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Abstract

The existence of a rainbow matching given a minimum color degree, proper
coloring, or triangle-free host graph has been studied extensively. This paper gen-
eralizes these problems to edge colored graphs with given total color degree. In
particular, we find that if a graph G has total color degree 2mn and satisfies some
other properties, then G contains a matching of size m. These other properties
include G being triangle-free, C4-free, properly colored, or large enough.

Mathematics Subject Classifications: 05C15, 05C70

1 Introduction

Given a graph G, let V (G) denote the vertex set of G and E(G) denote the edge set of
G. If S ⊆ V , then G[S] denotes the subgraph induced by the vertices in S. A graph G is
an m-matching if G contains exactly m edges, 2m vertices, and e ∩ e′ = {} for all edges
e 6= e′ in E(G). An edge coloring c : E(G) → [r] = {1, . . . , r} is an assignment of colors
to edges. A proper edge coloring of a graph is an edge coloring such that c(e) 6= c(e′)
whenever e ∩ e′ 6= ∅ and e 6= e′. The colors used on a graph will be denoted c(G), and
R will denote a generic color class. If X, Y ⊆ V (G), then c(X, Y ) will denote the set of
colors used on edges of the form xy, where x ∈ X, y ∈ Y . A graph G is rainbow under c if
c is injective on E(G). In particular, a rainbow matching is a matching where each edge
receives a unique color within the matching. The color degree of a vertex v is denoted
d̂G(v), which is the number of colors c assigns to edges incident upon v in G; when it
is clear from the context what G is, we will drop the subscript. Let d̂R(v) denote the
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number of R colored edges incident upon v. The total color degree of G with respect to
c is the sum of all the color degrees in the graph and denoted

d̂(G) =
∑

v∈V (G)

d̂(v).

The average color degree of a graph G is obtained by dividing the total color degree by
|V (G)|, and is an equivalent notion. The minimum color degree of G is denoted δ̂(G).
Finally, let G − v denote the graph G with the vertex v deleted, and G − R denote
the graph G with the edges in color class R deleted. When convenient, we will let c(e)
denote a color class so that G− c(e) denotes the graph G without the edges in color class
containing the edge e.

Rainbow matchings in graphs were originally studied in connection to transversals of
Latin squares [9, 10]. However, the existence of rainbow matchings has also been studied
in its own right. In [6], Li and Wang conjectured that any graph with δ̂(G) > m > 4
contains a rainbow matching of size dm

2
e. This conjecture was partially confirmed in [5],

and fully confirmed in [4].
Wang asked for a function f such that any properly edge colored graph G with

|V (G)| > f(δ̂(G)) contains a rainbow matching of size δ̂(G) [11]. Diemunsch et al. de-
termined that |V (G)| > 98

23
δ̂(G) is sufficient [1]. This problem was generalized to find a

function f such that any edge colored graph G with |V (G)| > f(δ̂(G)) contains a rainbow
matching of size δ̂(G). The authors of [3] found that |V (G)| > 17

4
δ̂(G)2 sufficed. This was

improved to 4δ̂(G)− 4 for δ̂(G) > 4 in [2] and [8] independently.
Local Anti-Ramsey theory asks Anti-Ramsey type questions with assumptions about

the local structure of the host graph. In particular, Local Anti-Ramsey theory is about
the minimum k such that any coloring of Kn with δ̂(G) > k contains a rainbow copy of H.
In this vein, Wang’s question can be posed as follows: given k, what is the smallest N such
that any properly edge colored graph G with |V (G)| > N and δ̂(G) > k contains a rainbow
matching of size k? Furthermore, proper edge-coloring and triangle-free properties play
similar roles in restricting the structure of a host graph.

The local assumptions in Anti-Ramsey theory are interesting in so far as they highlight
the relationship between a local parameter and the target graph. In much of the rainbow
matching literature, there are confounding local assumptions. For example, [1], [7], and
[11] all consider host graphs that have a prescribed minimum color degree and are properly
edge colored. In this case, an intuitive interpretation is that the minimum color degree
and proper edge-coloring properties spread the colors apart in the host graph. As one
would expect, this makes it easier to find a large rainbow matching. However, it is unclear
whether both the minimum color degree and proper edge coloring property are necessary
to find a large matching.

The goal of this paper is to shed light on the relationship between local assumptions
and rainbow matchings. Rather than considering host graphs with a prescribed minimum
color degree, we will consider host graphs with a prescribed average color degree. This
is motivated in part by a question posed during the Rocky Mountain and Great Plains
Graduate Research Workshop in Combinatorics in 2017.
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Question 1. If G is an edge colored graph on n vertices with d̂(G) > 2mn, does G
contain a rainbow matching of size m?

Section 2 considers this question for triangle-free and C4-free host graphs. In the case
of triangle-free graphs, we will prove the slightly stronger statement that if G is a graph
with d̂(G) > 2mn, then there exists a rainbow matching of size m+ 1. Section 3 pertains
to properly edge colored host graphs. Finally, Section 4 considers edge colored graphs
with total color degree 2mn, but with no further assumptions.

2 Triangle-free and C4-free Graphs

In this section, we consider triangle-free and C4-free graphs.

Theorem 2. Let G be a triangle-free graph on n vertices. Let c be an edge coloring of G
with d̂(G) > 2mn. Then c admits a rainbow matching of size m+ 1.

Proof. For the sake of contradiction, let M be a maximum rainbow matching of size
k 6 m with edges uivi for 1 6 i 6 k, such that the number of colors appearing on
G[V (G) \ V (M)] = H is maximized. Without loss of generality, suppose that c(uivi) = i.
Since G is triangle-free, d̂(ui) + d̂(vi) 6 n for all uivi ∈ E(M). If H has an edge e, then
c(e) ∈ [k]. Without loss of generality, suppose that c(H) = [j] for some 0 6 j 6 k. Then
for all v ∈ V (H), we have d̂(v) 6 k + j. Notice that if there exists an edge e ∈ H with
c(e) = i, then we can swap e and uivi to conclude that d̂(ui) + d̂(vi) 6 2(j + k).

Now consider

2mn <
k∑

i=1

d̂(ui) + d̂(vi) +
∑
v∈H

d̂G(v)

6
j∑

i=1

d̂(ui) + d(vi) +
k∑

i=j+1

d̂(ui) + d̂(vi) +
∑
v∈H

(
d̂H(v) + k

)
6 2j(k + j) + (k − j)n+ (n− 2k)(j + k)

= 2jk + 2j2 + 2nk − 2jk − 2k2

6 2j2 − 2k2 + 2nk

6 2nm.

This is a contradiction; therefore, k > m+ 1.

A key element to the proof of Theorem 2 is the bound d̂(v) + d̂(u) 6 n where uv is an
edge in a maximal matching. We can obtain a similar bound in C4-free graphs in order
to prove the next theorem.

Theorem 3. Let G be a C4-free graph on n vertices. Let c be an edge coloring of G with
d̂(G) > 2mn. Then c admits a rainbow matching of size m.
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Proof. For the sake of contradiction, let M be a maximum rainbow matching of size
k < m with edges uivi for 1 6 i 6 k, such that the number of colors appearing on
G[V (G) \ V (M)] = H is maximized. Without loss of generality, suppose that c(uivi) = i.
Since G is C4-free, d̂(ui) + d̂(vi) 6 n + 1 for all uivi ∈ E(M). If H has an edge e, then
c(e) ∈ [k]. Without loss of generality, suppose that c(H) = [j] for 0 6 j 6 k.

Claim 4. If xy ∈ E(H) with c(xy) = i 6 j, then d̂(ui) + d̂(vi) 6 2j + 2k.

Notice that x, y each see at most j colors in H. Since xy can share at most two edges
with any edge in M without creating a C4 subgraph, we have |c({ui, vi}, xy)| 6 2 for
every 1 6 i 6 k. Thus, d̂(x) + d̂(y) 6 2j + 2k. By swapping uivi and xy, we obtain the
desired bound on d̂(ui) + d̂(vi).

Furthermore,
∑

v∈H d̂G(v) 6 (n− 2k)(j + k) + k. The (n− 2k)j term comes from the
fact that H has n−2k vertices, each of which can see every color in [j]. We will show that
there are at most (n− 2k)k+k color degrees in H that do not come from a color in [j] by
contradiction. Suppose that there are (n−2k)k+k+1 edges from H to M . By the pigeon
hole principle, there exists an edge uivi ∈M that receives at least n− 2k + 2 edges from
H. Notice that each vertex in H can send at most two edges to uivi. Therefore, there
must exist two vertices in H that each send two edges to uivi, witnessing a C4 subgraph;
this is a contradiction.

Now consider

2mn 6
k∑

i=1

d̂(ui) + d̂(vi) +
∑
v∈H

d̂G(v)

6
j∑

i=1

d̂(ui) + d(vi) +
k∑

i=j+1

d̂(ui) + d̂(vi) +
∑
v∈H

(
d̂H(v) + k

)
6 j(2k + 2j) + (k − j)(n+ 1) + (n− 2k)(j + k) + k

= 2kj + 2j2 + nk + k − nj − j + nj + nk − 2kj − 2k2 + k

6 2j2 + 2nk − j + 2k − 2k2

6 2j2 − 2k2 + 2k − j − 2n+ 2mn

< 2mn.

This is a contradiction; therefore, k > m.

3 Properly Edge Colored Graphs

In this section, we consider properly edge colored graphs. The idea to analyze a greedy
algorithm that constructs a matching appears in [1] and [3]. The algorithm employed
in this section is similar, with some adjustments to take into account the weaker degree
assumption.

Theorem 5. Let c be a proper edge coloring of G with n > 8m and d̂(G) > 2mn. Then
c admits a rainbow matching of size m.
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Proof. Assume that G is an edge minimal counter example to Theorem 5. Consider the
following algorithm:

1. set G0 := G

2. if there exists v ∈ V (Gi−1) with d̂(v) > 3(m− i) + 1, then Gi = Gi−1− v and return
to 2

3. else, if there exists color class R with |R| > 2(m− i)+1 in Gi−1, then Gi = Gi−1−R
and return to 2

4. else, if there exists uv ∈ E(Gi−1), then Gi = Gi−1 − u− v − c(uv) and return to 2

5. return i− 1

Claim 6. Suppose the algorithm returns k 6 m. Then Gi contains a matching of size
k − i for 0 6 i 6 k

We will prove the claim by reverse induction on i. If i = k, then Gi is empty, and the
claim is true. Assume that the claim is true for i. We will prove the claim for i− 1. By
the induction hypothesis, there exists a matching M ⊆ Gi of size k − i. There are three
cases:

Case 1: Assume Gi = Gi−1−v where d̂(v) > 3(m−i)+1. By construction, v /∈ V (M).
Since d̂(v) > 3(m− i) + 1, there exists u ∈ N(v), such that u /∈ V (M) and c(uv) /∈ c(M).
Then M ′ = M ∪ {uv} is a rainbow matching of size k − i+ 1.

Case 2: Assume Gi = Gi−1−R for some color R with |R| > 2(m−i)+1. This implies
that c(e) 6= R for all e ∈ E(M). Since c is a proper coloring and |R| > 2(m− i) + 1, there
exist e ∈ Gi−1 such that c(e) = R and M ′ = M ∪ {e} is a rainbow matching.

Case 3: Assume that Gi = Gi−1 − v − u − c(uv) for some uv ∈ E(Gi−1). By
construction N [u]∪N [v] is disjoint from V (M) and c(e) 6= c(uv) for all e ∈M . Therefore,
M ′ = M ∪ {uv} is a rainbow matching.

This concludes the proof of the claim. Since G is an edge minimal counter example,
the algorithm applied to G will return k < m. We will now derive a contradiction.

Let W (Gi) denote the difference of total color degree between Gi and Gi−1 under c.

Claim 7. For all 1 6 i 6 k, we have W (Gi) 6 2n.

Case 1: Assume Gi = Gi−1 − v where d̂(v) > 3(m− i) + 1. Notice that v is incident
to at most n− 1 edges. Therefore, deleting v will remove at most 2(n− 1) color degrees.

Case 2: Assume Gi = Gi−1 −R for some color R with |R| > 2(m− i) + 1. Because c
is proper, |R| 6 bn/2c. Deleting all edges of color R reduces the total color degree by at
most n.

Case 3: Assume that Gi = Gi−1 − v − u− c(uv) for some uv ∈ E(Gi−1). Since Gi is
not constructed by step 2, we know that d̂(u), d̂(v) 6 3(m− i). Furthermore, since Gi is
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not constructed by step 3, we know that |c(uv)| 6 2(m− i). This implies that

W (Gi) = 2(d̂(v) + d̂(u)) + 2|c(uv)|
6 16(m− i)
6 2n.

This concludes the proof of the claim. Now we have

2nm 6 d̂(G) =
k∑

i=1

W (Gi) 6 2nk,

which is a contradiction since k < m. Therefore, the theorem is proven.

4 General Edge-Colored Graphs

Theorem 8 provides contrast for Theorems 2, 3, and 5. The proof of Theorem 8 is
similar to the proof of Theorem 5. However, the greedy algorithm has been modified to
accommodate graphs that are not properly colored.

Theorem 8. Let c be an edge coloring of G be a graph with d̂(G) > 2mn and n >
12m2 + 4m. Then c admits a rainbow matching of size m.

Proof. Assume that G is an edge minimal counter example to Theorem 8. Since G is edge
minimal, no color class can induce a P4 (path on 4 vertices) or a triangle. This follows
from the fact that if a color class R induces a P4 or triangle, then an edge can be deleted
without reducing the total color degree of the graph. Therefore, each color class in G
induces a forest of stars. Let s(R) denote the number of components induced by the color
class R. Consider the following algorithm:

1. set G0 := G

2. if there exists v ∈ V (Gi−1) with d̂(v) > 3(m− i) + 1, then Gi = Gi−1− v and return
to 2

3. else, if there exists color R with s(R) > 2(m− i) + 1 in Gi−1, then Gi = Gi−1 − R
and return to 2

4. else, if there exists a vertex v and a color R such that d̂R(v) > 3(m− i) + 1 in Gi−1,
then Gi = Gi−1 − v −R and return to 2

5. else, if there exists uv ∈ E(Gi−1), then Gi = Gi−1 − u− v − c(uv) and return to 2

6. return i− 1
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Since this algorithm is so similar to the algorithm featured in the proof of Theorem 5,
the only things that remain to be checked are that step 4 lets us extend a matching, and
that the bounds on steps 4 and 5 are still good.

Assume that Gi = Gi−1 − v − R where d̂R(v) > 3(m − i) + 1. Let M be a rainbow
matching of size k − i contained in Gi. Since v /∈ V (Gi), v /∈ V (M). Furthermore, M
does not contain an edge with color R. Since d̂R(v) > 2(m− i) + 1, there exists an edge
uv with c(uv) = R and u /∈ M . Then M ∪ {uv} is a rainbow matching of size k − i + 1
contained in Gi−1.

If Gi = Gi−1−v−R where d̂R(v) > 3(m−i)+1, then 2 and 3 must have been rejected.
The color R contributes at most n−3(m− i) color using edges that are not incident upon
v. Since d̂(v) 6 3(m−i) and d(v) 6 n, it follows that W (Gi) 6 n−3(m−i)+d̂(v)+d(v) 6
n− 3(m− i) + 3(m− i) + n = 2n.

Suppose Gi = Gi−1 − v − u− c(uv). Then steps 2, 3, and 4 must have been rejected.
This implies that d̂(v), d̂(u) 6 3(m−i). Furthermore, each color at v, u can be represented
at most 3(m − i) times. Finally, the edges of color c(uv) can induce at most 2(m − i)
stars with 3(m − i) edges each. Therefore, deleting all c(uv) colored edges reduces the
color degree by at most 6m2 + 2m. Thus, W (Gi) 6 24m2 + 8m 6 2n.

Suppose that the algorithm terminates in k < m steps. Now we have

2nm 6 d̂(G) =
k∑

i=1

W (Gi) 6 2nk,

which is a contradiction since k < m. Therefore, the theorem is proven.

5 Future Work

Though we were not able to resolve Question 1 for all graphs, we believe the answer is
affirmative:

Conjecture 9. All edge colored graphs G with d̂(G) > 2mn contain a rainbow matching
of size m.

It would also be interesting to know under which conditions there exists a matching of
size m+ 1. It seems that a small improvement in the estimates in the proofs of Theorems
2 and 5 could yield this result for edge colored graphs G with d̂(G) > 2mn. In fact, it may
be that the proper question to ask is whether any graph G with d̂(G) > 2mn contains a
rainbow matching of size m+ 1.
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