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Abstract

We relate the combinatorial definitions of the type An and type Cn Stanley
symmetric functions, via a combinatorially defined “double Stanley symmetric func-
tion,” which gives the type A case at (x,0) and gives the type C case at (x,x). We
induce a type A bicrystal structure on the underlying combinatorial objects of this
function which has previously been done in the type A and type C cases. Next we
prove a few statements about the algebraic relationship of these three Stanley sym-
metric functions. We conclude with some conjectures about what happens when we
generalize our constructions to type C.

Mathematics Subject Classifications: 05E05

1 Introduction and Notation

In this paper we will relate the combinatorial definitions of the type An ([Sta84]) and type
Cn+1 [BH95], [FK96] Stanley symmetric functions. To do this, we define combinatorially
a “double Stanley symmetric function” and show that it is indeed a symmetric function
in two sets of infinite variables. Precisely, the double Stanley symmetric function gives
the type A Stanley symmetric function at (x,0) and gives the type C Stanley symmetric
function at (x,x).

∗Part of this work was completed while supported by the Max Planck Institute for Mathematics.
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Both the type A and type C functions are Schur positive, and a crystal-theoretic inter-
pretation of these facts has been given in [MS16] and [HPS17] respectively. Furthermore,
crystal analysis for the (type A) stable limit of Schubert polynomials is carried out [Len04]
by considering a crystal structure on the underlying combinatorial objects of rc graphs
(in other literature known as pipe dreams). In the paper we will carry out this procedure
for the double Stanley symmetric function by considering a crystal sructure for the un-
derlying objects of reduced signed increasing factorizations. To do this we first write the
double Stanley symmetric functions as a sum of characters of certain tableaux (section
2). Next, we introduce explicit crystal operators on these tableaux, which allows us to
write the double Stanley symmetric function as sum of products of Schur functions (sec-
tion 3). Then, we introduce a notion of conversion which helps us explore the algebraic
relationship of all three of these Stanley symmetric functions, in particular, recovering
some results of Lam [Lam95] (section 4). Although sections 2-4 are restricted to the type
A case, we conclude (section 5) with a quick survey of some results (without proof) and
conjectures about the type C case.

Throughout the paper, when some k ∈ N is specified x will refer to the list of variables
(x1, . . . , xk) and y will refer to the list of variables (y1, . . . , yk). On the other hand x will
refer to the infinite list of variables (x1, x2, . . .) and y will refer to the infinite list of vari-
ables (y1, y2, . . .). If the polynomial P (x) or P (x, y) is defined for arbitrary k then P (x) or,
respectively, P (x,y) will represent the corresponding function obtained by letting k →∞.

The An Coxeter system is defined as the Coxeter system with generators, s1, . . . , sn
and relations (sisj)

mij = 1 where mij is an integer determined as follows:

• If |i− j| = 0, mij = 1.

• If |i− j| = 1, mij = 3.

• If |i− j| > 1, mij = 2.

By abuse of notation, we will also refer to the corresponding Coxeter group of size
(n+1)! as An. The Cn+1 Coxeter system is defined as the Coxeter system with generators,
s0, s1, . . . , sn and relations (sisj)

mij = 1 where mij is an integer determined as follows:

• If |i− j| = 0, mij = 1.

• If i > 0 and j > 0, and |i− j| = 1, mij = 3.

• If i = 0 or j = 0, and |i− j| = 1, mij = 4.

• If |i− j| > 1, mij = 2.

Similarly, we will sometimes refer to the corresponding group of size 2n+1(n+ 1)! itself
as Cn+1. Given the relations above one can define two types of symmetric functions,
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indexed, respectively, by elements of An and Cn+1.

First, suppose ω ∈ An. A reduced word for ω is an expression, u, for ω using the
generators s1, . . . , sn such that no other such expression for ω is shorter than u. Given
a fixed k, a reduced increasing factorization (RIFk), v, for ω is a reduced word u, for
ω along with a subdivision of u into k parts such that each part is increasing under the
order s1 < · · · < sn. The weight of v is the vector whose ith entry records the number of
generators in the ith subdivision of v. The type A Stanley symmetric polynomial [Sta84]
in k variables for ω is:

FA
ω (x) =

∑
v∈RIFk(ω)

xwt(v),

where RIFk(ω) is the set of reduced increasing factorizations of ω, and wt(v) is the weight
of v. Letting k →∞ in the type A Stanley symmetric polynomial gives the type A Stan-
ley symmetric function for ω.

Now suppose ω ∈ Cn+1. A reduced word for ω is an expression, u, for ω using the
generators s0, s1, . . . , sn such that no other such expression for ω is shorter than u. Given
a fixed k, a reduced unimodal factorization (RUFk), v, for ω is a reduced word u, for ω
along with a subdivision of u into k parts such that each part is unimodal (i.e., decreasing
and then increasing) under the order s0 < s1 < · · · < sn. The weight of v is the vector
whose ith entry records the number of generators in the ith subdivision of v. The type C
Stanley symmetric polynomial [BH95], [FK96], in k variables for ω is:

FC
ω (x) =

∑
v∈RUFk(ω)

2ne(v)xwt(v),

where ne(v) is the number of nonempty subdivisions of v, RUFk(ω) is the set of reduced
unimodal factorizations of ω, and wt(v) is the weight of v. Letting k →∞ in the type C
Stanley symmetric polynomial gives the type C Stanley symmetric function for ω.

Next consider the generators s−n, . . . s−1, s0, s1, . . . , sn and impose relations (sisj)
mij =

1 where mij is an integer determined as follows:

• If |(|i| − |j|)| = 0, mij = 1.

• If i 6= 0 and j 6= 0, and |(|i| − |j|)| = 1, mij = 3.

• If |(|i| − |j|)| > 1, mij = 2.

• If i = 0 or j = 0, and |(|i| − |j|)| = 1, mij = 4.
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Of course, the resulting system is not Coxeter, for instance, the relations imply that
s−i = si holds, 1 so the generating set is obviously not minimal.

In this setting, a reduced word for ω is an expression, u, for ω using the generators
s−n, . . . , s−1, s0, s1, . . . , sn such that no other such expression for ω is shorter than u. Given
a fixed k, a reduced signed increasing factorization (RSIFk), v, for ω is a reduced word
u, for ω along with a subdivision of u into k parts such that each part is increasing under
the order s−n < · · · s−1 < s0 < s1 < · · · < sn.

The double weight of v, denoted (dw(v, 1), dw(v, 2)) is the pair (X, Y ), where the ith

entry of X records the number of generators with negative index in the ith subdivision
of v, and the ith entry of Y records the number of generators with nonnegative index in
the ith subdivision of v. For instance, v = (s−3s−2s1)(s−5s2s3)(s−4s−3) is an RSIF (with
k = 3) for ω = s3s2s1s2s3s5s4s3 with double weight ((2, 1, 2), (1, 2, 0)). We define the
double Stanley symmetric polynomial in k variables for ω ∈ Cn+1 to be:

F d
ω(x, y) =

∑
v∈RSIFk(ω)

xdw(v,1)ydw(v,2),

where RSIFk(ω) is the set of reduced signed increasing factorizations of ω into k parts.
Letting k → ∞ in the double Stanley symmetric polynomial gives the double Stanley
symmetric function for ω. We will frequently use the shorthand i for si and ī for s−i when
it is clear we are discussing expressions of Coxeter elements. For instance, v above may
be rewritten: v = (3̄2̄1)(5̄23)(4̄3̄).

In sections 2-4 we consider the special case where ω ∈ An. In section 5 we give a short
overview of what happens when ω ∈ Cn+1 (in general the double Stanley “symmetric”
function may not be symmetric if ω /∈ An). The fact that F d

ω(x,y) is symmetric for
ω ∈ An is not obvious and will require some effort to show. For now, we simply note some
equalities that do follow immediately from the constructions: For any ω ∈ An ⊆ Cn+1

we can define all three Stanley symmetric functions mentioned, and we have: F d
ω(0,x) =

FA
ω (x) and F d

ω(x,x) = FC
ω (x) and F d

ω(x,y) = F d
ω−1(y,x).

2 Expansion in Terms of Primed Tableaux

In this section we expand the function F d
ω for ω ∈ An in terms of a certain generating

function for primed tableaux. Now, we fix some k ∈ N for the remainder of this section.
We will work over the alphabet X̄ ′k = {k̄ < · · · < 2̄ < 1̄ < 1′ < 1 < 2′ < 2 < · · · < k′ < k}
(these elements are not related to generators si or s−i. This association is only made when
numbers appear within parenthesis inside a factorization or within an Edelman-Greene
tableau (defined later)). An element in this alphabet is called marked if it is barred

1This makes sense on the level of Weyl groups: the reflection over the plane perpendicular to the ith

simple root is equal to the reflection over the plane perpendicular to the opposite of the ith simple root.
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or it is primed, and called unmarked otherwise. The subset of X̄ ′k which contains no
primed letters is denote X̄k. The subset of X̄ ′k which contains no barred letters is denoted
X ′k. Inside tableaux, barred entries will be represented using a small -, for example

-4 -3 -1 2 2 represents the one row tableau with entries {4̄, 3̄, 1̄, 2, 2} because moving
the bar in front of the number makes it easier to see.

The definition of primed tableau (given below) appears as a specific case of a more
general definition. (This more general definition will be needed later.)

Definition 1. Fix partitions µ ⊆ λ. Fix vectors X and Y in Zk>0. Finally, fix 0 6 j 6
k. We define the set of primed signed tableaux corresponding to these parameters, by
declaring that T ∈ PST (λ/µ,X, Y, j) if:

1. T has shape λ/µ.

2. T has entries from X̄ ′k.

3. The rows and columns of T are weakly increasing.

4. Each row of T has at most one marked i and each column has at most one unmarked
i.

5. T contains Y (i) unmarked is.

6. T contains X(i) barred is (and no primed is) for each i > j.

7. T contains X(i) primed is (and no barred is) for each i 6 j.

Example 2. Let λ = (4, 3, 2, 2). The following lies in PST

(
λ/∅,


1
2
2
2

,


2
2
0
1

, 2

)
:

-4 -3 1 4
-4 1′ 2′

-3 1 2′

2 2

Definition 3. Let X, Y ∈ Zk>0. A primed tableau of shape λ/µ and double weight (X, Y )
is an element of PST (λ/µ,X, Y, k).

Definition 4. Let X, Y ∈ Zk>0. A signed tableau of shape λ/µ and double weight (X, Y )
is an element of PST (λ/µ,X, Y, 0).

In other words, a primed tableau is a primed signed tableau in X ′k and a signed
tableau is a primed signed tableau in X̄k. For shorthand, we also refer to the set of
primed tableaux, PST (λ/µ,X, Y, k), as PTk(λ/µ) with double weight (X, Y ). We now
define a polynomial in the variables (x, y) by:
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Rλ/µ(x, y) =
∑

T∈PTk(λ/µ)

xdw(T,1)ydw(T,2),

where (dw(T, 1), dw(T, 2)) represents the double weight of the primed tableau, T . Our
goal is to show that F d

ω expands in terms of Rλ.
Let ω ∈ An. An Edelman-Greene tableau for ω is a tableau in {s1, . . . , sn} which

is row-wise and column-wise increasing with respect to the order s1 < · · · < sn, and
which, if read by rows, left to right, bottom to top, forms a reduced word for ω. For
viewing convenience we will write i to mean si . We use Edelman-Greene insertion,
[EG87], to create a bijection between RSIFk(ω) and pairs of tableaux, (P,Q), where P
is an Edelman-Greene tableau for ω, and Q is a primed tableau of the same shape. This
bijection is described below.

Definition 5. Primed-Recording Edelman-Greene map. Suppose v ∈ RSIFk(ω). Create
the insertion tableau P by applying Edelman-Greene insertion to |v|, the expression ob-
tained by ignoring the subdivisions of v and replacing s−i by si for each i. Create the
recording tableau, Q, as follows: Each time a box is added to P say in position (i, j) add
a box to Q in position (i, j) and fill it as follows: Suppose box (i, j) was added to P when
|v|r was inserted. Let l be the subdivision of v in which vr occurs in v. If vr is barred in
v, fill box (i, j) of Q with l′. If vr is unbarred in v, fill box (i, j) of Q with l.

Example 6. Let v = (3̄2̄14)(3̄2̄)(4̄13).

{ 3 , 1′ } −→
{

2
3
, 1′

1′

}
−→

 1
2
3
,

1′

1′

1

 −→
 1 4

2
3

,
1′ 1
1′

1

 −→ 1 3
2 4
3

,
1′ 1
1′ 2′

1

 −→
 1 2

2 3
3 4

,
1′ 1
1′ 2′

1 2′

 −→
 1 2 4

2 3
3 4

,
1′ 1 3′

1′ 2′

1 2′

 −→
1 2 4
2 3
3 4
4

,

1′ 1 3′

1′ 2′

1 2′

3

 −→


1 2 3
2 3 4
3 4
4

,

1′ 1 3′

1′ 2′ 3
1 2′

3


Theorem 7. The Primed-Recording Edelman-Greene map is a double weight preserving
bijection: RSIFk(ω)⇒ (P,Q), where P is an Edelman-Greene tableau for ω, and Q is a
primed tableau of the same shape. (The double weight of (P,Q) refers to the double weight
of Q.)

Proof. The proof relies on a basic fact of Edelman-Greene insertion of an unsigned reduced
word v: If v = v1 . . . vs is inserted under Edelman-Greene, then vr < vr+1 if and only if
the box added to the insertion tableau in the rth step is in a row weakly above the row
where a box is added in the (r + 1)st step. To see the map is well-defined: Certainly
P is an Edelman-Greene tableau. Certainly Q has weakly increasing rows and columns.
Moreover, for each value of i, there is at most one i in each column because of the forward
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direction of the basic fact. And there is at most one i′ in each row because of the backwards
direction of the basic fact.

The inverse is obtained by applying reverse Edelman-Greene insertion to P in the
order prescribed by the standardization of Q. (The standardization being the standard
Young tableau obtained from Q by extending the partial order induced on the boxes of
Q by the order of X ′ and then using the following rule: If box b and box b′ both contain i
then b < b′ if and only if b lies in a column to the left of b′. If box b and box b′ both contain
i′ then b < b′ if and only if b lies in a row above b′.) This produces an element of An.
Now, to make it a signed factorization, its subdivisions and the signs on the indices are
then added in the unique way such that the resulting factorization has the same double
weight as Q. Again, the basic fact implies that this inverse is well-defined.

It now immediately follows from Theorem 7 that:

Theorem 8.

F d
ω(x,y) =

∑
T∈E(ω)

Rsh(T )(x,y),

where E(ω) is the set of Edelman-Greene tableaux for ω and sh(T ) denotes the shape
of T .

3 Crystal Structure and Schur expansion

An (abstract) bicrystal of type Ak−1 is a nonempty set B together with the maps

ei, fi : B → B ∪ {0}
eī, fī : B → B ∪ {0}
dw : B → Λ× Λ

(1)

where Λ = Zk>0 is the weight lattice of the root of type Ak−1 and 1 6 i 6 k − 1. Denote
by αi = εi − εi+1 for the simple roots of type Ak−1, where εi is the i-th standard basis
vector of Zk. Then we require:

A1. For b, b′ ∈ B, we have fib = b′ if and only if b = eib
′. In this case dw(b′) =

dw(b)− (0, αi).

A2. For b, b′ ∈ B, we have fīb = b′ if and only if b = eīb
′. In this case dw(b′) =

dw(b)− (αi, 0).

In this section we induce (via Theorem 7) an Ak−1 (k as before) bicrystal structure
on the set of reduced signed increasing factorizations of ω by explicitly defining crystal
operators on the set of primed tableaux. This structure is isomorphic to the bicrystal
structure on pairs of SSYT obtained by doubling the usual crystal structure on SSYT
(see [BS17]). As a result, we will obtain an expansion of F d

ω as a product of Schur
functions corresponding to certain highest weight primed tableaux.
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Given a primed tableau T , we will define the reading word of T to be the word,
composed only of unprimed entries, obtained by reading the unprimed numbers by row,
left to right, moving from bottom to top. Throughout the remainder of the section, we
will set j = i + 1. The i − j subword of a word is defined to be the word of is and js
obtained by erasing all other entries from the word. The i − j bracketing on the i − j
subword is defined as usual in type A. Each step in the ordering 1′ < 1 < 2′ < 2 · · · will
be considered a half unit. In particular, we say that i is obtained from i′ by increasing
by a half unit, j′ is obtained from i by increasing by a half unit, and j is obtained from
j′ by increasing by a half unit. Finally, if p is a position in T , we will write c(p) to mean
the content of p. By convention if position p does not describe a filled box of T we take
c(p) =∞.

First we define operators fi on the set of primed tableaux as follows.

Definition 9 (fi operator). First, if the i−j reading subword of T has no unbracketed is,
then fi(T ) = 0. Otherwise let x denote the position in T corresponding to the rightmost
unbracketed i in the i− j reading subword of T . fi(T ) is obtained from T by increasing
c(x) and c(q) by a half unit for some box q, determined as follows: Denote the position
immediately to the right of x as Ex and the position immediately below it as Sx:

F1: If c(Ex) > j and c(Sx) > j, set q = x.

F2: If c(Ex) = j′, set q = Ex.

F3: If c(Ex) > j and c(Sx) = j′ or c(Sx) = j, consider the maximal ribbon beginning on
Sx and extending in the South and/or West directions which contains only js and
j′s. Let q be the Southwest-most position of this ribbon.

Lemma 10. If the hypothesis of case F2 holds, then c(Sq) > j. If the hypothesis of case
F3 holds, then for each j in the ribbon, there is an i in the box diagonally above and to
the left of this j, and c(q) = j′.

Proof. For the first statement, note that we cannot have c(Sq) = j′ as this would imply
c(Sx) < j′, which contradicts c(Sx) > i = c(x). Moreover, if we have c(Sq) = j, then let
k denote the number of js in this row. In order for the i in x to be unbracketed the row
above must have at least k + 1 is. This implies its leftmost two is lie above entries less
than j. The only such possibility is j′ which would contradict the condition that there is
at most one j′ in each row.

Now to the second statement. In order for the i in position x to be unbracketed,
every j in the ribbon must be bracketed with an i which appears in between q and x in
the reading word order. The only way to fit all the necessary is is as described in the
statement of the lemma. Now, if c(q) 6= j′ then c(q) = j which implies the box diagonally
above q contains an i by the previous sentence. But this implies the entry to the left of q
is j or j′ which contradicts the maximality of the ribbon.

Lemma 11. If fi(T ) 6= 0 then either q = x, in which case fi changes an i in x to a j,
or else fi changes an i in x to j′ and a j′ in q to j. Moreover, fi(T ) is a valid primed
tableau.
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Proof. This is immediate for F1. For the other two cases it follows from the previous
lemma.

Now we define operators ei on the set of primed tableaux as follows.

Definition 12 (ei operator). First, if the i−j reading subword of T has no unbracketed
js, then ei(T ) = 0. Otherwise let y denote the position in T corresponding to the leftmost
unbracketed j in the i− j reading subword of T . ei(T ) is obtained from T by decreasing
c(y) and c(p) by a half unit for some box p, determined as follows: Denote the position
immediately to the left of y as Wy and the position immediately above it as Ny:

1. If c(Wy) 6 i and c(Ny) < i, set p = y.

2. If c(Wy) = j′, set p = Wy.

3. If c(Wy) 6 i and c(Ny) = i or c(Ny) = j′, consider the maximal ribbon beginning
on Ny and extending in the North and/or East directions which contains only is
and j′s. Let p be Northeast-most position of this ribbon.

Symmetric arguments to those given above show:

Lemma 13. If ei(T ) 6= 0 then either p = y, in which case ei changes a j in y to an i,
or else ei changes an j in y to j′ and a j′ in p to i. Moreover, ei(T ) is a valid primed
tableau.

In fact fi and ei so defined are inverses:

Proposition 14. If fi(T ) 6= 0 then ei(fi(T )) = T . Similarly, if ei(T ) 6= 0 then fi(ei(T )) =
T .

Proof. Suppose that fi(T ) is obtained from T by case C (C ∈ {1, 2, 3}) of the definition
of fi, with x and q representing the positions selected as in the definition. Then it is not
difficult to see that ei(fi(T )) can be obtained from fi(T ) by case k in the definition of ei
with positions y = q and p = x. Since a half unit has been added and then subtracted
from positions x and q it is clear that ei(fi(T )) = T . The second statement is proved
symmetrically.

We now define operators fī and eī on the set of primed tableaux and on words. On
words these operators act as the usual type A operators restricted to primed entries. To
describe their action on primed tableaux, we use a special type of transposition.

Definition 15. Given a primed tableau, T , we define T+ to be obtained by transposing
T and then adding a half unit to each entry. Similarly we define T− to be obtained by
transposing T and then subtracting a half unit from each entry. Applied to a word w, w+

and w− indicate simply adding a half unit and subtracting a half unit from each entry
respectively.

Clearly, we have (T+)− = T and (w+)− = w.

Definition 16. We define fī(T ) = (fi(T
+))− and eī(T ) = (ei(T

+))− for any primed
tableau, T . Similarly we define fī(w) = (fi(w

+))− and eī(w) = (ei(w
+))− for any primed

word, w.
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1′ 1
1 2′

1′ 2′

1 2

1′ 2′

2 2

1′ 2′

1 3

1′ 2′

2 3
1′ 2′

3 3

f1

f1

f2

f2

f2

1′ 1
1 3′

1′ 2
1 3′

1′ 2
2 3′

1′ 3′

1 3

1′ 3′

2 3
1′ 3′

3 3

f1 f2

1 1
2′ 3′

1 2
2′ 3′

2′ 2
2 3′

1 3′

2′ 3

2′ 3′

2 3
2′ 3′

3 3

f1

f2

f2

f1

f2

f1̄ f1̄ f1̄ f1̄

f2̄ f2̄ f2̄ f2̄

Figure 1: A connected component of the A2 bicrystal for λ = (2, 2). A few labels are
omitted to prevent cluttering.

3.1 Proof that the operators fi, ei, fī, eī form an Ak−1 bicrystal

We consider words in the alphabet X ′k. For such a word w, The double weight of w,
denoted (dw(w, 1), dw(w, 2)) is the pair (X, Y ), where the ith entry of X records the
number of primed is in w, and the ith entry of Y records the number of unprimed is in w.
We have a natural bicrystal structure on such words: fi(w) and ei(w) refer to the usual
crystal operators on words (e.g., [BS17]) restricted to the nonprimed letters of w, while
fī(w) and eī(w) refer to the usual crystal operator on words (e.g., [BS17]) restricted to
the primed letters of w. (The operators never change whether a letter is primed or not.)

Next we consider the (nonshifted) mixed Haiman insertion of a word w, denote P(w),
for a word w from the alphabetX ′k. Given a word w = w1w2 . . . wh we recursively construct
a sequence of tableaux ∅ = T0, T1, . . . , Th. To obtain the tableau Ts, insert the letter ws
into Ts−1 as follows. First, if ws is unprimed, insert ws into the top row of Ts−1, bumping
out the leftmost element y that is strictly greater than ws. If ws is primed, insert ws into
the leftmost column of T , bumping out the uppermost element y that is strictly greater
than ws.

1. If y is not primed, then insert it into the next row below, bumping out the leftmost
element that is strictly greater than y from that row.
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2. If y is primed, then insert it into the next column to the right, bumping out the
uppermost element that is strictly greater than y from that column.

Continue until an element is inserted which is greater than or equal to all elements in the
row/column it is inserted into, and append this element to the end of this row. We define
the recording tableau for such an insertion to be the standard Young tableau that records
the sequence of shapes of the Ti.

Note that it follows from the symmetry in the definition of Haiman insertion that
P(w+) = (P(w))+ and P(w−) = (P(w))−.

Theorem 17. [Hai89] Haiman insertion gives a double weight preserving bijection from
words from X ′k to pairs of tableaux (T, S), where T is a primed tableau and S is a standard
Young tableau of the same shape.

Our next goal is to show that fi(P(w)) = P(fi(w)) (where the lefthand side involves
the operator defined in this paper and the right hand side involves the usual crystal
operator on primed words restricted to the nonprimed entries). To do this we consider
Haiman insertion step by step.

Suppose w1 . . . wh is a primed word and that Ti are the tableaux as in the definition of
Haiman insertion. For each s define the reading word of (Ts−1, ws · · ·wh) to be the reading
word of T concatenated with the unprimed entries of ws · · ·wh. fi acts on (Ts−1, ws · · ·wh)
by selecting the rightmost unbracketed i in its reading word. If this is an element of
ws · · ·wh, it simply changes this i to j. Otherwise, fi acts according to the rules for
primed tableaux specified earlier.

Lemma 18. Let (Ts, ws+1 · · ·wh) denote the result of applying one insertion step to
(Ts−1, ws · · ·wh). Then set fi(Ts−1, ws · · ·wh) = (T ∗s−1, w

∗
s · · ·w∗h). Finally, denote by

(T ∗s , w
∗
s+1 · · ·w∗h) the result of applying one insertion step to (T ∗s−1, w

∗
s · · ·w∗h). Then we

have that (T ∗s , w
∗
s+1 · · ·w∗h) = fi(Ts, ws+1 · · ·wh).

Proof. First of all, if fi acts on some wk for k > s (or is 0) then since (as is easily
verified) the reading word of (Ts−1, ws) and the reading word of Ts have the same number
of bracketed is, it follows that fi acts on (Ts, ws+1 · · ·wh) at wk (or is 0) as well and the
result follows. Hence we may assume h = s and fi(Ts−1, ws · · ·wh) 6= 0.

Next, since the fi operator only concerns is, j′s, and js, it suffices “ignore” entries
smaller than i or greater than j. In other words it suffices to prove the following: Let
T be a primed tableau of arbitrary skew shape composed only of is, j′s, and js. Then
if z is some inner corner box of T , and Vz(T ) denotes removing the entry in box z and
continuing mixed Haiman insertion from this point as if the entry of z had been bumped,
we have the following equality: fi(Vz(T )) = Vz(fi(T )), where the operator fi is applied to
a skew tableau just as for a straight shape tableau.

Example 19. Set T =
2 2

2 3′ 3
3′

and let z be the box containing the red entry. To compute

Vz(T ), we remove the red 2, insert it in the 2nd row, bumping a 3′, which is inserted in
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the 3rd column, bumping a 3, which is appended to the 3rd row. Thus Vz(T ) =
2

2 2 3′

3′ 3
.

Then f2 acts on Vz(T ) =
2

2 2 3′

3′ 3
via F3 at the blue and green entries in boxes x and q

to give f2(Vz(T )) =
3′

2 2 3
3′ 3

.

On the other hand f2 acts on T =
2 2

2 3′ 3
3′

via F3 at the blue and green entries in

boxes x and q to give f2(T ) =
2 3′

2 3 3
3′

. Then, Vz(f2(T )) is computed by removing the

red entry from f2(T ) =
2 3′

2 3 3
3′

, inserting it into the 2nd row, bumping a 3, which is

appended to the 3rd row to give Vz(f2(T )) =
3′

2 2 3
3′ 3

.

As before, let x and q denote the position of T in which fi acts. Let rx, rq, and rz
denote the rows containing x, q, and z respectively. For each possible way in which fi(T )
could be formed from T , we explain how fi acts on Vz(T ) := T ′. It is left to the reader to
see that applying Vz to fi(T ) has the same result.

1. Suppose fi acts on T by F1 at x.

(a) If rz > rx then fi acts on T ′ by F1 at x unless z is in the column to the left of
x and c(z) = j′. In this case fi acts on T ′ by F3 at x and Sx.

(b) If rz = rx the row rx + 1 contains no j (otherwise, the i in rx would be
bracketed). If it also contains no j′, then fi acts by F1 on T ′ at the last entry
of row rx + 1. Otherwise fi acts by F2 at the last two entries of row rx + 1.

(c) If rz = rx − 1, then fi acts on T ′ by F1 at x unless c(z) = i. In this case we
must have c(Ex) = j (or else the i in z would be unbracketed), so that fi acts
on T ′ by F1 at Ex.

(d) If rz < rx − 1 then fi acts on T ′ by F1 at x.

2. Suppose fi acts on T by F2 at x and Ex.

(a) If rz > rx then fi acts on T ′ by F2 at x and Ex.

(b) If rz = rx the row rx + 1 contains no j (otherwise, the i in rx would be
bracketed). If it also contains no j′, then fi acts by F1 on T ′ at the last entry
of row rx + 1. Otherwise fi acts by F2 at the last two entries of row rx + 1.
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(c) If rz = rx−1, then fi acts on T ′ by F2 at x and Ex unless c(z) = i. In this case
we must have a j to the right of Ex (or else the i in z would be unbracketed),
so that fi acts on T ′ by F2 at Ex and the position to the right of Ex.

(d) If rz < rx − 1 then fi acts on T ′ by F2 at x and Ex.

3. Suppose fi acts on T by F3 at x and q.

(a) If rz > rq then fi acts on T ′ by F3 at x and q unless z is in the column to the
left of x and c(z) = j′. In this case fi acts on T ′ by F3 at x and Sq.

(b) If rz = rq, then q = Ez and c(z) = i. If the row rq + 1 contains a j′ in the
column to the left of q then fi acts on T ′ by F3 at x and Sq. Otherwise fi acts
on T ′ by F3 at x and q.

(c) If rz = rq − 1, then z is above q with c(z) = i. If z 6= x then fi acts on T ′ by
F3 at x and Eq. Otherwise fi acts on T ′ by F1 at q.

(d) If rz < rq − 1, and rz > rx, then fi acts by F3 at x and q (but one of the boxes
in the ribbon defined in F3 has moved diagonally down and to the right).

(e) If rz < rq − 1, and rz = rx + 1. Then c(Ex) = j and fi acts on T ′ by F3 at Ex
and q.

(f) If rz < rq − 1, and rz = rx, then fi acts by F3 at Sx and q.

(g) If rz < rq − 1 and rz < rx + 1 then fi acts on T ′ by F3 at x and q.

It is immediate from this definition and Proposition 14 that eī and fī are also inverses.
Moreover, the relationship to Haiman insertion is the same as for the non-barred operators:

Theorem 20. P(fi(w)) = fi(P(w)) and P(fī(w)) = fī(P(w)).

Proof. The first equality is immediate from Theorem 18. For the second, note that:

P(fī(w)) = P((fi(w
+))−) = (P(fi(w

+)))− = (fi(P(w))+)− = fī(P(w)).

From this and Theorem 17 it follows that Haiman insertion is a bicrystal isomorphism,
hence proving that the crystal operators do in fact give a type A bicrystal on primed
tableaux. From this we conclude:

Theorem 21. For any ω ∈ An:

F d
ω(x,y) =

∑
T∈E(ω)

∑
S∈H(sh(T ))

sdw(S,1)(x)sdw(S,2)(y),

where H(sh(T )) denotes all primed tableaux S of the same shape as T such that the reading
word of S and S+ are both reverse Yamanouchi words.

Next we give an example of the theorem:
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Example 22. If ω = 121, then

E(ω) =

{
1 2
2

}

H(2, 1) =

{
1 1
2

, 1′ 1
1

, 1′ 1
2

, 1′ 1
1′

, 1′ 2′

1
, 1′ 2′

1′

}

F d
ω(x,y) = s21(x) + s2(x)s1(y) + s11(x)s1(y) + s1(x)s2(y) + s1(x)s11(y) + s21(y)

4 Primed Signed Tableaux

In this section we prove that primed tableaux and signed tableaux are in bijective corre-
spondence. This will then allow us to investigate the algebraic relationship between the
type A Stanley symmetric function and the double Stanley symmetric function (see the
end of the section).

If T ∈ PST (λ/µ,X, Y, j), then we may obtain an element of PST (λ/µ,X, Y, j − 1) if
j > 0 by applying the following inward conversion 2 procedure to T X(j) times:

1. Change the uppermost primed j in T to a barred j.

2. Repeat the following procedure until all rows and columns are weakly increasing:
Switch the lowermost barred j with either the entry above it or to its left, determined
as follows:

• If only one of the entries exists, take it.

• If these entries are not equal, take the larger.

• If they are equal and are unmarked, take the one above.

• If they are equal and are marked, take the one on the left.

It is not immediately clear that the result is in fact a PST–namely it seems possible
that the result of the algorithm above may contain two or more barred js in the same row.
To see this is impossible we reason as follows: For each of the X(j) conversions, let the
corresponding conversion path be the set of boxes which are altered during this conversion.
If p1, . . . , pX(j) denote these paths, then it is not difficult to check the following.

Lemma 23. Let 1 6 i < Xj. If b is the highest box in its column that belongs to pi then
neither b nor any box above b in this column belongs to pi+1. Further, any box in pi+1 that
lies to the left of the upper leftmost box of pi also lies below it.

2A somewhat similar definition appears in [Hai89] for the case where letters may not be repeated.
In fact, one can use a certain standardization process along with Haiman’s mixed insertion, Haiman’s
conversion, and Haiman’s Theorem 3.12, [Hai89] to derive Theorem 26 below for the specific case of µ = ∅,
i.e., for straightshape tableaux. However, the proofs needed to do this are somewhat more complicated
than those employed below, and the result, of course, less general.
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This implies there will never be more than one barred j in any row during the inward
conversions.

Example 24. Applying inward conversion twice to

-4 -3 1 4
-4 1′ 2′

-3 1 2′

2 2

yields

-4 -3 -2 4
-4 -2 1′

-3 1 1
2 2

.

Similarly, if T ∈ PST (λ/µ,X, Y, j), we may obtain an element of PST (λ/µ,X, Y, j+1)
if j < k by applying the outward conversion procedure to T X(j + 1) times:

1. Change the lowermost barred j in T to a primed j if it exists.

2. Repeat the following procedure until all rows and columns are weakly increasing:
Switch the uppermost primed j with either the entry below it or to its right, deter-
mined as follows:

• If only one of the entries exists, take it.

• If these entries are not equal, take the smaller.

• If they are equal and are unmarked, take the one below.

• If they are equal and are marked, take the one on the right.

Analogously, we have: If q1, . . . , qX(j) denote the conversion paths, then it is not
difficult to check the following.

Lemma 25. Let 1 6 i < Xj. If b is the lowest box in its column which belongs to qi then
neither b nor any box below q in this column belongs to qi+1. Further, any box in qi+1 that
lies to the right of the lower rightmost box of qi also lies above it.

This implies there will never be more than one barred j in any column during the
outward conversions.

This construction leads to the major result of this section:

Theorem 26. Fix λ, µ, X, and Y . Then for any 1 6 j 6 k there is a bijection
PST (λ/µ,X, Y, j)⇒ PST (λ/µ,X, Y, j − 1).

Proof. The bijection is given by applying inward conversion X(j) times (and the inverse
by applying outward conversion X(j) times).

Definition 27. Let X, Y ∈ Zk>0. A signed tableau of shape λ/µ and double weight (X, Y )
is an element of PST (λ, µ,X, Y, 0).

Corollary 28. Letting PT (λ/µ) denote the set of all primed tableaux of shape λ/µ and
ST (λ/µ) denote the set of all signed tableaux of shape λ/µ, there is a double weight
preserving bijection: PT (λ/µ)⇒ ST (λ/µ).
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Given any symmetric function F we may consider its value on the doubled set of
variables (x,y), denoted simply F (x,y). Applying the involution on the ring of symmetric
functions ω defined by condition ω(sλ(x)) = sλ′(x) to the function F (x,y) considered as
function in the variable x (over the ring of symmetric functions in y) yields a symmetric
function which we denote F (x/y). Since it follows from 28 that

Rλ/µ(x, y) :=
∑

T∈PT (λ/µ)

xdw(T,1)ydw(T,2) =
∑

T∈ST (λ/µ)

xdw(T,1)ydw(T,2),

it is clear from the definition of ST (λ/µ) that we have Rλ/µ(x,y) = sλ/µ(x/y). From this
and Theorem 8 it follows that for all ω ∈ An, F d

ω(x,y) = FA
ω (x/y). In particular this

implies a relationship first noted by Lam ([Lam95]): FC
ω (x) = F d

ω(x,x) = FA
ω (x/x) for

ω ∈ An.

5 Conjectures for type C

Recall that the concept of RSIFk was defined for any ω ∈ Cn+1, not just ω ∈ An. However,
we only defined F d

ω(x,y) for elements of An. This is because, unfortunately, generalizing
F d
ω(x,y) in the canonical manner to Cn+1 does not result in a symmetric function. There

are some cases however, where F d
ω(x,y) does exhibit some nice symmetry properties when

we generalize to elements outside of An. The approaches needed to investigate this sym-
metry are unrelated to those in the rest of the paper and are relatively technical so we
will not include them in detail, but rather give a short overview of some constructions
and conjectures.

Definition 29. We say an element ω ∈ Cn+1 is unknotted3 if the following hold for all
reduced words w for ω:

1. If the sequence s0s1s0s1 appears in w, then s2 does not.

2. For i > 0 if the sequence sisi+1si appears in w then si+2 does not.

For instance, the permutations corresponding to the reduced words, s1s2s3s4s5s4,
s2s1s0s1s2s3s2,
s1s0s1s0s3s4s3, and s2s1s3s2s4s3 are unknotted.

3The conjectures of this section are theorems if we replace unknotted with the slightly stronger concept
of untangled. An element ω ∈ Cn+1 is untangled if for all reduced words w for ω:

1. s2 does not appear in w.

2. For i > 2, if si and si+1 appear in w, and one of si or si+1 appears more than once, then si−1 and
si+2 do not appear in w.

However, we do not provide the proofs here.
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Definition 30. A signed Edelman-Greene tableau for an unknotted signed permutation,
ω, is a tableau composed of entries from the alphabet {· · · <-3 <-2 <-1 < 0 < 1 < 2 <
3 < · · · } such that:

1. The reading word of T , obtained from reading the rows of T left to right, bottom
to top and then changing any i or -i to si is a reduced word for ω.

2. The rows and columns of T are weakly increasing.

3. Whenever Tij = T(i+1)j then we have one of:

• There exists k > j such that |T(i+1)k| = |Tij|+ 1.

• There exists l < j such that |Til| = |Tij|+ 1.

• Tij =-1 = T(i+1)j and Ti(j+1) = 0 = T(i+1)(j+1).

Example 31. The following is a signed Edelman-Greene tableau for the unknotted signed
permutation {−2,−1, 5, 4, 3, 8, 7, 6} ∈ C8:

-7 -1 0 6
-3 -1 0 6
-3 4

since its reading word s3s4s3s1s0s6s7s1s0s6 produces the given signed permutation, and
each of the four instances of repeated entries in a column is allowed by rule (3).

We are now ready to state the three conjectures of this section.

Conjecture 32. Suppose ω ∈ Cn+1 is unknotted, Then we have:

F d
ω(x,x) =

∑
λ

Ēλ
ωsλ(x)

where Ēλ
ω is the number of signed Edelman-Greene tableaux for ω with shape λ.

Conjecture 33. Suppose ω ∈ Cn+1 is unknotted and any reduced word for ω has at most
one s0. Then:

F d
ω(x,−x) =

∑
r even

∑
λ

Ēλr
ω sλ(x)−

∑
r odd

∑
λ

Ēλr
ω sλ(x)

where Ēλr
ω is the number of signed Edelman-Greene tableaux for ω with shape λ and

exactly r barred entries.

Conjecture 34. Suppose ω ∈ Cn+1 is unknotted and any reduced word for ω has no s0

(i.e., ω ∈ An). Then:

F d
ω(x, tx) =

∑
λ

Ēλr
ω sλ(x)tr

where Ēλr
ω is the number of signed Edelman-Greene tableaux for ω with shape λ and

exactly r barred entries.
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Example 35. Let ω be the unknotted signed permutation {−2,−1, 4, 3}. Then we have
the following signed Edelman-Greene tableaux for ω:

-3 -1 0 1
0

-1 0 1 3
0

-3 -1 0
-1 0

-1 0 3
-1 0

-3 0 1
0 1

-1 0 1
0 3

-3 0 1
-1
0

-1 0 1
0
3

-3 -1 0
0
1

-1 0 3
0
1

-3 0
0 1
1

-1 0
-1 0
3

-1 0
0 3
1

-3 -1
-1 0
0

-3 0
-1
0
1

-1 0
0
1
3

By conjecture 32, F d
ω(x,x) = 2s41(x) + 4s32(x) + 4s311(x) + 4s221(x) + 2s2111(x).

Example 36. Let ω be the unknotted signed permutation {3, 2,−1, 4}. Then we have
the following signed Edelman-Greene tableaux for ω:

-2 0 1 2

0 1 2
2

-2 1 2
0

-2 -1 2
0

-1 2
0 2

-2 1
-1 2

-2 1
-1
0

-2 -1
-1
0

-1 2
0
2

-2
-1
0
2

By conjecture 32, F d
ω(x,x) = s4(x) + 3s31(x) + 2s22(x) + 3s211(x) + s1111(x).

By conjecture 33, F d
ω(x,−x) = −s4(x) + s31(x)− s211(x) + s1111(x).
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Example 37. Let ω be the unknotted signed permutation {3, 2, 1, 4}. Then we have the
following signed Edelman-Greene tableaux for ω:

-2 1 2 -2 -1 2

1 2
2

-1 2
2

-2 1
1

-2 -1
1

-2 1
-1

-2 -1
-1

-2
1
2

-2
-1
2

By conjecture 32, F d
ω(x,x) = 2s3(x) + 6s21(x) + 2s111.

By conjecture 33, F d
ω(x,−x) = 0.

By conjecture 34, F d
ω(x, tx) = s21(x) + ts3(x) + 2ts21(x) + ts111(x) + t2s3(x) + 2t2s21(x) +

t2s111(x) + t3s21(x).

Remark 38. We will call a signed Edelman-Greene tableau for ω a signed unimodal tableau
for ω if changing all -i to i for each i produces a unimodal tableau for ω as defined in 3.1
of [HPS17] (after sliding rows to attain a shifted shape).

Example 39. The signed unimodal tableaux that appear in example 35 are:

-3 -1 0 1
0

-1 0 1 3
0

-3 -1 0
-1 0

-3 0 1
0 1

Example 40. The signed unimodal tableaux that appear in example 36 are:

-2 0 1 2
-2 1 2
0

-2 -1 2
0

Example 41. The signed unimodal tableaux that appear in example 37 are:

-2 1 2 -2 -1 2
-2 1
1

-2 -1
1

-2 1
-1

-2 -1
-1

It is apparent from the definitions of F d
ω and FC

ω given in section 1 that 2ze(ω)F d
ω(x,x) =

FC
ω (x) where ze(ω) is the number of s0 in a reduced word for ω. From this and equation

(3.3) of [HPS17] it can be deduced that:

F d
ω(x,x) =

∑
λ

Ūλ
ωPλ(x),

where Ūλ
ω is the number of signed unimodal tableaux for ω with shape λ. If ω is unknotted

we may apply conjecture 32 to the left hand side and expand the right hand side in terms
of Schur polynomials to get:∑

µ

Ēµ
ωsµ(x) =

∑
λ

∑
µ

Ūλ
ωhλµsµ(x),
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where hλµ is the multiplicity of sµ in the Schur expansion of Pλ. Since hλλ = 1 and
hλµ = 0 for µ ≺ λ in dominance order, it follows that if µ is maximal such Ēµ

ω > 0 then
Ēµ
ω = Ūµ

ω . Hence, for such maximal µ the set of signed Edelman-Greene tableau for ω
with shape µ must be equal to the set of signed unimodal tableau for ω with shape µ.

References

[BH95] Sara Billey and Mark Haiman. Schubert polynomials for the classical groups. J.
Amer. Math. Soc., 8(2):443–482, 1995.

[BS17] Daniel Bump and Anne Schilling. Crystal Bases: Representations and Combi-
natorics. World Scientific, 2017.

[EG87] Paul Edelman and Curtis Greene. Balanced tableaux. Adv. in Math., 63(1):42–
99, 1987.

[FK96] Sergey Fomin and Anatol N. Kirillov. Combinatorial Bn-analogues of Schubert
polynomials. Trans. Amer. Math. Soc., 348(9):3591–3620, 1996.

[Hai89] Mark Haiman. On mixed insertion, symmetry, and shifted Young tableaux. J.
Combin. Theory Ser. A, 50(2):196–225, 1989.

[HPS17] Graham Hawkes, Kirill Paramonov, and Anne Schilling. Crystal analysis of type
C Stanley symmetric functions. Electron. J. Combin., 24(3):#P3.51, 2017.

[Lam95] Tao Kai Lam. B and D analogues of stable Schubert polynomials and related
insertion algorithms. ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–
Massachusetts Institute of Technology.

[Len04] Christian Lenart. A unified approach to combinatorial formulas for schubert
polynomials. J. Algebraic Combin., 20:263–299, 2004.

[MS16] Jennifer Morse and Anne Schilling. Crystal approach to affine Schubert calculus.
Int. Math. Res. Not. IMRN, (8):2239–2294, 2016.

[Sta84] Richard P. Stanley. On the number of reduced decompositions of elements of
Coxeter groups. European J. Combin., 5(4):359–372, 1984.

the electronic journal of combinatorics 27(3) (2020), #P3.15 20


	Introduction and Notation
	Expansion in Terms of Primed Tableaux
	Crystal Structure and Schur expansion
	Proof that the operators fi,ei,f,e form an Ak-1 bicrystal

	Primed Signed Tableaux
	Conjectures for type C

