
S-hypersimplices, pulling triangulations, and

monotone paths

Sebastian Manecke Raman Sanyal Jeonghoon So
Institut für Mathematik

Goethe-Universität Frankfurt
Germany

manecke@math.uni-frankfurt.de

sanyal@math.uni-frankfurt.de

jeonghoon.so@stud.uni-frankfurt.de

Submitted: Jan 17, 2019; Accepted: May 28, 2020; Published: Jul 24, 2020

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

An S-hypersimplex for S ⊆ {0, 1, . . . , d} is the convex hull of all 0/1-vectors
of length d with coordinate sum in S. These polytopes generalize the classical
hypersimplices as well as cubes, crosspolytopes, and halfcubes. In this paper we
study faces and dissections of S-hypersimplices. Moreover, we show that monotone
path polytopes of S-hypersimplices yield all types of multipermutahedra. In analogy
to cubes, we also show that the number of simplices in a pulling triangulation of a
halfcube is independent of the pulling order.

Mathematics Subject Classifications: 52B20, 52B12

1 Introduction

The cube �d = [0, 1]d together with the simplex ∆d = conv(0, e1, . . . , ed) and the
cross-polytope ♦d = conv(±e1, . . . ,±ed) constitute the Big Three, three infinite families
of convex polytopes whose geometric and combinatorial features make them ubiquitous
throughout mathematics. A close cousin to the cube is the (even) halfcube

Hd := conv
(
p ∈ {0, 1}d : p1 + · · ·+ pd even

)
.

The halfcubesH1 andH2 are a point and a segment, respectively, but for d > 3, Hd ⊂ Rd is
a full-dimensional polytope. The 5-dimensional halfcube was already described by Thomas
Gosset [11] in his classification of semi-regular polytopes. In contemporary mathematics,
halfcubes appear under the name of demi(hyper)cubes [7] or parity polytopes [26]. In
particular the name ‘parity polytope’ suggests a connection to combinatorial optimization
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and polyhedral combinatorics; see [6, 10] for more. However, halfcubes also occur in
algebraic/topological combinatorics [13, 14], convex algebraic geometry [22], and in many
more areas.

In this paper, we investigate basic properties of the following class of polytopes that
contains cubes, simplices, cross-polytopes, and halfcubes. For a nonempty subset S of
[0, d] := {0, 1, . . . , d}, we define the S-hypersimplex

∆(d, S) := conv
(
v ∈ {0, 1}d : v1 + v2 + · · ·+ vd ∈ S

)
.

In the context of combinatorial optimization these polytopes were studied by Grötschel [15]
associated to cardinality homogeneous set systems. Our name and notation derive from
the fact that if S = {k} is a singleton, then ∆(d, S) =: ∆(d, k) is the well-known
(d, k)-hypersimplex, the convex hull of all vectors v ∈ {0, 1}d with exactly k entries
equal to 1. This is a (d − 1)-dimensional polytope for 0 < k < d that makes prominent
appearances in combinatorial optimization as well as in algebraic geometry [19]. We call
S proper, if ∆(d, S) is a d-dimensional polytope, which, for d > 1, is precisely the case
if |S| 6= 1 and S 6= {0, d}. For appropriate choices of S ⊆ [0, d], we get
– the cube �d = ∆(d, [0, d]),
– the even halfcube Hd = ∆(d, [0, d] ∩ 2Z),
– the simplex ∆d = ∆(d, {0, 1}), and
– the cross-polytope ∆(d, {1, d− 1}) (up to linear isomorphism).

In Section 2, we study the vertices, edges, and facets of S-hypersimplices.
Our study is guided by a nice decomposition of S-hypersimplices into Cayley polytopes

of hypersimplices.
In Section 3 we return to the halfcube. A combinatorial d-cube has the interesting

property that all pulling triangulations have the same number of d-dimensional simplices.
The Freudenthal or staircase triangulation is a pulling triangulation and shows that the
number of simplices is exactly d!. We show that the number of simplices in any pulling
triangulation of Hd is independent of the order in which the vertices are pulled. More-
over, we relate the full-dimensional simplices in any pulling triangulation of Hd to partial
permutations and show that their number is given by

t(d) =
d∑
l=3

d!

l!

(
2l−1 − l

)
.

For a polytope P ⊂ Rd and a linear function ` : Rd → R, Billera and Sturmfels [4]
associate the monotone path polytope Σ`(P ).This is a (dimP − 1)-dimensional poly-
tope whose vertices parametrize all coherent `-monotone paths of P . As a particularly
nice example, they show in [4, Example 5.4] that the monotone path polytope Σc(�d),
where c is the linear function c(x) = x1 + x2 + · · ·+ xd, is, up to homothety, the polytope

Πd−1 = conv((σ(1), . . . , σ(d)) : σ permutation of [d]) .

For a point p ∈ Rd, the convex hull of all permutations of p is called the permutahe-
dron Π(p) and we refer to Πd−1 = Π(1, 2, . . . , d) as the standard permutahedron. If
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p has d distinct coordinates, then Π(p) is combinatorially (even normally) equivalent to
Πd−1. For the case that p has repeated entries, these polytopes were studied by Billera-
Sarangarajan [3] under the name of multipermutahedra. In Section 4, we study maximal
c-monotone paths in the vertex-edge-graph of ∆(d, S). We show that all c-monotone paths
of ∆(d, S) are coherent and that essentially all multipermutahedra Π(p) for p ∈ [0, d−1]d

occur as monotone path polytopes of S-hypersimplices.
We close with some questions and ideas regarding S-hypersimplices in Section 5.

2 S-hypersimplices

The vertices of the d-cube can be identified with sets A ⊆ [d] and we write eA ∈ {0, 1}d
for the point with (eA)i = 1 if and only if i ∈ A. Let S ⊆ [0, d]. Since ∆(d, S) is a
vertex-induced subpolytope of the cube, it is immediate that the vertices of ∆(d, S) are
in bijection to (

[d]

S

)
:= {A ⊆ [d] : |A| ∈ S} .

This gives the number of vertices as |V (∆(d, S))| =
∑

s∈S
(
d
s

)
.

For a polytope P ⊂ Rd and a vector c ∈ Rd, let

P c := {x ∈ P : 〈c,x〉 > 〈c,y〉 for all y ∈ P}

be the face in direction c. For example, unless S = {0}, ∆(d, S)ei is the convex hull
of all eA with A ∈

(
[d]
S

)
with i ∈ A. Likewise, unless S = {d}, ∆(d, S)−ei = conv(eA :

A ∈
(
[d]
S

)
, i 6∈ A). Under the identification {x : xi = 1} ∼= Rd−1, this gives for |S| > 1

∆(d, S)ei ∼= ∆(d− 1, S+) where S+ := {s− 1 : s ∈ S, s > 0} ,
∆(d, S)−ei ∼= ∆(d− 1, S−) where S− := {s : s ∈ S, s < d− 1} .

(1)

These faces will be helpful in determining the edges of ∆(d, S). For two sets A,B ⊆ [d],
we denote the symmetric difference of A and B by A4B := (A ∪ B) \ (A ∩ B). For
two points p,q ∈ Rd, we write [p,q] for the segment joining p to q.

Theorem 1. Let S = {0 6 s1 < · · · < sk 6 d} and A,B ∈
(
[d]
S

)
with |A| = si 6 sj = |B|.

Then [eA, eB] is an edge of ∆(d, S) if and only if
(i) A ⊂ B and j = i+ 1, or

(ii) i = j, |A4B| = 2, and {si − 1, si + 1} 6⊂ S.

Proof. Let A,B ∈
(
[d]
S

)
. If i ∈ A ∩ B, then [eA, eB] is an edge of ∆(d, S) if and only if

[eA, eB] is an edge of ∆(d, S)ei . By (1), ∆(d, S)ei ∼= ∆(d−1, S+) and [eA, eB] ∼= [eA\i, eB\i].
Hence we can assume A ∩ B = ∅. For i ∈ [d] \ (A ∪ B), we consider ∆(d, S)−ei and by
the same argument we may also assume that A ∪B = [d].

If A = ∅, then B = [d] and [eA, eB] meets every ∆(d, k) in the relative interior for
0 < k < d. Hence [eA, eB] is an edge if and only if S = {0, d}, which gives us (i).
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If 0 < si = |A|, then let i ∈ A and j ∈ B. Then [eA, eB] and [eA′ , eB′ ] have the
same midpoint for A′ = (A \ i) ∪ j and B′ = (B \ j) ∪ i. Thus [eA, eB] is an edge of
∆(d, S) if and only if (A′, B′) = (B,A). This is the case precisely when |A4B| = 2 and
A ∩B,A ∪B 6∈

(
[d]
S

)
.

Theorem 1 makes the number of edges readily available.

Corollary 2. The number of edges of ∆(d, S) is

k∑
i=1

(
d− si
si+1 − si

)(
d

si

)
+
∑
j

sj(d− sj)
2

(
d

sj

)
,

where sk+1 := 0 and the second sum is over all 1 6 j 6 k, such that {sj − 1, sj + 1} 6⊂ S.

Let us illustrate Theorem 1 for the classical examples of S-hypersimplices. For the
cube �d = ∆(d, [0, d]) it states, that the edges are of the form [eA, eB] for any A ⊂ B ⊆ [d]
such that |A| + 1 = |B|. For the halfcube Hd = ∆(d, [0, d] ∩ 2Z) we infer that there are
d(d− 1)2d−3 many edges for d > 3. As for the cross-polytope ∆(d, {1, d− 1}), every two
vertices are connected by an edge, except for e{i} and e[d]\{i} for all i ∈ [d].

Theorem 1 states that there are no long edges of ∆(d, S). We can make use of this
fact to get a canonical decomposition of ∆(d, S). For λ ∈ R, define the hyperplane

H(λ) := {x ∈ Rd : x1 + · · ·+ xd = λ} .

We note the following consequence of Theorem 1.

Corollary 3. Let S ⊆ [0, d] and s ∈ S. Then ∆(d, S) ∩H(s) = ∆(d, s).

Proof. Every vertex v of ∆(d, S) ∩H(s) is of the form F ∩H(s) for a unique inclusion-
minimal face F ⊆ ∆(d, S) of dimension 6 1. If F is an edge, then its endpoints eA, eB
satisfy |A| < s < |B| which contradicts Theorem 1. Hence F = eC for some C ⊆ [d] with
|C| = s.

If S = {s1 < · · · < sk} with k > 2, then we can decompose

∆(d, S) = ∆(d, s1, s2) ∪ ∆(d, s2, s3) ∪ · · · ∪ ∆(d, sk−1, sk) , (2)

where we set ∆(d, k, l) := ∆(d, {k, l}) = conv(∆(d, k) ∪∆(d, l)) for 0 6 k < l 6 d. The
polytope ∆(d, k, l) is the Cayley polytope of ∆(d, k) and ∆(d, l). Moreover, for i < j,
we see that ∆(d, si, si+1) ∩∆(d, sj, sj+1) = ∆(d, sj) if j = i+ 1 and = ∅ otherwise.

Before we determine the facets of ∆(d, S), we recall some properties of permutahedra
from [3] that we will also need in Section 4. Let us say that a point p ∈ Rd is decreasing
if p1 > p2 > · · · > pd. The permutahedron associated to p is the polytope

Π(p) := conv
(
σp := (pσ(1), pσ(2), . . . , pσ(d)) : σ permutation of [d]

)
.

Unless pi = pj for all i 6= j, Π(p) is a polytope of dimension d − 1 with affine hull given
by H(p1 + · · ·+ pd).

Notice that Π(p)σu = σ−1Π(p)u. Thus, if we want to determine the face Π(p)u up to
permutation of coordinates, we can assume that u is decreasing. The Minkowski sum
of two polytopes P,Q ⊂ Rd is the polytope P +Q = {p + q : p ∈ P, q ∈ Q}.
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Proposition 4. Let p,q ∈ Rd be decreasing. Then

Π(p) + Π(q) = Π(p + q) .

Proof. Set P := Π(p) + Π(q). Clearly σ(p + q) = σp + σq for all permutations σ and
therefore every vertex of Π(p + q) is a vertex of P . For the converse, let c be such that
P c = {v} is a vertex. Since P is invariant under coordinate permutations, we can assume
that c is decreasing. Furthermore (Π(p) + Π(q))c = Π(p)c + Π(q)c and it follows that
v = p + q. Hence, every vertex of P is of the form σ(p + q) for some permutation σ,
which completes the proof.

For ν1 > ν2 > · · · > νr and k1, k2, . . . , kr ∈ Z>0 such that k1 + · · ·+ kr = d, we set

(νk11 , ν
k2
2 , . . . , ν

kr
r ) := (ν1, . . . , ν1︸ ︷︷ ︸

k1

, ν2, . . . , ν2︸ ︷︷ ︸
k2

, . . . , νr, . . . , νr︸ ︷︷ ︸
kr

) .

For example, the (d, k)-hypersimplex is the permutahedron ∆(d, k) = Π(1k, 0d−k).
The facets of permutahedra were described by Billera-Sarangarajan [3]. We recall

their characterization. We write Ic := [d] \ I for the complement of I ⊆ [d].

Theorem 5 ([3, Theorem 3.2]). Let P = Π(νk11 , . . . , ν
kr
r ) and c ∈ Rd. Then P c is a facet

if and only if c = αeI + βeIc for some α > β and ∅ 6= I ⊂ [d] and h = |I| satisfies
(a) k1 + 1 6 h 6 d− kr − 1, or
(b) h = 1 if kr < d− 1, or
(c) h = d− 1 if k1 < d− 1.

The theorem shows, for example, that ∆(d, k) for 1 < k < d − 1 has 2d facets with
normals given by ±e1, . . . ,±ed.

In order to determine the facets of ∆(d, S), we appeal to the decomposition (2). Let
S = {0 6 s1 < s2 < · · · < sk 6 d} be proper so that ∆(d, S) ⊂ Rd is full-dimensional.
We write 1 := e[d] for the all-ones vector. If s1 > 0, then ∆(d, s1) = ∆(d, S)−1 is a facet.
Likewise, if sd < d, then ∆(d, sk) = ∆(d, S)1 is a facet. If F ⊂ ∆(d, S) is any other facet,
then its vertices cannot have all the same cardinality. If si ∈ S is the minimal cardinality
of a vertex in F , then F ∩∆(d, si, si+1) is a facet of ∆(d, si, si+1). Hence, as a first step,
we determine the facets of ∆(d, si, si+1) that are not equal to ∆(d, si) and ∆(d, si+1).

Let S = {k < l} be proper. An easy calculation shows that

∆(d, k, l) ∩H(k+l
2

) = 1
2
(∆(d, k) + ∆(d, l)) .

Moreover, if F ⊂ ∆(d, k, l) is a facet, then F ∩ H(k+l
2

) is a facet of the right-hand side

and every facet arises that way. Hence it suffices to determine the facets of ∆(d, k, l) :=
∆(d, k) + ∆(d, l). We will need the notion of a join of two polytopes: If P,Q ⊂ Rd

are polytopes such that their affine hulls are skew, i.e., non-parallel and disjoint, then
P ∗ Q := conv(P ∪ Q) is called the join of P and Q. Every k-dimensional face of
P ∗ Q is of the form F ∗ G where F ⊆ P and G ⊆ G are (possibly empty) faces with
dimF + dimG = k − 1.
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Proposition 6. Let 1 6 k < l < d. In addition to the facets ∆(d, k, l)1 = ∆(d, l) and
∆(d, k, l)−1 = ∆(d, k), there are

∆(d, k, l)ei ∼= ∆(d− 1, k − 1, l − 1) and ∆(d, k, l)−ei ∼= ∆(d− 1, k, l)

for i = 1, . . . , d. Every other facet is of the form

∆(d, k, l)c ∼= ∆(h, k) ∗∆(d− h, l − h)

where c = (l − h)eI − (h− k)eIc for any ∅ 6= I ⊂ [d] with k < h := |I| < l.

Proof. We first determine the facets of ∆(d, k, l). Using Proposition 4, we see that
∆(d, k, l) is the permutahedron Π(2k, 1l−k, 0d−l). Theorem 5 yields that the facet di-
rections of ∆(d, k, l) are given c = αeI + βeIc for ∅ 6= I ⊂ [d] with |I| = 1, |I| = d− 1, or
k < |I| < l and α > β. In particular, for every I there is, up to scaling, a unique choice
for α and β so that ∆(d, k, l)c is a facet.

For I = {i} we already observed that c = eI = ei yields a facet linearly isomorphic to
∆(d− 1, k − 1, l − 1). Likewise, for [d] \ I = {j}, we obtain for c = eI − 1 = −ej a facet
that is linearly isomorphic to ∆(d− 1, k, l).

For I ⊆ [d] with k < |I| < l, we observe that eA ∈ ∆(d, k)eI if and only if A ⊂ I and
eA ∈ ∆(d, l)eI if and only if I ⊂ A. Set h := |I| and c = (l − h)eI − (h − k)eIc . For
A ∈

(
[d]
k

)
we compute

〈c, eA〉 = (l − h)|A ∩ I| − (h− k)|A ∩ Ic| 6 (l − h)k

with equality if and only if A ⊂ I. For A ∈
(
[d]
l

)
, we compute

〈c, eA〉 = (l − h)|A ∩ I| − (h− k)|A ∩ Ic| 6 (l − h)h− (h− k)(l − h) = (l − h)k

with equality if and only if I ⊂ A. Hence the hyperplane H = {x : 〈c,x〉 = (l − h)k}
supports ∆(d, k, l) in a facet, since H also supports a facet of ∆(d, k, l). In particular,
∆(d, k) ∩ H ∼= ∆(h, k) under the identification {x : xi = 0 for i 6∈ I} ∼= Rh. Likewise
∆(d, l) ∩ H ∼= ∆(d − h, l − h) under the identification {x : xi = 1 for i ∈ I} ∼= Rd−h.
This also shows that the given subspaces are skew and, since they lie in H(k) and H(l)
respectively, are disjoint. This shows that ∆(d, l, k) ∼= ∆(h, k) ∗∆(d− h, l − h).

It follows from Proposition 6 that ∆(d, k, l) and ∆(d, l,m) for 0 < k < l < m < d
never have facet normals of type (v) in common. This gives us the following description
of facets of S-hypersimplices; see also [15].

Theorem 7. Let S = {0 6 s1 < · · · < sk 6 d} be proper. Then ∆(d, S) has the following
facets

(i) ∆(d, S)1 = ∆(d, sk) provided sk < d;
(ii) ∆(d, S)−1 = ∆(d, s1) provided 0 < s1;
(iii) ∆(d, S)ei ∼= ∆(d− 1, S+) for i = 1, . . . , d provided S+ is proper;
(iv) ∆(d, S)−ei ∼= ∆(d− 1, S−) for i = 1, . . . , d provided S− is proper;
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(v) ∆(d, S)uI ∼= ∆(h, h− si) ∗∆(d− h, si+1 − h) where I ⊂ [d] with si < |I| =: h < si+1

for some 0 < i < k and uI := (si+1 − h)eI − (h− si)eIc.

Proof. By decomposition (2), every facet F of ∆(d, S) determines a facet of ∆(d, si, si+1)
for some 1 6 i < k and F is decomposed by this collection of facets. By examining the
possible facet normals of ∆(d, si, si+1), the statement readily follows.

If S = [0, d], then Theorem 7 gives us that �d has exactly 2d facets in the coordinate
directions ±ei for i = 1, . . . , d. The facets are again cubes as [0, d]± = [0, d − 1]. The
d-dimensional crosspolytope ♦d ∼= ∆(d, {1, d − 1}) has 2d facets. The two facets of type
(i), (ii), and those of type (iii) and (iv) are simplices. As for type (v) this is a join of two
simplices and thus also a simplex.

The description of combinatorial type of each facet also leads to the number of k-
dimensional faces for 0 6 k < d; cf. [21].

3 Pulling triangulations

A subdivision S of a d-dimensional polytope P ⊂ Rd is a collection S = {P1, . . . , Pm}
of d-polytopes such that P = P1 ∪ · · · ∪ Pm and Pi ∩ Pj is a face of Pi and Pj for all
1 6 i < j 6 m. If all polytopes Pi are simplices, then S is called a triangulation.
Triangulations are the method-of-choice for various computations on polytopes including
volume, lattice point counting, or, more generally, computing valuations; see [8].

A powerful method for computing a triangulation is the so-called pulling triangulation.
Let P be a d-polytope and v ∈ V (P ) a vertex. Let F1, . . . , Fm be the facets of P not
containing v. A key insight is that the collection of polytopes

Pi := v ∗ Fi := conv(Fi ∪ {v}) for i = 1, . . . ,m

constitutes a subdivision of P . This idea can be extended to obtain triangulations. Let
� be a partial order on the vertex set V (P ) such that every nonempty face F ⊆ P has
a unique minimal element with respect to �. We denote the minimal vertex of F by
vF . The pulling triangulation Pull�(P ) of P is recursively defined as follows. If P is a
simplex, then Pull�(P ) = {P}. Otherwise, we define

Pull�(P ) =
⋃
F

vP ∗ Pull�(F ) , (3)

where the union is over all facets F ⊂ P that do not contain vP and where vP ∗Pull�(F ) :=
{vP ∗Q : Q ∈ Pull�(F )}.

For the cube �d, or more generally the class of compressed polytopes [25], it can
be shown that every simplex S in a pulling triangulation of �d has the same volume
1
d!

. Thus, every pulling triangulation has exactly d! many simplices, independent of the
chosen order �.

Recall that the halfcube is the S-hypersimplex Hd = ∆(d, [0, d] ∩ 2Z). For d > 5 it is
not true that the simplices in a pulling triangulation of Hd all have the same volume. The
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main result of this section is that still the number of simplices in a pulling triangulation
is independent of the choice of �.

Theorem 8. Every pulling triangulation of Hd has the same number of simplices. The
number of simplices t(d) := |Pull�(Hd)| is given by

t(d) =
d∑
l=3

d!

l!

(
2l−1 − l

)
.

The proof of Theorem 8 is in two parts. We first show that the number of simplices
of Pull�(Hd) is independent of �. This yields a recurrence relation on t(d). In the second
part we review the construction of Pull�(Hd) from the perspective of choosing facets,
which yields a combinatorial interpretation for t(d) and which then verifies the stated
expression.

From Theorem 7 we infer the following description of facets of Hd for d > 3: For every
i = 1, . . . , d we have

H−eid = Hd ∩ {x : xi = 0} ∼= Hd−1 ,

Hei
d = Hd ∩ {x : xi = 1} ∼= Hd−1 ,

where the last isomorphism is realized by reflection in a hyperplane {x : xj = 1
2
} for j 6= i.

The remaining facets of Hd are provided by Theorem 7(v) and, in case d is odd, by (i):
For B ⊆ [d] with |B| odd and uB = eB − eBc , we have

HuB
d = Hd ∩ {x : 〈eB,x〉 − 〈eBc ,x〉 = |B| − 1} ∼= ∆d−1 .

Proposition 9. The number t(d) of simplices in a pulling triangulation of Hd satisfies

t(d) = d · t(d− 1) + 2d−1 − d

for d > 4 and t(d) = 1 for d 6 3.

Proof. We prove the result by induction on d. For d = 1, 2, 3, we note that Hd is itself a
simplex and thus there is nothing to prove.

For d > 4, let A ⊆ [d] be an even subset such that eA ∈ {0, 1}d is the minimal
vertex of P with respect to �. By the discussion preceding the proposition, the facets not
containing eA are Hei

d
∼= Hd−1 for i 6∈ A, H−eid

∼= Hd−1 for i ∈ A, and HuB
d
∼= ∆d−1 for

B ∈ B := {B ⊆ [d] : |B| odd, |A4B| > 1} .

Note that |B| = 2d−1 − d. Thus it follows from (3) that

t(d) = |Pull�(Hd)| =
∑
i∈A

|Pull�(H−eid )|+
∑
i 6∈A

|Pull�(Hei
d )|+

∑
B∈B

|Pull�(HuB
d )|

= d · t(d− 1) + 2d−1 − d ,

where the last equality follows by induction.
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Let P ⊂ Rd be a full-dimensional polytope with suitable partial order � on V (P ).
Every simplex in Pull�(P ) corresponds to a chain of faces

P = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gk (4)

such that dimGi = d−i and Gk is a simplex of dimension d−k. The corresponding simplex
is then given by vG0 ∗vG1 ∗ · · · ∗Gk. If P is a simple polytope with facets F1, . . . , Fm, then
any such chain of faces is given by an ordered sequence of distinct indices h1, h2, . . . , hk
such that

Gi = Fh1 ∩ Fh2 ∩ · · · ∩ Fhi
for all i = 0, . . . , k.

For the d-dimensional cube �d, the facets can be described by (i, δ) ∈ [d] × {0, 1} so
that

Kδ
i := �d ∩ {xi = δ} ∼= �d−1 .

The only faces of �d that are simplices have dimensions 6 1 and thus simplices in
Pull�(�d) correspond to sequences (i1, δ1), . . . , (id−1, δd−1) ∈ [d] × {0, 1} with is 6= it
for s 6= t. Thus, if we choose id such that {i1, . . . , id−1, id} = [d], then every simplex of
Pull�(�d) determines a permutation σ = i1i2 · · · id of [d].

Observe that for any vertex v ∈ �d and i ∈ [d], we have that v ∈ K0
i or v ∈ K1

i . This
means that for any permutation σ = i1i2 · · · id of [d] there are δ1, δ2, . . . , δd−1 ∈ {0, 1}
such that (i1, δ1), . . . , (id−1, δd−1) come from a simplex in Pull�(�d). This shows that
|Pull�(�d)| = d! independent of the order �.

We call a sequence τ = i1i2 . . . ik with i1, . . . , ik ∈ [d] a partial permutation if is 6= it
for s 6= t. We simply write [d]\τ for [d]\{i1, . . . , ik}. The following Proposition completes
the proof of Theorem 8.

Proposition 10. For any suitable partial order �, the simplices of Pull�(Hd) for d > 3
are in bijection to pairs (τ, B) where τ is a partial permutation of [d] and B ⊆ [d] \ τ is
a non-singleton subset of odd cardinality.

Proof. Since H3 is a simplex and the only admissible pair (τ, B) is given by the empty
partial permutation and B = [3], we assume d > 4. For i = 1, . . . , d and δ ∈ {0, 1}, let

F δ
i := Hd ∩ {xi = δ} ∼= Hd−1

be the halfcube facets of Hd. The halfcube Hd for d > 4 is not a simple polytope.
However, it follows from Theorem 7 that the faces of Hd are halfcubes or simplices. If
G ⊂ Hd is a face linearly isomorphic to a halfcube of dimension d − k > 4, then G is a
simple face in the sense that G is precisely the intersection of k halfcube facets. Every
chain of faces (4) corresponds to some (i1, δ1), . . . , (ik−1, δk−1) ∈ [d] × {0, 1} such that

Gk−1 = F δ1
i1
∩ · · · ∩ F δk−1

ik−1
is isomorphic to Hd−k+1 and Gk is a simplex facet of Gk−1 not

containing vGk−1
. This gives rise to a unique partial permutation τ = i1i2 . . . ik−1. To see

that any such partial permutation can arise, we observe that again V (Hd) ⊂ F 0
i ∪F 1

i for all
i = 1, . . . , d. We can identify Gk−1 with Hd−k+1 embedded in {x : xi1 = · · · = xik−1

= 0}
and vGk−1

= 0. Now any simplex facet of Hd−k+1 corresponds to an odd-cardinality subset
B ⊂ [d] \ τ with |B| 6= 1.
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4 Monotone paths

Let P ⊂ Rd be a polytope and ` : Rd → R a linear function. An `-monotone path
of P is a sequence of vertices W = v1,v2, . . . ,vk such that [vi,vi+1] is an edge of P for
i = 1, . . . , k − 1 and

min `(P ) = `(v1) < `(v2) < · · · < `(vk) = max `(P ) .

More generally, a collection of faces F1, F2, . . . , Fk of P is an induced subdivision of
the segment `(P ) if F−`1 and F `

k is a face of P−` and P `, respectively, and

F `
i = F−`i+1

for i = 1, . . . , k − 1. If ` is generic, that is, if ` is not constant on edges of P , then
the minimum/maximum of ` on every nonempty face F is attained at a unique vertex.
In this case F±`i is a vertex for all i and an induced subdivision is called a cellular
string. An induced subdivision F ′1, . . . , F

′
h is a refinement if for every 1 6 i 6 k, there are

1 6 s < t 6 h such that F ′s, . . . , F
′
t is an induced subdivision of `(Fi). The collection of all

induced subdivisions of `(P ) is partially ordered by refinement and is called the Baues
poset of (P, `). The minimal elements in the Baues poset are exactly the `-monotone
paths. Monotone paths are quintessential in the study of simplex-type algorithms in
linear programming but they are also studied in topology in connection with iterated
loop spaces; see [2, 20]. For the linear function c(x) = x1 + · · · + xd, Corollary 2 readily
yields the c-monotone paths of ∆(d, S).

Corollary 11. Let S = {s1 < s2 < · · · < sk} be proper. The c-monotone paths correspond
to sequences A1 ⊂ A2 ⊂ · · · ⊂ Ak with |Ai| = si for all i = 1, . . . , k.

A `-monotone path W is coherent if W is a monotone path with respect to the
shadow-vertex algorithm; see [5, 17]. That is, if there is linear function hW : Rd → R
such that under the projection π : Rd → R2 given by π(x) = (`(x), hW (x)), the path W
is mapped to one of the two paths in the boundary of the polygon π(P ). Figure 1 shows
that in general coherent paths constitute a proper subset of all `-monotone paths and it
is interesting to determine for which pairs (P, `) all `-monotone paths are coherent; see,
for example, the recent paper [9]. The S-hypersimplices with the linear function c(x) are
examples of this.

Proposition 12. Let S ⊆ [0, d] be proper. Then all c-monotone path of ∆(d, S) are
coherent.

Proof. Let A1 ⊂ A2 ⊂ · · · ⊂ Ak be a c-monotone path. For the linear function

h(x) := 〈1A1 + · · ·+ 1Ak
,x〉

it is easy to see that h(1B) with B ∈
(
[d]
S

)
is maximal if and only if B ∈ {A1, . . . , Ak}.
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`
t0 t1 t2 t3

∑
`(P )P

W1

W2
W1

W2

Figure 1: Left: Top view of triangular prism P and linear function `. Three `-monotone
paths (in red, green, and blue) but the red path is not coherent. Right: Monotone path
polytope Σ`(P ).

The monotone path polytope Σ`(P ) is a convex polytope of dimension dimP − 1
whose face lattice is isomorphic to the poset of coherent subdivisions. The construction
is a special case of fiber polytopes of Billera and Sturmfels [4]. Let `(P ) = [a, b] ⊂ R.
A section of (P, `) is a continuous function γ : [a, b] → P such that `(γ(t)) = t for all
a 6 t 6 b. Following [4], the monotone path polytope is defined as

Σ`(P ) = conv

{
1

b− a

∫
P

γ dx : γ section

}
.

We now determine the monotone path polytopes of ∆(d, S) with respect to the natural
linear function c(x) = x1+· · ·+xd. Let us first observe that for S ⊂ [d−1] the c-monotone
paths of ∆(d, S) and ∆(d, S ∪ {0, d}) are in bijection. Clearly every c-monotone path of
∆(d, S ∪ {0, d}) restricts to a c-monotone path of ∆(d, S). Conversely, if A1 ⊂ · · · ⊂ Ak
corresponds to a c-monotone path, then ∅ =: A0 ⊂ A1 ⊂ · · · ⊂ Ak ⊂ Ak+1 = [d] is the
unique extension to a c-monotone path of ∆(d, S ∪ {0, d}).

Theorem 13. Let S = {0 = s0 6 s1 < s2 < · · · < sk−1 < sk = d} be proper. Then

1
2
1 + d · Σc(∆(d, S)) = Π(ks1−s0 , (k − 1)s2−s1 , . . . , 1sk−sk−1) .

Proof. Let P ⊂ Rd be a polytope with vertex set V and let ` be a linear function. Let
`(V ) = {a = t0 < t1 < · · · < tk = b}. We write Pi := P ∩ `−1(ti) for 0 6 i 6 k.
Theorem 1.5 of [4] together with the fact that

P ∩ `−1
(
ti + ti+1

2

)
=

1

2
(Pi + Pi+1)

for 0 6 i < m yields that

(b− a)Σ`(P ) = 1
2
P0 +

k−1∑
i=1

Pi + 1
2
Pk .
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If P = ∆(d, S) and `(x) = c(x), then Pi = ∆(d, si) for 0 6 i 6 k. In particular, P0 = {0}
and Pk = {1}. Therefore

1
2
1 + d · Σc(∆(d, S)) =

k∑
i=0

∆(d, si) .

Since ∆(d, si) = Π(1si , 0d−si) we conclude from Proposition 4 that the above sum is the
permutahedron Π(p) for

p = (1s0 , 0d−s0) + · · ·+ (1sk , 0d−sk) .

This finishes the argument.

5 Further questions

Volumes and Gröbner bases

Laplace and later Stanley [24] showed that the volume of ∆(d, i, i + 1) is A(d,i)
d!

where
A(d, i) counts the number of permutations σ of [d] with i descents, that is, the number
of 1 6 i < d such that σ(i) > σ(i+1); see also [18, 23]. This implies that d! vol ∆(d, [k, l])
is the number of permutations of [d] with descent number in [k, l] = {k, k + 1, . . . , l}
for any k < l. It would be very interesting to know if vol ∆(d, S) has a combinatorial
interpretation for all S. In light of (2) it would be sufficient to determine vol ∆(d, k, l) for
l − k > 1.

For 0 6 k < d, the hypersimplices ∆(d, k, k + 1) ∼= ∆(d, k + 1) are alcoved polytopes
in the sense of Lam–Postnikov [18] and hence come with a canonical square-free and
unimodular triangulation. This is reflected by the fact that the associated toric ideals
have quadratic and square-free Gröbner bases with respect to the reverse-lexicographic
term order.

For general k < l, the polytopes ∆(d, k, l) are not alcoved anymore. It would be
interesting if ∆(d, k, l) has a unimodular triangulation or square-free Gröbner basis.

5.1 Extension complexity

An extension of a polytope P is a polytope Q together with a surjective linear projection
Q→ P . The extension complexity ext(P ) of P is the minimal number of facets of an
extension of P . This is a parameter that is of interest in combinatorial optimization [16].
It was shown in [12] that ext(∆(d, k, k + 1)) = 2d for 1 6 k 6 d− 2.

A realization of the join of two convex polytopes P,Q ⊂ Rd is given by P ∗ Q =
conv((P × 0× 0)∪ (0×Q× 1)). If P and Q has m and n facets, respectively, then P ∗Q
has m+n facets. Balas’ union bound [1] is the observation that P ∗Q→ P ∪Q and hence
ext(P ∪Q) 6 ext(P ) + ext(Q). Iterating the join over the pieces of the decomposition 2
shows the following.
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Proposition 14. If S ⊆ [0, d] is proper, then

ext(∆(d, S)) 6 2d (|S| − 1) .

This is a nontrivial bound as the number of facets of ∆(d, S) is at least 2+2d+
∑

r 6∈S
(
d
r

)
.

To illustrate, note that the number of facets of the halfcube Hd for d > 5 is 2d + 2d−1

whereas the bounded afforded by Proposition 14 is 6 d2. Carr and Konjevod [6] gave
an extension of Hd of size linear in d. It would be interesting to know lower bounds on
the extension complexity of ∆(d, S), maybe using the approach via rectangular covering;
c.f. [12].
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