/2 and c 6 n/12:

c∑
t=1
even

(
ec

2n− t

)t
=

c/2∑
t=1

(
ec

n− 2t

)2t

6
∞∑
t=1

(
ec

n− 2t

)2t

6
c2e2

c2 (1− e2)− 2cn+ n2
6 10

c2

n2
.

(67)

We conclude that (66) is upper bounded by 40c2/n2.
Finally, to upper bound the sum over the remaining ts we use the basic inequalities(

(n−1)/2
bt/2c

)2
6
(
n
t

)
and (n

k
)k 6

(
n
k

)
to get

n−c∑
t=c

(
(n−1)/2
bt/2c

)2(
n
t

)2

∣∣(V ⊥)t
∣∣ 6 n−c∑

t=c

∣∣(V ⊥)t
∣∣(

n
t

) 6
1(
n
c

) n−c∑
t=c

∣∣(V ⊥)t
∣∣ 6 1(

n
c

)∣∣V ⊥∣∣ 6 ( c
n

)c
2c.

This finishes the proof.

Lemma 18. For large enough odd n and 2 6 c 6 n/12 we have

2 + f(n, c) 6 2c
(
n
n−1

2

) 1−c
n−1

.

where

f(n, c) := 40
c2

n2
+
(2c

n

)c
.

Proof of Lemma 18. For odd n we have 2n/
√
n >

(
n

(n−1)/2

)
and thus

21+ 1−c
n−1
√
n
c−1
n−1 = 2c

(
2n√
n

) 1−c
n−1

6 2c
(
n
n−1

2

) 1−c
n−1

.

It is thus sufficient to show that for large enough n and 2 6 c 6 n/12 we have the

inequality 2 + f(n, c) 6 2(
√
n/2)

c−1
n−1 . One verifies that 2 + f(n, 2) 6 2(

√
n/2)

2−1
n−1 holds

for, say, every n > 70. To see that for large enough n the function fn(c) = 2(
√
n/2)

c−1
n−1 −

(2 + f(n, c)) is increasing in c for 2 6 c 6 n/12, we compute the derivative

d

dc
fn(c) = (

√
n/2)

c−1
n−1

ln(n/4)

n− 1
− 80c

n2
− (2c/n)c ln(2ce/n)

Using c 6 n/12 and for n large enough one verifies that d
dc
fn(c) > 0, which proves the

lemma.
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