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Abstract

There are several classes of ranked posets related to reflection groups which are
known to have the Sperner property, including the Bruhat orders and the generalized
noncrossing partition lattices (i.e., the maximal intervals in absolute orders). In
2019, Harper–Kim proved that the absolute orders on the symmetric groups are
(strongly) Sperner. In this paper, we give an alternate proof that extends to the
signed symmetric groups and the dihedral groups. Our simple proof uses techniques
inspired by Ford–Fulkerson’s theory of networks and flows, and a product theorem.

Mathematics Subject Classifications: 05D05,05E99

1 Introduction

In 1928, Sperner [16] proved that the Boolean order 2n (i.e., the poset of all subsets of
{1, 2, . . . , n}) has the property that it contains no antichain (i.e., a subset of pairwise
incomparable vertices) of cardinality larger than its largest rank level. In 1967, Rota [14]
posed the following “Research Problem”: prove or disprove that the refinement order Πn

(i.e., the poset of partitions of {1, . . . , n}) shares this same property — today known as
the Sperner property — for all n. Rota’s Research Problem played a role in motivating
the development of new theoretical tools for determining whether a class of ranked posets
has the Sperner property. In particular, Harper [5] and Stanley [17] each introduced novel
strengthenings of the (strong) Sperner property: the normalized flow property (abbr.
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Figure 1: The absolute order (left) and a Bruhat order (right) on A2
∼= S3 (the symmetric

group on 3 generators).

NFP) and the Peck property, respectively. The inspirations for these two properties come
from seemingly disparate sources. The NFP was inspired by the Ford–Fulkerson theory
of networks and flows, whereas the Peck property was inspired by the Hard Lefshetz
Theorem from algebraic geometry. Despite these differences, there are striking category-
theoretic parallels between the two properties (see, e.g., [7]). In particular, both NFP and
Peck are “well-behaved” with respect to taking products; see [5, Product Theorem] and
[11, Theorem 3.2], respectively.

There has been extensive interest in determining Spernerity for ranked posets associ-
ated to finite Coxeter groups (i.e., the finite Euclidean reflection groups). Since Coxeter
groups are generated by reflections, they naturally can be associated to a ranked poset by
equipping its Cayley graph — with respect to some choice of generating set of reflections
— with a rank function mapping each vertex to its distance from the identity. Given a
Coxeter group W with set of reflections T , a strong Bruhat order on W can be associated
to any minimal generating subset of T , and the absolute order on W is associated to T
itself. As noted by Kallipoliti [9, page 504], absolute orders have recently experienced a
surge of interest due to their role in combinatorics, group theory, statistics, and invariant
theory. Moreover, it has been observed by several separate authors (see, e.g., [13]) that
the well-known “noncrossing partition lattices” appear as subposets in absolute orders
(specifically, as “intervals” [e, c] in W , where e is the identity and c is a Coxeter element
in W ).

The strong Bruhat orders were proven to be Peck (and thus strongly Sperner) by
Stanley [17], and the weak Bruhat orders were proven to be Peck by Gaetz–Gao [3]. The
noncrossing partition lattices were proven to be strongly Sperner in type A by Simion–
Ullman [15], type B by Reiner [13], and the remaining types (as well as some complex
reflection groups) by Mühle [10], providing an affirmative answer to Open Problem 3.5.12
in Armstrong’s popular memoir [1].

In 2019, Harper–Kim [8] used the theory of normalized flows to prove that the absolute
order on the symmetric group is strongly Sperner, a result which further emphasizes an
interesting parallel between NFP and the Peck property. In this paper, we use Harper’s
Product Theorem to give an elegant proof of the following more general result:

Main Theorem. The absolute orders on the symmetric groups An, the hyperoctahedral
groups Bn, and the dihedral groups I2(m), are strongly Sperner.
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The proof, given in Section 5, is based on two Key Facts:

1. Any product of “claws” (a class of ranked posets defined in Example 2) is strongly
Sperner.

2. Each of the absolute orders for An, Bn, and I2(m) contains a product of claws as a
spanning subposet.

Key Fact (1) is restated in Theorem 7. Its proof is an immediate consequence of Harper’s
Product Theorem. The proof of Key Fact (2), given in Section 5, is primarily based on
Proposition 11.

Since the initial posting of our results on arXiv, Gaetz–Gao have posted a pre-print
[4] containing a proof that the absolute orders of the “generalized symmetric groups” —
a class of complex Coxeter groups generalizing An and Bn — are strongly Sperner [4,
Corollary 3.4]. Their proof was developed independently from our work in this paper,
but also makes use of Harper’s Product Theorem, and also is based on proving the Key
Facts above. Gaetz–Gao also prove that the absolute orders of the exceptional irreducible
Coxeter groups H3, H4, F4, E6, E7, and E8 are strongly Sperner by demonstrating explicit
normalized flows on each using a computer [4, Proposition 3.7]. Finally, they prove that
the Coxeter groups Dn are strongly Sperner for each n with 4 6 n 6 8 using a computer.
To complete the classification for finite real irreducible Coxeter groups, it remains to solve
the following Open Problem; see also [4, Conjecture 1.2(1)].

Open Problem 1. Determine the values n > 9 for which Dn is Sperner.

2 Posets, the Sperner property, and normalized flows

This section contains a review of common terminology regarding ranked posets (except
possibly our usage of the term “claw” in Example 2), as well as a review of Harper’s
theory of normalized flows developed in [5, 6].

A poset (P,4) is a finite set P equipped with a relation 4 that is reflexive, antisym-
metric, and transitive. It is common to suppress mention of the relation 4, and refer to
P as a poset. If x, y ∈ P , then y covers x, denoted x→ y, if x 4 z 4 y implies that either
z = x or z = y. A poset P is ranked if there exists a function ρ (called a rank function)
from P to {0, . . . , n} such that ρ(y) = ρ(x) + 1 whenever y covers x. A ranked poset P
is partitioned by its rank levels Pi = ρ−1(i), for i ∈ {0, . . . , n}.

Example 2. Let n > 1. Some examples of ranked posets include the:

1. nth Boolean order, 2n = (℘({1, . . . , n}),⊆), with rank function r(X) = |X|;

2. lattice of divisors of n, Dn = ({1, . . . , n}, |), equipped with rank function mapping i
to the number of primes in a prime factorization of i;

3. n-chain, Cn = ({0, . . . , n− 1},6), with rank function r(i) = i; and
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4. n-antichain, which consists of an n-set, no relations, and r(x) = 0 for all x.

5. n-claw Cn (for n > 2), the ordinal sum of a single element with an (n−1)-antichain;
i.e., Cn is the ranked poset with one rank zero element covered by n− 1 elements.

Let k > 1. A k-chain (resp. k-antichain) in a ranked poset P =
⊔r

i=0 Pi is a k-subset
of P consisting of pairwise comparable (resp. incomparable) elements. A k-family in P is
any subset of P containing no (k+1)-chain. For example, any union of k consecutive rank
levels in P is a k-family. The poset P is k-Sperner if the union of the k largest rank levels
is a maximal k-family; strongly Sperner if P is k-Sperner for all k ∈ {1, . . . , r + 1}; and
rank unimodal if there exists some j ∈ {0, . . . , r} such that |P0| 6 |P1| 6 · · · 6 |Pj−1| 6
|Pj| > |Pj+1| > · · · > |Pr|. The 1-Sperner property is otherwise known simply as “the
Sperner property”, and a 1-family is otherwise known as an “antichain”.

Lemma 3. Suppose that P is a spanning subposet of P ′; i.e., suppose P has the same
vertex set and rank function as P ′. If P is rank unimodal and strongly Sperner, then so
is P ′.

Proof. It is clear that P ′ is rank unimodal. We proceed to prove that P ′ is strongly
Sperner. Since P is rank unimodal, its largest k rank levels can be chosen so that their
ranks are consecutive. Their union is a k-family in both P and P ′. Since P is k-Sperner,
this union is a k-family in P of maximal size, and therefore a k-family in P ′ of maximal
size.

It is not the case that a product of Sperner (or even strongly Sperner) posets is
necessarily Sperner. However, there is a strengthening of strong Spernerity called the
normalized flow property (abbr. NFP) which is “well-behaved” under taking products.
In the following paragraph, we recall [5, 6] what it means for a ranked poset P to have
a normalized flow with respect to the counting measure. This condition is stronger than
NFP, and is both easier to define and sufficient for our purposes. A general definition of
NFP may be found in [6, page 173].

Let P = tri=0Pi be a ranked poset, with vertex set V and edge set E. A weight
function ν on P — i.e., a function ν : V → R>0 — has a unique extension to a measure
via ν(X) = Σx∈Xν(x) for each subset X of V . For example, the weight function on P
defined by x 7→ 1 for all x in V extends to the counting measure on P , defined by X 7→ |X|
for all subsets X of P . A normalized flow on P with respect to the measure ν is a function
f : E → R>0 that satisfies, for each i ∈ {0, . . . , r − 1},

1. for each a ∈ Pi,
∑

a→b f(a, b) = ν(a)/ν(Pi), and

2. for each b ∈ Pi+1,
∑

a→b f(a, b) = ν(b)/ν(Pi+1).

Theorem 4 (Corollary to Theorem III in [5]). If a ranked poset P has a normalized flow
with respect to the counting measure, then P is strongly Sperner.
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Example 5. Let n > 2. It is easily verified that the function mapping each edge of the
n-chain to 1 defines a normalized flow with respect to the counting measure. Likewise,
the function mapping each edge of the n-claw to 1/(n− 1) is also a normalized flow with
respect to the corresponding counting measure. Thus all chains and claws are strongly
Sperner by Theorem 4.

Let (P,4P ) and (Q,4Q) be ranked posets, with rank functions rP and rQ. The
(Cartesian) product P × Q of P and Q is the ranked poset with vertex set {(p, q) : p ∈
P, q ∈ Q}, relation 4P×Q defined by (p, q) 4P×Q (p′, q′) whenever p 4P p′ and q 4Q q′,
and rank function rP×Q defined by rP×Q((p, q)) = rP (p)rQ(q). If P and Q are equipped
with weight functions νP and νQ, then the weight function νP×Q on the product P ×Q is
defined by νP×Q((p, q)) = νP (p)νQ(q).

Theorem 6 (Harper’s Product Theorem/Theorem I.C in [5]). Let P = tiPi and Q =
tjQj be ranked posets which have normalized flows with respect to the weights νP and νQ,
respectively. Suppose that the sequences (νP (Pi))i and (νQ(Qj))j are log-concave. Then
(νP×Q((P ×Q)k))k is log-concave, and P ×Q has a normalized flow with respect to νP×Q.

It follows immediately (see the proof of Corollary 7 below) from Harper’s Product
Theorem that any finite product of nontrivial chains or claws is strongly Sperner. To
demonstrate the power of product theorems (such as Harper’s or [11, Theorem 3.2]), note
that 2n = (C2)n and Dn = Πprime p|nCp. It follows that the Boolean orders 2n and the
lattices of divisors Dn are each strongly Sperner.

Corollary 7. Any finite product of claws is strongly Sperner.

Proof. As discussed in Example 5, any claw Cn (n > 2) has a normalized flow with
respect to the counting measure, and the sequence (|(Cn)j|)j is trivially log-concave. As
an inductive hypothesis, let k1, . . . , kn > 2, and suppose that Πn−1

i=1 Cki has a normalized
flow with respect to the counting measure, and that (|(Πn−1

i=1 Cki)j|)j is log-concave. Then
the product Πn

i=1Cki has a normalized flow with respect to the counting measure by
Harper’s Product Theorem, and thus is strongly Sperner by Theorem 4.

It can similarly be shown that any product of chains is strongly Sperner. For example,
the Boolean order 2n = (C2)n and the lattice of divisors Dn = Πprime p|nCp are each strongly
Sperner.

3 Regular simplexes and cubes

The ranked posets of interest in this paper are the absolute orders associated to finite
(real) Coxeter groups (i.e., finite Euclidean reflection groups). The finite irreducible Cox-
eter groups fall into two overlapping classes: the symmetry groups of regular polytopes,
and the Weyl groups (i.e., the symmetry groups of irreducible “root systems”). The clas-
sification (see, e.g., [1, Figure 1.1]) of the finite irreducible Coxeter groups is one of the
crowning achievements of group theory and Euclidean geometry. This classification has
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three infinite classes which are symmetry groups of regular polytopes: An, Bn, and I2(m).
These groups are recalled below.

The regular n-simplex ∆n is the convex hull of the standard basis {ei}n+1
i for Rn+1.

There is an “obvious” bijective correspondence between faces of ∆n and subsets of {i}n+1
i=1 ,

with i-dimensional faces (or i-faces) of ∆n corresponding with subsets of size i + 1. Via
this correspondence, vertices are identified with singletons and facets (i.e., (n− 1)-faces)
are identified with n-sets. The symmetry group An of ∆n is the group of permutations
of {i}n+1

i=1 (i.e., the symmetric group Sn+1). The set of reflections in An consists of all
transpositions (i j), i 6= j.

The n-cube �n is the convex hull in Rn of the Cartesian product {−1, 1}n ⊂ Rn.
The dual polytope to the n-cube is the n-cross-polytope ♦n, which is the convex hull of
{±e1,±e2, . . . ,±en} ⊂ Rn. Each i-face of ♦n corresponds to a subset S ⊂ {±j}nj=1 of size
i+ 1 with the property that k ∈ S implies −k /∈ S. The symmetry group Bn for each of
the dual polytopes �n and ♦n is the group of signed permutations ; i.e., the permutations
w of the set {±j}nj=1 with the property that w(−i) = −w(i) for all i. The group Bn is
commonly known as the signed symmetric group or hyperoctahedral group. Following [9],
we denote the signed permutation with cycle form (a1 a2 · · · ak)(−a1 − a2 · · · − ak) by
((a1, a2, . . . , ak)), and (a1 a2 · · · ak − a1 − a2 · · · − ak) by [a1, a2, . . . , ak]. The set of
reflections in Bn corresponds to the union of {[i]}ni=1 and {((i, j)), ((i,−j))}16i<j6n.

Lemma 8. For any pair (C,C ′) of distinct facets in ∆n (resp. �n), there is a unique
reflection in An (resp. Bn) mapping C to C ′.

Proof. Let C 6= C ′ be facets in ∆n. Since C 6= C ′ correspond to subsets of {i}n+1
i=1 of size

n, it follows that C − C ′ = {i} and C ′ − C = {j} for some i 6= j. The unique reflection
mapping C to C ′ is (i j).

Now let C 6= C ′ be facets in �n. The facets of �n correspond to the vertices of ♦n,
which in turn correspond to elements of {±j}nj=1. Suppose without loss of generality that
C corresponds to 1. Either C ′ corresponds to −1, j for some j 6= 1, or −j for some j 6= 1.
In any case, there is a unique reflection in Bn mapping C to C ′ (specifically, the reflections
[1], ((1, j)), and ((1,−j)), respectively).

Define a (complete) flag F = (Pi)
n
i=0 in an n-dimensional regular polytope P to be a

sequence of faces in P , ordered by containment, with dim(Pi) = i. The action of An (resp.
Bn) on ∆n (resp. �n) induces a simply transitive action on the associated set of flags.
Hence if we designate some flag in ∆n or �n — call it the standard flag F std = (Pstd

i )ni=0

— then a correspondence between elements in the polytope’s symmetry group and its set
of flags can be defined via w 7→ w ·F std. Note that, for all i ∈ {0, . . . , n}, the i-faces for
the n-simplex (resp. the n-cube) are i-simplexes (resp. i-cubes).

We briefly recall some generalities about absolute orders; see, e.g., [1] for details. Let
W be a finite Coxeter group with set of reflections T . The absolute length lT on W is the
word length with respect to T . The absolute order on W is defined by

π 6 µ if and only if lT (µ) = lT (π) + lT (π−1µ)
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for all π, µ ∈ W . Equivalently, the absolute order is the poset on W generated by the
covering relations w → tw, where w ∈ W , t ∈ T , and lT (w) < lT (tw). This order is graded
with rank function lT . The absolute length generating function PW (q) =

∑
w∈W qlT (w)

satifies PW (q) =
∏n

i=1(1 + (di − 1)q), where n = rank(W ) and (di)
n
i=1 is a sequence of

positive integer invariants for W called the degree sequence; see Remark 9 below. It
follows that |T | = |l−1T (1)| =

∑n
i=1(di − 1). Moreover, the rank sequence

(
|l−1T (i)|

)n
i=0

for any absolute order is strictly log-concave by [18, Theorem 4.5.2], and thus all of the
absolute orders are rank unimodal.

Remark 9. The degree sequence (di)
n
i=1 for An is defined by di = i + 1, and for Bn by

di = 2i. Additional details regarding degrees for Coxeter groups are not necessary for our
purposes in this paper, but may be found in, e.g., [1, Section 2.7].

4 A factorization result

In Proposition 11 below, we prove that any element of An or Bn can be written uniquely
as a product of reflections “with respect to a fixed flag” in the associated regular polytope,
a fundamental result in the proof (given in Section 5) that each of the groups An and
Bn contain a product of claws. For all that follows, P denotes the regular n-simplex
∆n or n-cube �n, and W denotes the corresponding symmetry group. Note that if P is
∆n or �n, each reflective symmetry of an i-face Pi of P uniquely extends to a reflective
symmetry of P . Define TPi

to be the embedding of the set of reflections of Pi into W .

Lemma 10. Let P be the n-simplex or n-cube, and let W be the corresponding group
of symmetries with degree sequence (di)

n
i=1. Fix a standard flag (Pstd

i )ni=0 in P, and set
Ti = TPi

std. It follows that, for all i ∈ {1, . . . , n}, |Ti − Ti−1| = di − 1.

Proof. The n-simplex (resp. the n-cube) has the property that, for each i, each of its
i-faces is an i-simplex (resp. i-cube). Hence the symmetry group for any of its i-faces
is Ai (resp. Bi). If the degree sequence for the n-simplex (resp. n-cube) is (dj)

n
j=1,

then the degree sequence associated to an i-face is (dj)
i
j=1. It follows that |Ti − Ti−1| =

|Ti| − |Ti−1| =
∑i

j=1(dj − 1)−
∑i−1

j=1(dj − 1) = di − 1.

Proposition 11. Let P be the n-simplex or n-cube, and let W be the associated symmetry
group. Fix a standard flag F std = (Pstd

i )ni=0 in P, and set Ti = TPstd
i

.

1. Any element w ∈ W has a unique factorization of the form

w = rnrn−1 · · · r2r1

with ri ∈ (Ti − Ti−1) t {e} for each i, where e is the identity in W .

2. Given such a factorization, the length can be computed via

lT

(
n−1∏
i=0

rn−i

)
= |{i : ri 6= e}|.
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3. Finally,
∏n−1

i=0 rn−i covers
∏n−1

i=0 r
′
n−i if there exists k such that rk 6= r′k = e and

rj = r′j for all j 6= k.

Proof. We begin by proving (1). The claim is clearly true for n = 1. Now let n > 1 be
arbitrary, and suppose the claim is true for n − 1. Let w ∈ W , with corresponding flag
F = (Pi)

n
i=0. If (Pi)

n−1
i=0 is a flag in the “standard facet” Pstd

n−1, then the claim follows by
the inductive hypothesis. Suppose instead that (Pi)

n−1
i=0 is a flag in some other facet C.

Lemma 8 implies that there is a unique reflection rn ∈ (Tn − Tn−1) − {e} mapping C to
Pstd

n−1. By the inductive hypothesis, it follows that rn ·F = (rn−1 · · · r2r1) ·F std with ri ∈
(Ti−Ti−1)t{e} for all i ∈ {1, . . . , n−1}. Therefore w ·F std = F = rn(rn−1 · · · r2r1)·F std,
and the claim follows.

To prove (2), we first let P be the n-simplex and let W be its symmetry group.
Assume without loss of generality that F std = ({1, . . . , i+ 1})ni=0. Then Ti−Ti−1 consists
of all transpositions (j (i + 1)) with j ∈ {1, . . . , i}. If w is a product of elements in
Ti−1 t {e}, then w is a permutation of {1, . . . , i}. Hence lT (riw) > lT (w), which implies
that lT (riw) = lT (w) + 1. The claim follows from a straight-forward induction on n.
Now let P be the n-cube and W its symmetry group. Assume without loss of generality
F std = (Pstd

i )ni=0 is chosen so that the symmetries of Pstd
i correspond to symmetries of

{±1,±2, . . . ,±i}. Then Ti consists of all reflections of the form [j], ((j, k)), and ((−j, k))
with j, k ∈ {1, . . . , i} and j 6= k, and Ti − Ti−1 consists of all reflections of the form [i],
((j, i)), and ((−j, i)) with j ∈ {1, . . . , i − 1}. Similar to the case above, the product riw
of ri in Ti − Ti−1 with a product w of reflections in Ti−1 has lT (riw) > lT (w). Hence
lT (riw) = lT (w) + 1, and the claim follows by induction.

Finally, to prove (3), let w and w′ be elements of W with the property that their
expansions w =

∏n−1
i=0 ri and w′ =

∏n−1
i=0 r

′
i satisfy rk 6= r′k = e for some k and rj = r′j for

all j 6= k. By Proposition 11.2, it follows that lT (w′) + 1 = lT (w). Set σ =
∏k−1

i=0 ri and
τ =

∏n−1
i=k+1 ri, so that w = σrkτ and w′ = στ . Then lT ((w′)−1w) = lT (τ−1σ−1σrkτ) =

lT (τ−1rkτ) = 1. Since lT (w′) + lT ((w′)−1w) = lT (w), it follows that w covers w′.

5 Proof of Main Theorem

The Main Theorem is recalled below, followed by its proof:

Main Theorem. The absolute orders on the symmetric groups An, the hyperoctahedral
groups Bn, and the dihedral groups I2(m), are strongly Sperner.

Proof of Main Theorem. Let P be the n-simplex or n-cube, and let W be the associated
symmetry group. Fix a standard flag F std = (Pstd

i )ni=0 in P , and set Ti = TPstd
i

. Let
(di)

n
i=1 be the degree sequence for W . Consider the product poset

n−1∏
i=0

Cdn−i
= Cdn × · · · × Cd2 × Cd1

of claws Cdi . For each i, define a bijective correspondence between the vertices of the claw
Cdi and the elements of (Ti − Ti−1) t {e} by mapping the di − 1 rank one vertices in Cdi
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Figure 2: The product of claws C3 × C2 (left) can be viewed as a spanning subposet of
the absolute order on A2 (right).

bijectively onto Ti− Ti−1 (such a bijection exists by Lemma 10) and the rank zero vertex
in Cdi to e. These bijective correspondences between claws and sets of reflections induce a
bijective correspondence φ(rn, . . . , r2, r1) = rn · · · r2r1 between the vertices of the product
poset

∏n−1
i=0 Cdn−i

and the vertices of the absolute order W by Proposition 11(1).

We claim that
∏n−1

i=0 Cdn−i
can be viewed as a spanning subposet of W via the above

bijection between of the vertex sets. It suffices to prove that if y covers x in
∏n−1

i=0 Cdn−i
,

then φ(y) covers φ(x) in W . Suppose that (rn, . . . , r2, r1) covers (r′n, . . . , r
′
2, r
′
1) in the

product of claws. Then there exists k for which rk 6= r′k = e and rj = r′j for all j 6= k. By

Proposition 11(3), the claim immediately follows. By Lemma 7,
∏n−1

i=0 Cdn−i
is strongly

Sperner. Since
∏n−1

i=0 Cdn−i
is a spanning subposet of W , it follows by Lemma 3 that W

is strongly Sperner.
Finally, let P be the regular m-gon. The associated symmetry group is I2(m), and its

degree sequence is (2,m). It is clear that P and its symmetry group satisfy Lemmas 8,
Lemma 10, and Proposition 11. The same arguments used above show that I2(m) contains
Cm × C2 as a spanning subposet, and so I2(m) is strongly Sperner.
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