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Abstract

We count the asymptotic number of triangles in uniform random graphs where
the degree distribution follows a power law with degree exponent τ ∈ (2, 3). We
also analyze the local clustering coefficient c(k), the probability that two random
neighbors of a vertex of degree k are connected. We find that the number of tri-
angles, as well as the local clustering coefficient, scale similarly as in the erased
configuration model, where all self-loops and multiple edges of the configuration
model are removed. Interestingly, uniform random graphs contain more triangles
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than erased configuration models with the same degree sequence. The number of
triangles in uniform random graphs is closely related to that in a version of the
rank-1 inhomogeneous random graph, where all vertices are equipped with weights,
and the probabilities that edges are present are moderated by asymptotically linear
functions of the products of these vertex weights.

Mathematics Subject Classifications: 05C80, 05C30

1 Introduction

Many real-world networks were found to have degree distributions that can be well ap-
proximated by a power-law distribution, so that the fraction of vertices of degree k scales
as k−τ for some τ > 1. The degree exponent τ of several networks was found to satisfy
τ ∈ (2, 3) [26]. These power-law real-world networks are often modeled by random graphs.
One very natural model for real-world networks is the uniform random graph with pre-
scribed degrees, that samples a simple graph uniformly from all graphs with the same
degree sequence as the original network. By definition, the resulting graph has the same
degree sequence as the original network, but whether other properties behave similarly in
real-world networks and uniform random graphs is an interesting question. In this paper,
we focus on the property of triangle counts. Triangle counts measure the tendency of two
neighbors of a vertex to be connected as well, allowing to analyze clustering properties of
real-world networks.

Uniform random graphs with specified degree sequences are among the most commonly
studied random graphs models [28, 24, 16]. Compared with the classical Erdős-Rényi
graphs, analyzing uniform random graphs with specified degree sequences is much more
challenging. The probabilities of simple events, such as two given vertices being adjacent,
are highly non-trivial to be estimated to a desired accuracy. The most commonly used
method for studying these random graphs is to use the configuration model introduced
by Bollobás [4] (see also [11, Chapter 7]). The configuration model constructs a random
multigraph with a specified degree sequence. Conditioning on the resulting graph being
simple, the distribution is uniform. Estimating probability that an edge is present in
the configuration model is easy and thus we may analyze the configuration model and
then translate the result to uniform random graphs. Such a translation is possible only
if the probability of producing a simple graph by the configuration model is not too
small. However, with a power-law degree sequence with exponent τ < 3, this probability
vanishes [17, 6]. Thus, analyzing the configuration model does not help in analyzing
uniform random graphs when τ ∈ (2, 3).

Other methods for analyzing uniform random graphs rely on asymptotic enumeration
of graphs with specified degree sequences. The switching method is useful in enumerating
sparse graphs [20], whereas enumerating dense graphs uses multidimensional complex
Cauchy integrals and the Laplace method [22]. Studies of subgraphs of uniform graphs
with specified degree sequences are based on afore-mentioned enumeration results and
techniques [21, 10].

As a compromise, a commonly used practice for τ ∈ (2, 3) is to use the erased configu-
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ration model [7, 2, 25]. Instead of conditioning on simple graphs, the erased configuration
model generates a random multigraph using the configuration model, and then removes
all loops and replaces multiple edges by simple edges. Graphs in the erased configura-
tion model are not uniformly distributed. It was believed that many properties can be
translated between random graphs in the erased configuration model and the uniform
model, although theoretically this is hard to verify. However, with power-law exponent
τ < 3, some edges have significantly different probabilities of being present in the erased
configuration model and in the uniform graph model (see Remark 4).

Another method to generate graphs with approximately the given degree sequence is
to use rank-1 inhomogeneous random graphs [8, 3]. In rank-1 inhomogeneous random
graphs, each vertex i is equipped with a weight wi, and pairs of vertices are connected
independently with probability p(wi, wj) for some function p(wi, wj). Under suitable
choices for p(wi, wj), the expected degree of a vertex with weight wi is approximately,
or equals wi. Thus, on average, every vertex has degree equal to its targeted degree.
However, in general the degree sequence of the inhomogeneous random graph does not
equal the targeted degree sequence. In particular, the inhomogeneous random graph
typically contains a linear number of isolated vertices.

One version of the rank-1 inhomogeneous random graph is the generalized random
graph [7], where p(wi, wj) = wiwj/(wiwj +

∑
sws). While this model has significantly

different properties than the uniform random graph, as described above, we show that
the number of triangles in the generalized random graph and the uniform random graph
behave similarly.

In this paper, we focus on counting triangles in sparse uniform random graphs when
τ ∈ (2, 3). When the maximum degree is bounded, or grows slowly, the number of tri-
angles as well as other short cycles in uniform random graphs are asymptotically Poisson
distributed [5, 27, 23]. However, when the degree exponent satisfies τ ∈ (2, 3), the maxi-
mum degree grows as fast as n1/(τ−1), so that the Poisson limit for the number of triangles
no longer holds. We count the number of triangles in two steps. First we show that the
main contribution to the number of triangles is from vertices with degrees proportional to√
n. Thus, even though the maximal degree may be much higher than

√
n, vertices with

these high degrees are so rare that they can be neglected when counting triangles. From
there, we can use a switching method to count the number of triangles between vertices
of degrees proportional to

√
n, resulting in an asymptotic expression for the number of

triangles in a uniform random graph with power-law degree exponent τ ∈ (2, 3).
We then proceed to count triangles where one vertex is constrained to have degree k.

This allows us to investigate the local clustering coefficient c(k), the probability that two
random neighbors of a randomly chosen vertex of degree k are connected. Again, we show
that the contribution to c(k) from vertices with degrees outside a specific range is small,
and use a switching argument to count the number of constrained triangles from vertices
with degrees inside the specified ranges. We show that the k 7→ c(k) curve consists of
three regimes. First, the curve remains flat, then it starts to decay logarithmically in k,
and finally it decays as a power of k. This decay of c(k) as a power of k was also observed
in several real-world networks [26, 19, 18].
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Notation. We use
P−→ for convergence in probability. We write [n] = {1, . . . , n}.

We say that a sequence of events (En)n>1 happens with high probability (w.h.p.) if
limn→∞ P (En) = 1. Furthermore, we write f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0, and
f(n) = O(g(n)) if f(n)/g(n) is uniformly bounded, where (g(n))n>1 is nonnegative. We
say that Xn = OP(g(n)) for a sequence of random variables (Xn)n>1 if for any ε > 0 there

exists Mε > 0 such that P (|Xn|/g(n) > Mε) < ε, and Xn = oP(g(n)) if Xn/g(n)
P−→ 0.

1.1 Uniform random graphs

Given a positive integer n and a degree sequence, i.e., a sequence of n positive integers
d = (d1, d2, . . . , dn), where

∑n
i=1 di ≡ 0 (mod 2), the uniform random graph is a simple

graph, uniformly sampled from the set of all simple graphs with degree sequence (di)i∈[n].
Here we always assume that d is a realizable degree sequence, meaning that there exists a
simple graph with degree sequence d. Let G(d) denote the ensemble of all simple graphs
on degree sequence d, and let dmax = maxi∈[n] di and Ln =

∑n
i=1 di. We denote the

empirical degree distribution by

Fn(j) =
1

n

∑
i∈[n]

1{di6j}. (1.1)

We study the setting where the variance of d diverges when n grows large. In partic-
ular, we assume that the degree sequence satisfies the following assumption:

Assumption 1 (Degree sequence).

(i) There exist τ ∈ (2, 3) and a constant K > 0 such that for every n > 1 and every
0 6 j 6 dmax,

1− Fn(j) 6 Kj1−τ . (1.2)

(ii) There exist τ ∈ (2, 3) and a constant C > 0 such that, for all j = O(
√
n),

1− Fn(j) = Cj1−τ (1 + o(1)). (1.3)

It follows from (1.2) that

dmax < Mn1/(τ−1), for some sufficiently large constant M > 0. (1.4)

Assumption 1(ii) is more detailed than Assumption 1(i). Assumption 1(i) states that
for all j the inverse cumulative distribution function is bounded from above by some
power law. Assumption 1(ii) then states that a pure power-law degree distribution holds
for a smaller range of degrees. If we denote by Dn a uniformly chosen degree in d, then

Assumption 1(ii) implies that Dn
d−→ D, where D is the random variable with inverse

cumulative distribution function 1− F (j) = Cj1−τ . Note that Var (D) =∞ if τ ∈ (2, 3).
Moreover, it is easy to see that Assumption 1(i) and (ii) imply E [Dn]→ E [D] and thus

Ln = (1 + o(1))µn, where µ = E [D].
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To prove our results on the number of triangles, Assumption 1 is sufficient. To in-
vestigate the local clustering coefficient c(k) over the entire range of k, a more detailed
assumption on the degree sequence is necessary:

Assumption 2 (Degree sequence, stronger assumption). Assumption 1(i) holds, and fur-
thermore

(ii)’ There exist τ ∈ (2, 3) and constants C, c > 0 such that for all j 6 cn1/(τ−1)/ log(n),

1− Fn(j) = Cj1−τ (1 + o(1)). (1.5)

Note that an i.i.d. sample from a power-law distribution with exponent τ satisfies
Assumption 1(i) and Assumption 2(ii)’ with high probability.

1.2 Outline

We first describe our main results on triangle counts as well as the local clustering coeffi-
cient in Section 2. We then use a switching argument in Section 3 to obtain the connection
probabilities between two vertices conditionally on a finite number of edges being present.
We prove our result for the number of triangles in Section 4 and for c(k) in Section 5.
Finally, we provide a conclusion in Section 6.

2 Main results

We now describe the results for the number of triangles as well as the local clustering
coefficient in graphs sampled uniformly from G(d).

2.1 Number of triangles

Let T (G) denote the number of triangles in graph G. Then, the following result holds for
T (G):

Theorem 1 (Number of triangles). Let τ ∈ (2, 3) and dn be a degree sequence on n
vertices satisfying Assumption 1. Let Gn be a random graph in G(dn), µ = E [D] and C
be the constant in (1.3). Then,

T (Gn)

n
3
2

(3−τ)

P−→ − 1

12

(
πC(τ − 1)µ−(τ−1)/2

cos
(
πτ
2

) )3

. (2.1)

Comparison with the erased configuration model. The result on the number of triangles
is very similar to the number of triangles in the erased configuration model [13], where
all multiple edges of the configuration model are merged and all self-loops are removed.
In the erased configuration model instead,

T (Gn)

n
3
2

(3−τ)

P−→ − 1

12

(
C(τ − 1)µ−(τ−1)/2Γ

(
1

2
− τ

2

))3

, (2.2)
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where Γ denotes the Gamma function. Note that 1− e−x > x/(1 +x) for all x > 0. Inter-
estingly, this implies that the erased configuration model contains more triangles than the
uniform random graph with the same degree sequence, even though edges are removed in
the erased configuration model, due to the presence of multiple edges and loops in the con-
figuration model, which was empirically observed in [1]. This is because the large-degree
vertices in the uniform random graph model have more low-degree neighbours than in the
erased configuration model. These low-degree vertices barely participate in triangles.

Similarity to generalized random graphs. In generalized random graphs [7], every ver-
tex i is equipped with a weight wi, where the weight sequence is an i.i.d. sample of (1.3).
A pair of vertices i and j is then connected with probability

P
(
i ∼ j | (ws)s∈[n]

)
=

wiwj∑
s∈[n] ws + wiwj

, (2.3)

independently for all pairs of vertices. The probability that a triangle between vertices
i, j and k is present can then be written as

P
(
4i,j,k | (ws)s∈[n]

)
=

wiwj∑
s∈[n] ws + wiwj

wiwk∑
s∈[n] ws + wiwj

wjwk∑
s∈[n] ws + wiwj

. (2.4)

Conditionally on the degree sequence of the generalized random graph, the resulting graph
is a uniform random graph on that degree sequence. Thus, to prove that Theorem 1 also
holds for generalized random graphs, one only needs to show that the degree sequence
obtained by the generalized random graph satisfies Assumption 1 with high probability,
which is shown in [11, Chapter 7].

√
n degrees. In the proof of Theorem 1, we show that the main contribution to the

number of triangles is from vertices of degrees proportional to
√
n. By a switching argu-

ment, we show that the probability of a triangle being present between vertices of degrees
proportional to

√
n is asymptotically bounded away from 0 and 1. We show that the

probability that a triangle is present between vertices of degrees much lower than
√
n

tends to zero in the large-network limit, which intuitively explains why vertices of degree
scaling smaller than

√
n have a low contribution to the number of triangles. Because of

the power-law distribution, vertices of degree much higher than
√
n are more rare, and

therefore do not contribute much to triangle counts. The main contribution of
√
n vertices

also explains why we need the pure power-law degree distribution of Assumption 1(ii) to
hold only for vertices of degrees at most proportional to

√
n. Indeed, we show that ver-

tices with higher degrees barely contribute to the triangle count using only the power-law
upper bound of Assumption 1(i), so that the pure power-law assumption is not necessary
for high-degree vertices.

Counting other subgraphs. While our results are for triangle counts, our method
easily extends to counting several other types of subgraphs. To prove our theorem on the
number of triangles, we mainly use that the main contribution to the number of triangles
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is from vertices of degrees proportional to
√
n. We believe that there is a wider family

of subgraphs where the main contribution to the subgraph counts comes from vertices
of degree proportional to

√
n. This was the case in the erased configuration model [14],

where examples of this wider family are all complete graphs with fixed sizes, and all odd
cycles with fixed length. It is easy to show that the same holds in the uniform random
graph. This enables the analysis of these subgraph counts in a very similar manner as
triangle counts. For a wide class of other subgraphs where the leading contributions do
not necessarily come from vertices with degree of order

√
n it is still possible to obtain the

order of magnitude of their count. We do not elaborate on such results and refer to [14,
Theorem 2.1] for results on erased configuration models which apply here too with the
change that 1− e−x should be replaced with x/(1 + x) in its statement and proof.

2.2 Local clustering coefficient

We now investigate the triangle structure in uniform random graphs in more detail. Let
4k denote the number of triangles attached to vertices of degree k in the uniform random
graph, and when a triangle contains three degree-k vertices it is counted three times.
When a triangle consists of two vertices of degree k, it is counted twice in 4k. Let Nk

denote the number of vertices of degree k. Then, the local clustering coefficient of vertices
with degree k equals

c(k) =
1

Nk

24k

k(k − 1)
, (2.5)

for all k with Nk > 1. Note that c(k) is not defined if Nk = 0. The local clustering
coefficient can be interpreted as the probability that two randomly chosen neighbors of a
vertex of degree k connect to one another. Typically, c(k) is a decreasing function of k.

The next theorem shows the behavior of c(k) in uniform random graphs:

Theorem 2 (Local clustering.). Let τ ∈ (2, 3) and dn be a degree sequence on n vertices
satisfying Assumption 2. Let Gn be a uniformly sampled graph from G(dn). Define A =
π/ sin(πτ) > 0 for τ ∈ (2, 3), µ = E [D] and let C be the constant in (1.5) and c(k) the
local clustering coefficient of Gn. Then, as n→∞,

(Range I.) for 1� k = o(n(τ−2)/(τ−1)) where Nk > 1,

c(k)

n2−τ log(n)

P−→ 3− τ
τ − 1

µ−τ (C(τ − 1))2A, (2.6)

(Range II.) for k = ω(n(τ−2)/(τ−1)) and k = o(
√
n) where Nk > 1,

c(k)

n2−τ log(n/k2)

P−→ µ−τ (C(τ − 1))2A, (2.7)

(Range III.)for k = dB√ne where Nk > 1 and B > 0 is a constant,

c(k)

n2−τ
P−→ µ1−2τ (C(τ − 1))2A

(
Aµ2B2τ−4 − µτ

(
log
(
B2

µ

)
+ A cos(πτ)

))
(B2 + µ)

(2.8)
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k

c(k)

nβ(τ)
n

1
2 n

1
τ−1

I II IV

Figure 1: Illustration of the k 7→ c(k)
curve of Theorem 2.

2 2.2 2.4 2.6 2.8 3
100

101

102

τ

A
−Γ(2 − τ)

Figure 2: The constant A = π/ sin(πτ)
of Theorem 2 and −Γ(2− τ).

(Range IV.) for k = ω(
√
n) and k 6 dmax where Nk > 1,

c(k)

n5−2τk2τ−6

P−→ µ3−2τ (C(τ − 1))2A2. (2.9)

Figure 1 illustrates the behavior of c(k) in the uniform random graph. For small values
of k, c(k) is independent of k. Then, a range of slow decay in k follows. When k � √n,
c(k) starts to decay as a power of k. As

lim
B→0

1

log(1/B2)
µ1−2τ (C(τ − 1))2A

(
Aµ2B2τ−4 − µτ

(
log
(
B2

µ

)
+ A cos(πτ)

))
(B2 + µ)

= µ−τ (C(τ − 1))2A,

the behavior of the scaling limit of k 7→ c(k) between Ranges II and III is smooth. Also,

lim
B→∞

1

B2τ−6
µ1−2τ (C(τ − 1))2A

(
Aµ2B2τ−4 − µτ

(
log
(
B2

µ

)
+ A cos(πτ)

))
(B2 + µ)

= µ3−2τ (C(τ − 1))2A2,

so that the behavior of the scaling limit of k 7→ c(k) between Ranges III and IV is also
smooth.

Main contributions. As in the case of triangle counts, we show that the constrained
triangle counts are dominated by triangle counts between vertices of degrees in specific
ranges. Because the triangles are constrained to contain one vertex of degree k, these
ranges describe the degrees of the two other vertices involved in the triangle. When k is
in Range I, the largest contribution to the number of constrained triangles is from vertices
i and j such that didj scales as n. Note that the most contributing vertices here do not
depend on k, explaining the independence of c(k) of k in the initial range. When k is in
Range II, the largest contribution to the number of constrained triangles is from vertices
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i and j such that didj scales as n and additionally di, dj 6 n/k. This extra constraint
causes the mild dependence on k in the second range. In the fourth range, the vertices
that contribute most to c(k) satisfy that di and dj scale as n/k. In this last regime, the
degrees of the other two vertices involved in the triangle clearly depend on k.

Comparison with the erased configuration model. The result for c(k) is also very
similar in the erased configuration model and the uniform random graph. In fact, a similar
theorem as Theorem 2 holds for the erased configuration model, when the constant A is
replaced by −Γ(2 − τ), where Γ denotes the Gamma function. Note that −Γ(2 − τ) >
π/(sin(πτ)) = A for τ ∈ (2, 3), as Figure 2 shows. Thus, when creating an erased
configuration model and a uniform random graph on the same degree sequence satisfying
Assumption 2, the local clustering coefficient of the erased configuration model will be
higher than the local clustering coefficient of a uniform random graph.

Assumption on the degree sequence. To prove Theorem 1, we assume a pure power-
law degree distribution for vertices with degrees at most

√
n (Assumption 1), since these

vertices form the main contribution to the number of triangles. For Theorem 2, we
assume a pure power-law degree distribution all the way up to n1/(τ−1)/ log(n). However,
this strong assumption is only necessary in Range I, because there the most contributing
triangles containing a vertex of degree k may have degrees as high as n1/(τ−1)/ log(n).
In Ranges II, III and IV, the main contributing triangles with a vertex of degree k have
degrees at most n/k, so that it suffices to assume the pure power law (1.5) only for
j = O(n/k). However, for ease of notation we use Assumption 2(ii)’ throughout the rest
of this paper.

3 Connection probability estimates

In this section, we estimate the connection probability between vertices of specific degrees
in a uniform random graph, which is the key ingredient for proving Theorems 1 and 2.
Recall that Ln =

∑n
i=1 di. Furthermore, let {u ∼ v} denote the event that vertex u is

connected to v.
Our key lemma is as follows, where the probability space refers to the uniformly

random simple graphs with degree sequence d:

Lemma 3. Assume that τ ∈ (2, 3) is fixed and d satisfies Assumption 1(i) with τ ∈ (2, 3).
Assume further that Ln/n9 0. Let U denote a set of unordered pairs of vertices and let
EU denote the event that {x, y} is an edge for every {x, y} ∈ U . Then, assuming that
|U | = O(1), for every {u, v} /∈ U ,

P (u ∼ v | EU) = (1 + o(1))
(du − |Uu|)(dv − |Uv|)

Ln + (du − |Uu|)(dv − |Uv|)
, (3.1)

where Ux denote the set of pairs in U that contain x.
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Remark 4. Lemma 3 shows that when dudv � Ln, then

1− P (u ∼ v) = (1 + o(1))
Ln
dudv

. (3.2)

In the erased configuration model on the other hand [12],

1− P (u ∼ v) 6 e−dudv/Ln . (3.3)

Thus, the probability that two high-degree vertices are not connected decreases at an
exponential rate in Ln/dudv, whereas this rate is polynomial in the uniform random graph
model. Thus, even though the results on clustering are similar in the two models, some
edges have significantly different probabilities of being present.

We now proceed to prove Lemma 3. As a preparation, we first prove a lemma about
the number of 2-paths (paths of length 2) starting from a specified vertex.

Lemma 5. Assume that d satisfies Assumption 1(i) with fixed exponent τ ∈ (2, 3). For
any graph G whose degree sequence is d, the number of 2-paths starting from any specified
vertex is o(n).

Proof. Without loss of generality we may assume that d1 > d2 > . . . > dn. For every
1 6 i 6 n, the number of vertices with degree at least di is at least i. By Assumption 1(i),

we then have Knd1−τ
i > i for every 1 6 i 6 n. It follows then that di 6 (Kn/i)

1
τ−1 . Then

the number of 2-paths from any specified vertex is bounded by
∑d1

i=1 di, which is at most

d1∑
i>1

(
Kn

i

)1/(τ−1)

= (Kn)1/(τ−1)
d1∑
i=1

i−1/(τ−1) = O
(
n1/(τ−1)

)
d
τ−2
τ−1

1 = O
(
n

2τ−3

(τ−1)2

)
,

since d1 6 (Kn)1/(τ−1) by (1.4). Since τ ∈ (2, 3) the above is o(n).

Proof of Lemma 3. To estimate P (u ∼ v|EU), we will switch between two classes of
graphs S and S̄. S consists of graphs where all edges in {u, v} ∪ U are present, whereas
S̄ consists of all graphs where every {x, y} ∈ U represents an edge whereas {u, v} is not
an edge. Note that

P (u ∼ v|EU) =
|S|

|S|+ |S̄| =
1

1 + |S̄|/|S| . (3.4)

In order to estimate the ratio |S̄|/|S|, we will define an operation called a forward switching
which converts a graph in G ∈ S to a graph Ḡ ∈ S̄. The reverse operation converting Ḡ
to G is called a backward switching. Then we estimate |S̄|/|S| by counting the number of
forward switchings that can be applied to a graph G ∈ S, and the number of backward
switchings that can be applied to a graph Ḡ ∈ S̄.

The forward switching is defined by choosing two edges and specifying their ends as
{x, a} and {y, b}. The choice must satisfy the following constraints:
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Figure 3: Forward and backward switchings

(i) None of {u, x}, {v, y}, or {a, b} is an edge;

(ii) {x, a}, {y, b} /∈ U ;

(iii) All of u, v, x, y, a, and b must be distinct except that x = y is permitted.

Given a valid choice, the forward switching replaces the three edges {u, v}, {x, a}, and
{y, b} by {u, x}, {v, y}, and {a, b}. Note that the forward switching preserves the degree
sequence, and converts a graph in S to a graph in S̄. The inverse operation of a forward
switching is called a backward switching. See Figure 3 for an illustration.

Next, we estimate the number of ways to perform a forward switching to a graph G in
S, denoted by f(G), and the number of ways to perform a backward switching to a graph
Ḡ in S̄, denoted by b(G). The number of total switchings between S and S̄ is equal to
|S|E [f(G)] = |S̄|E

[
b(Ḡ)

]
, where the expectation is over a uniformly random G ∈ S and

Ḡ ∈ S̄ respectively. Consequently,

|S̄|
|S| =

E [f(G)]

E
[
b(Ḡ)

] . (3.5)

Given an arbitrary graph G ∈ S, the number of ways of carrying out a forward
switching is at most L2

n, since there are at most Ln ways to choose {x, a}, and at most
Ln ways to choose {y, b}. Note that choosing {x, a} for the first edge and {y, b} for the
second edge results in a different switching than vice versa. To find a lower bound on
the number of ways of performing a forward switching, we subtract from L2

n an upper
bound on the number of invalid choices for {x, a} and {y, b}. These can be summarized
as follows:

(a) At least one of {u, x}, {a, b}, {v, y} is an edge,

(b) At least one of {x, a} or {y, b} is in U ,

(c) Any vertex overlap other than x = y (i.e. if a = y or b = x, or if a = b, or if one of
u or v are one of {a, b, x, y}).

To find an upper bound for (a), note that any choice in case (a) must involve a single
edge, and a 2-path starting from a specified vertex. By Lemma 5, the number of choices

the electronic journal of combinatorics 27(3) (2020), #P3.19 11



y

vu

x

a = b
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Figure 4: Examples of invalid switching choices in (C1) (left), and (C2).

for (a) then is upper bounded by 3 · o(Ln) · Ln = o(L2
n). The number of choices for case

(b) is O(Ln) as |U | = O(1), and there are at most Ln ways to choose the other edge which
is not restricted to be in U . To bound the number of choices for (c), we investigate each
case:

(C1) a = y, b = x or a = b. In this case, x, y, a, b forms a 2-path (see example a = b on
the left in Figure 4). Thus, there are at most 5 · n · o(Ln) = o(L2

n) choices (noting
that n = O(Ln)), where n is the number of ways to choose a vertex, and o(Ln)
bounds the number of 2-paths starting from this specified vertex;

(C2) one of u and v is one of {a, b, x, y}. In this case, there is one 2-path starting from
u or v, and a single edge (see example u = x on the right in Figure 4). Thus, there
are at most 8 · Lndmax = o(L2

n) choices, where dmax bounds the number of ways to
choose a vertex adjacent to u or v and Ln bounds the number of ways to choose a
single edge.

Thus, the number of invalid choices for {x, a} and {y, b} is o(L2
n), so that the number

of forward switchings which can be applied to any G ∈ S is (1 + o(1))L2
n. Thus,

E [f(G)] = L2
n(1 + o(1)). (3.6)

Given a graph Ḡ ∈ S̄, consider the backward switchings that can be applied to Ḡ.
There are at most Ln(du − |Uu|)(dv − |Uv|) ways to do the backward switching, since we
are choosing an edge which is adjacent to u but not in U , an edge which is adjacent to
v but not in U , and another “oriented” edge {a, b} (oriented in the sense that each edge
has two ways to specify its end vertices as a and b). For a lower bound, we consider the
following forbidden choices:

(a′) at least one of {x, a} or {y, b} is an edge,

(b′) {a, b} ∈ U ,

(c′) any vertices overlap other than x = y (i.e. if {a, b} ∩ {u, v, x, y} 6= ∅).
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For (a′), suppose that {x, a} is present, giving the two-path {x, a}, {a, b} in Ḡ. There are
at most (du − |Uu|)(dv − |Uv|) ways to choose x and y. Given any choice for x and y,
there are at most o(Ln) ways to choose a 2-path starting from x, and hence o(Ln) ways
to choose a, b. Thus, the total number of choices is at most o((du − |Uu|)(dv − |Uv|)Ln).
The case that {y, b} is an edge is symmetric.

For (b′), there are O(1) choices for choosing {a, b} since |U | = O(1), and at most
(du − |Uu|)(dv − |Uv|) choices x and y. Thus, the number of choices for case (b′) is
O((du − |Uu|)(dv − |Uv|)) = o((du − |Uu|)(dv − |Uv|)Ln).

For (c′), the case that a or b is equal to x or y corresponds to a 2-path starting
from u or v together with a single edge from u or v. Since o(Ln) bounds the number
of 2-paths starting from u or v and du − |Uu| + dv − |Uv| bounds the number of ways
to choose the single edge, there are o(Ln(dv − |Uv|)) + o(Ln(du − |Uu|)) total choices.
If a or b is equal to u or v, there are (du − |Uu|)(dv − |Uv|) ways to choose x and y,
and at most du + dv ways to choose the last vertex as a neighbor of u or v. Thus,
there are O((du − |Uu|)(dv − |Uv|)dmax) = o((du − |Uu|)(dv − |Uv|)Ln) total choices, since
by (1.4) dmax = O(n1/(τ−1)) = o(n) = o(Ln). This concludes that the number of backward
switchings that can be applied to any graph Ḡ ∈ S ′ is (du − |Uu|)(dv − |Uv|)Ln(1 + o(1)),
so that also

E
[
b(Ḡ)

]
= (du − |Uu|)(dv − |Uv|)Ln(1 + o(1)). (3.7)

Combining (3.5), (3.6) and (3.7) results in

|S̄|/|S| = (1 + o(1))
L2
n

(du − |Uu|)(dv − |Uv|)Ln
,

and thus (3.4) yields

P (u ∼ v | EU) =
1

1 + |S̄|/|S| = (1 + o(1))
(du − |Uu|)(dv − |Uv|)

Ln + (du − |Uu|)(dv − |Uv|)
.

4 Proof of Theorem 1

In this section, we use Lemma 3 to prove Theorem 1. Let

Bn(ε) = {u : du ∈ [ε
√
µn,
√
µn/ε]} (4.1)

for some fixed ε > 0. Define Xuvw = 1{u∼v,v∼w,u∼w} and

4G(Bn(ε)) =
∑

u,v,w∈Bn(ε)

Xuvw, 4G(B̄n(ε)) =
∑

u/∈Bn(ε)

∑
v,w∈[n]

Xuvw.

Thus, 4G(Bn(ε)) denotes the number of triangles in a graph G where all degrees of the
vertices in the triangle are in Bn(ε) and4G(B̄n(ε)) denotes the number of triangles where
at least one of the vertices does not have its degree in Bn(ε). Then, the following lemma
bounds 4G(B̄n(ε)):
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Lemma 6. Let τ ∈ (2, 3) and dn be a degree sequence on n vertices satisfying Assump-
tion 1. Let Gn be a uniformly sampled graph from G(dn). Then,

lim
ε↓0

lim sup
n→∞

E
[
4Gn(B̄n(ε))

]
n

3
2

(3−τ)
= 0. (4.2)

Proof. Let F = [0,∞)3 \ [ε
√
µn,
√
µn/ε]3, so that F denotes the area where one of the

three degrees is not in Bn(ε). By (1.2) and Lemma 3, for some K1 > 0

E
[
4Gn(B̄n(ε))

]
=

∑
16u<v<w6n

P (u ∼ v, v ∼ w, u ∼ w)1{u,v or w/∈Bn(ε)}

6 K1

∑
16u<v<w6n

min

(
dudv
Ln

, 1

)
min

(
dudw
Ln

, 1

)
min

(
dvdw
Ln

, 1

)
1{u,v or w/∈Bn(ε)}

= K1n
3

∫ ∫ ∫
F

min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dFn(x)dFn(y)dFn(z), (4.3)

where the factor n3 arises from replacing the sum over all sets of three vertices by the
average over three uniformly chosen vertices.

We first investigate the contribution to the integral from the area where the first entry
is in [0, ε

√
µn]. We use that for a bounded, absolutely continuous function g(x) such that

g(0) = 0, ∫ ∞
0

g(x)dFn(x) =

∫ ∞
0

Ḡ(x)(1− Fn(x))dx 6 K

∫ ∞
0

Ḡ(x)x1−τdx

= K

∫ ∞
0

(τ − 1)g(x)x−τdx+K
[
g(x)x1−τ]∞

0

= K(τ − 1)

∫ ∞
0

g(x)x−τdx, (4.4)

where Ḡ(x) denotes a function such that
∫ x

0
Ḡ(y)dy = g(x), and where we used Assump-

tion 1(i). Thus, for some K2 > 0, the integral in (4.3) can be bounded by

K2

∫ ε
√
µn

0

∫ ∞
0

∫ ∞
0

(xy)−τ min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dxdydFn(z) (4.5)

Furthermore, for all non-decreasing g that are bounded on [0, ε
√
µn] and once differ-

entiable,∫ ε
√
µn

0

g(x)dFn(x) =

∫ ε
√
µn

0

∫ x

0

Ḡ(y)dydFn(x)

=

∫ ε
√
µn

0

(Fn(ε
√
µn)− Fn(y))Ḡ(y)dy

6 K

∫ ε
√
µn

0

y1−τ Ḡ(y)dy
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= K(τ − 1)

∫ ε
√
µn

0

y−τg(y)dy +
[
Kg(y)y1−τ]ε√µn

0

6 K(τ − 1)

∫ ε
√
µn

0

y−τg(y)dy +Kg(ε
√
µn)(ε

√
µn)1−τ . (4.6)

In this case we take

gn(z) = g(z) =

∫ ∞
0

∫ ∞
0

(xy)−τ min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dxdy. (4.7)

Thus, using that g(ε
√
µn) = O(n1−τε2τ−2),∫ ε

√
µn

0

∫ ∞
0

∫ ∞
0

(xy)−τ min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dxdydFn(z)

6 K3

∫ ε
√
µn

0

∫ ∞
0

∫ ∞
0

(xyz)−τ min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dxdydz

+O(n
3
2

(1−τ))ετ−1

= h(ε)O
(
n

3
2

(1−τ)
)
, (4.8)

for some function h(ε) such that limε↓0 h(ε) = 0 and some K3 > 0. The last equality fol-
lows from [13, Lemma 4.2]. Multiplying by n3 as in (4.3) then proves that the contribution
to (4.3) where at least one of the vertices has degree smaller than ε

√
n is small.

We next investigate the contribution to (4.3) where z is in [
√
µn/ε,∞). Again us-

ing (4.4), we can write for some K2 > 0∫ ∞
√
µn/ε

∫ ∞
0

∫ ∞
0

min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dFn(x)dFn(y)dFn(z)

6 K2

∫ ∞
√
µn/ε

∫ ∞
0

∫ ∞
0

(xy)−τ min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dxdydFn(z)

= K2E
[
gn(Dn)1{Dn>√µn/ε}

]
, (4.9)

where gn is as in (4.7) and Dn ∼ Fn. Since gn is non-decreasing, we get

E
[
gn(Dn)1{Dn>√µn/ε}

]
6 E

[
gn(D̄)1{D̄>√µn/ε}

]
, (4.10)

where P
(
D̄ > x

)
= min(Kx1−τ , 1), as in Assumption 2(ii)’. Thus, the contribution

in (4.9) can be bounded by∫ ∞
√
µn/ε

∫ ∞
0

∫ ∞
0

(xyz)−τ min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dxdydz

+ ετ−1O(n
3
2

(1−τ))
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= h(ε)O(n
3
2

(1−τ)) + ετ−1O(n
3
2

(1−τ)), (4.11)

for some function h(ε) such that limε↓0 h(ε) = 0, where the last equality follows from [13,
Lemma 4.2]. Again, multiplying by n3 then shows that the contribution to (4.3) from
the situation where at least one of the vertices has degree larger than

√
n/ε is sufficiently

small.

We now investigate the expected value of 4Gn(Bn(ε)):

Lemma 7. Let τ ∈ (2, 3) and dn be a degree sequence on n vertices satisfying Assump-
tion 1. Let Gn be a uniformly sampled graph from G(dn). Then,

E [4Gn(Bn(ε))]

n
3
2

(3−τ)µ−
3
2

(τ−1)
→ 1

6
(C(τ − 1))3

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

(xyz)−τ
xy

1 + xy

xz

1 + xz

yz

1 + yz
dxdydz.

(4.12)

Proof. Let 4i,j,k denote the event that a triangle is present between vertices i, j and k.
Then,

P (4i,j,k) = P (i ∼ j)P (j ∼ k | i ∼ j)P (i ∼ k | i ∼ j, j ∼ k) . (4.13)

Let

g(di, dj, dk) =
didj

didj + µn

didk
didk + µn

djdk
djdk + µn

. (4.14)

When i, j, k ∈ Bn(ε), di, dj, dk � 1 and also didj, didk, djdk = O(n), so that we can
use (3.1) in Lemma 3 to conclude

P (4i,j,k) =
didj

didj + Ln

(di − 1)dk
didk + Ln

(dj − 1)(dk − 1)

djdk + Ln
(1+o(1)) = g(di, dj, dj)(1+o(1)). (4.15)

We then use that

E [4Gn(Bn(ε))] =
1

6

∑′

i,j,k

P (4i,j,k)1{i,j,k∈Bn(ε)}

= (1 + o(1))
1

6

∑′

i,j,k

g(di, dj, dk)1{i,j,k∈Bn(ε)}, (4.16)

where
∑′

denotes the sum over distinct indices.

We then define the measure

M (n)([a, b]) = µ(τ−1)/2n(τ−3)/2
∑
i∈[n]

1{di∈[a,b]
√
µn}. (4.17)

By Assumption 1(ii),

n−1
∑
i∈[n]

1{di∈[a,b]
√
µn} = C

√
µn1−τ (a1−τ − b1−τ )(1 + o(1))
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= C(τ − 1)
√
µn1−τ

∫ b

a

t−τdt(1 + o(1)), (4.18)

so that

M (n)([a, b])→ C(τ − 1)

∫ b

a

t−τdt =: λ([a, b]). (4.19)

Furthermore, we can write∑
16i<j<k6n g(di, dj, dk)1{i,j,k∈Bn(ε)}

n
3
2

(3−τ)µ−
3
2

(τ−1)

=
1

6

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

g(t1, t2, t3)dM (n)(t1)dM (n)(t2)dM (n)(t3) (4.20)

Because the function g(t1, t2, t3) is a bounded, continuous function on [ε, 1/ε]3,∑
16i<j<k6n g(di, dj, dk)1{i,j,k∈Bn(ε)}

n
3
2

(3−τ)µ−
3
2

(τ−1)

→ 1

6

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

g(t1, t2, t3)dλ(t1)dλ(t2)dλ(t3)

=
(C(τ − 1))3

6

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

(xyz)−τ
xy

1 + xy

xz

1 + xz

yz

1 + yz
dxdydz. (4.21)

Combining this with (4.16) proves the lemma.

We proceed to investigate the variance of 4(Bn(ε)). The next lemma shows that
the variance of 4(Bn(ε)) is with high probability small compared to the square of its
expectation.

Lemma 8. Let τ ∈ (2, 3) and dn be a degree sequence on n vertices satisfying Assump-
tion 1. Let Gn be a uniformly sampled graph from G(dn). Then,

Var (4Gn(Bn(ε)))

E [4Gn(Bn(ε))]2
→ 0 (4.22)

Proof. By Lemma 7, E [4Gn(Bn(ε))] = Θ(n
3
2

(3−τ)). Thus, we need to show that the
variance scales as o(n9−3τ ). We write

Var (4Gn(Bn(ε)))=
∑′

i,j,k

∑′

u,v,w

(P (4i,j,k4u,v,w)− P (4i,j,k)P (4u,v,w))1{i,j,k,u,v,w∈Bn(ε)},

where
∑′

denotes a sum over distinct indices. The value of the summand depends on

the overlap of the indices i, j, k and u, v, w. We denote the contribution to the variance
where r indices are distinct by V (r). When all 6 indices are different, we obtain similarly
to (4.15) that

P (4i,j,k4u,v,w) = g(di, dj, dk)g(du, dv, dw)(1 + o(1)). (4.23)
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Thus, the contribution to the variance when all 6 indices are different can be bounded by

V (6) =
∑′

i,j,k

∑′

u,v,w

o(g(di, dj, dk)g(du, dv, dw))1{i,j,k,u,v,w∈Bn(ε)}

= o(E [4Gn(Bn(ε))]2). (4.24)

When i = u, but all other indices are different, we bound the contribution to the variance
using Assumption 1(i) as

V (5) 6
∑′

i,j,k,v,w

1{i,j,k,v,w∈Bn(ε)} 6

(∑
i∈[n]

1{di>ε√n}
)5

6 K5ε5−5τn
5
2

(3−τ) = o(n9−3τ ), (4.25)

and the other contributions can be bounded similarly.

We now prove Theorem 1 using the above lemmas:

Proof of Theorem 1. Fix ε > 0. Applying the Markov inequality together with Lemma 6
yields that for all δ > 0

P
(
4Gn(B̄n(ε)) > δn

3
2

(3−τ)
)

= O

(
h(ε)

δ

)
, (4.26)

for some h(ε)→ 0 as ε ↓ 0 so that

4Gn(B̄n(ε)) = h(ε)OP

(
n

3
2

(3−τ)
)
. (4.27)

We now focus on 4Gn(Bn(ε)). Using Lemma 8 together with the Chebyshev inequality
results in

4Gn(Bn(ε))

E [4Gn(Bn(ε))]

P−→ 1. (4.28)

Combining this with Lemma 7 shows that

4Gn(Bn(ε))

n
3
2

(3−τ)
= (1 + oP(1))µ−

3
2

(τ−1) (C(τ − 1))3

6

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

(xyz)−τ

× xy

1 + xy

xz

1 + xz

yz

1 + yz
dxdydz. (4.29)

Thus,

T (Gn)

n
3
2

(3−τ)
=
4Gn(Bn(ε)) +4Gn(B̄n(ε))

n
3
2

(3−τ)

= (1 + oP(1))µ−
3
2

(τ−1) (C(τ − 1))3

6

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

(xyz)2−τ

(1 + xy)(1 + xz)(1 + yz)
dxdydz

+ o(h(ε)). (4.30)

the electronic journal of combinatorics 27(3) (2020), #P3.19 18



Taking the limit of ε ↓ 0 then proves the convergence in probability statement of Theo-
rem 1.

We now compute the value of the resulting integral. We apply the change of variables
x =

√
ac/b, y =

√
ab/c, z =

√
bc/a. Then, the Jacobian J(a, b, c) of this change of

variables equals

J(a, b, c) =
1

2
√
abc

. (4.31)

Then, ∫ ∞
0

∫ ∞
0

∫ ∞
0

(xyz)2−τ

(1 + xy)(1 + xz)(1 + yz)
dxdydz

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

(
√
abc)2−τ

(1 + a)(1 + c)(1 + b)

1

2
√
abc

dadbdc

=
1

2

(∫ ∞
0

a(1−τ)/2

(1 + a)
da

)3

=
1

2

(
−π cos

(πτ
2

)−1
)3

, (4.32)

where the last step follows by [9, 3.194.4]. This concludes the proof of the theorem.

5 Proof of Theorem 2

The proof of Theorem 2 follows similar lines as the proof of Theorem 1 and again consists
of several steps. We first prove Theorem 2 for Ranges I, II and IV, and then we show
how to adapt the proof for k = dB√ne. Let 4k denote the number of triangles where at
least one of the vertices has degree k. We specify a set W ⊆ [n]× [n] of ordered pairs of
vertices such that the contribution to 4k from triangles where the other two vertices in
the triangle fall outside of W is small. We then focus on the number of triangles where
one vertex has degree k and the other two vertices are in W . We compute the expected
number of such triangles, and then use a second moment method to show that the number
of such triangles concentrates around its expectation.

More specifically, let

W k
n (ε) =


{(u, v) : dudv ∈ [εn, n/ε]} k 6 n(τ−2)/(τ−1),

{(u, v) : dudv ∈ [εn, n/ε], du, dv 6 n/k} k > n(τ−2)/(τ−1), k 6
√
n,

{(u, v) : du, dv ∈ [εn/k, n/(εk)]} k >
√
n.

(5.1)

Recall that Nk =
∑

i∈[n] 1{di=k} and Xuvw = 1{4u,v,w}. Define

c(W k
n (ε)) =

2

Nkk(k − 1)

∑
(u,v)∈Wk

n (ε)

∑
w:dw=k

Xuvw, (5.2)

c(W̄ k
n (ε)) =

2

Nkk(k − 1)

∑
(u,v)/∈Wk

n (ε)

∑
w:dw=k

Xuvw. (5.3)
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Thus, c(W k
n (ε)) denotes the contribution to c(k) from triangles with one vertex of degree

k and the other two vertices in W k
n (ε), and c(W̄ k

n (ε)) denotes the contribution from all
other triangles containing a vertex of degree k.

Denote

f(n, k) =


n2−τ log(n) k 6 n(τ−2)/(τ−1),

n2−τ log(n/k2) k > n(τ−2)/(τ−1), k 6
√
n,

n5−2τk2τ−6 k >
√
n,

(5.4)

which is the scaling of c(k) predicted by Theorem 2. We first bound c(W̄ k
n (ε)), the

contribution to c(k) from triangles with degrees outside the ranges in (5.1):

Lemma 9. When dn satisfies Assumption 2 for some τ ∈ (2, 3), then in Ranges I, II and
IV,

lim
ε↓0

lim sup
n→∞

E
[
c(W̄ k

n (ε))
]

f(n, k)
= 0. (5.5)

Proof. Using (3.1), we can write for some K1 > 0,

E
[
c(W̄ k

n (ε))
]

=
1

Nk

∑
i:di=k

∑
(u,v)/∈Wk

n (ε)

P (4i,u,v)

k(k − 1)

6
K1

Nkk(k − 1)

∑
i:di=k

∑
(u,v)/∈Wk

n (ε)

min
(kdu
µn

, 1
)

min
(kdv
µn

, 1
)

min
(dudv
µn

, 1
)

=
K1

k(k − 1)

∑
(u,v)/∈Wk

n (ε)

min
(kdu
µn

, 1
)

min
(kdv
µn

, 1
)

min
(dudv
µn

, 1
)

= K1(n/k)2

∫ ∫
Hn(k)

min
(kx
µn

, 1
)

min
( ky
µn

, 1
)

min
(xy
µn

, 1
)

dFn(x)dFn(y), (5.6)

where Hn(k) ⊆ R2 denotes the region where (x, y) does not satisfy the degree constraints
of W k

n (ε). We first show that the contribution to the integral from degrees larger than
cn1/τ−1/ log(n) is sufficiently small in Range I. By (1.4), dmax 6 Mn1/(τ−1) for some
M > 0. Therefore, in Range I, min(kx/(µn), 1) = kx/(µn) for x ∈ (0, dmax), and similarly
min(ky/Ln, 1) = ky/(µn) for y ∈ (0, dmax). We then write the integral as

k2

(µn)3

∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

∫ n/x

0

x2y2dFn(y)dFn(x)

+
k2

(µn)2

∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

∫ Mn1/(τ−1)

n/x

xydFn(y)dFn(x). (5.7)

We first investigate the contribution of the first integral. By Assumption 1(i),∫ n/x

0

y2dFn(y) = −y2
[
(1− Fn(y))

]n/x
0

+

∫ n/x

0

2y[1− Fn(y)]dy 6 K

∫ n/x

0

2y2−τdy, (5.8)
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so that

k2

(µn)3

∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

∫ n/x

0

x2y2dFn(y)dFn(x)

6 2K
k2

n3

∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

∫ n/x

0

x2y2−τdydFn(x)

=
2Kk2

(3− τ)nτ

∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

xτ−1dFn(x). (5.9)

Similarly to (5.8),

k2n−τ
∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

xτ−1dFn(x)

= −k2n−τxτ−1[1− Fn(x)]Mn1/(τ−1)

cn1/(τ−1)/ log(n)+ (τ − 1)k2n−τ
∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

x−1[1− Fn(x)]dx

6 k2n−τ
[
K
(cn1/(τ−1)

log(n)

)τ−1(cn1/(τ−1)

log(n)

)1−τ]
+K(τ − 1)k2n−τ

∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

x−1dx

= K(τ − 1)k2n−τ
∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

x−1dx+O(k2n−τ )

= (τ − 1)k2n−τ log(M log(n)/c) +O(k2n−τ ). (5.10)

Multiplying by n2k−2 then shows that the contribution of this integral to (5.6) is smaller
than n2−τ log(n), as required. A similar computation shows that the contribution from
the second integral in (5.7) is O(n2−τ log(log(n))) as well. To show that the contribution
to (5.6) from vertices with degrees larger than n1/(τ−1)/ log(n) is sufficiently small in
Ranges II, III and IV, we use similar computations.

Let H ′n(k) ⊆ Hn(k) denote the region where (x, y) does not satisfy the degree con-
straints of W k

n (ε), while also x, y 6 cn1/(τ−1)/ log(n). By our previous arguments, we only
need to show that the integral in (5.6) over H ′n(k) is sufficiently small. Note that the
integrand is always a power of x,y and z, where the power depends on the range of the
integral. Furthermore, Assumption 2(ii)’ holds over the entire range of the integral. By
Assumption 2(ii)’, for a � b 6 cn1/(τ−1) log(n), aγ(1 − Fn(a)) − bγ(1 − Fn(b)) 6 0 for n
sufficiently large and γ > 1− τ . Then, for n sufficiently large and γ > 1− τ ,∫ b

a

xγdFn(x) =
[
− xγ(1− Fn(x))

]b
a

+ γ

∫ b

a

xγ−1(1− Fn(x))dx

6 γK

∫ b

a

xγ−τdx. (5.11)

Following the computations in [15, Lemma 10], we can see that indeed the integral over
H ′n(k) splits into integrals over ranges [a, b] such that a � b and where the integrand
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equals xγ for some γ > τ − 1. Therefore, we can bound the integral over H ′n(k) for n
sufficiently large as∫ ∫

H′n(k)

min
(kx
µn

, 1
)

min
( ky
µn

, 1
)

min
(xy
µn

, 1
)

dFn(x)dFn(y)

6 K3

∫ ∫
H′n(k)

(xy)−τ min
(kx
µn

, 1
)

min
( ky
µn

, 1
)

min
(xy
µn

, 1
)

dxdy (5.12)

for some K3 > 0. This is the same upper bound used in [15, Lemma 10], so that we can
follow the proof of [15, Lemma 10] to prove the lemma.

We now investigate the expected contribution of vertices in W k
n (ε) to c(k):

Lemma 10. Let dn satisfy Assumption 2 for some τ ∈ (2, 3). Let

A(ε) =

∫ 1/ε

ε

t2−τ

1 + t
dt. (5.13)

Then,

E
[
c(W k

n (ε))
]

f(n, k)
→


(C(τ − 1))2µ−τ 3−τ

τ−1
A(ε) for k in Range I,

(C(τ − 1))2µ−τA(ε) for k in Range II,

(C(τ − 1))2µ3−2τ 3−τ
τ−1

A(ε)2 for k in Range IV.

(5.14)

Proof. Let v be a uniformly chosen vertex of degree k. We first investigate the case
where k is in Range I. When i, j ∈ W k

n (ε), didj = O(n) and di, dj � 1. Furthermore, by
Assumption 1(i), dmax = O(n1/(τ−1)), so that also kdi = o(n) and kdj = o(n) in Range I.
Thus, we may use (3.1), so that we can approximate the probability that triangle i, j, k
is present as in (4.15). We then obtain

E
[
c(W k

n (ε))
]

=
1

k2

∑
(i,j)∈Wk

n (ε)

P (4i,j,v)

=
1

k2

∑
(i,j)∈Wk

n (ε)

didj
didj + Ln

dik

dik + Ln

djk

djk + Ln
(1 + o(1)). (5.15)

In Range I, when (i, j) ∈ W k
n (ε), dik/Ln = o(1) so that dik/(dik+Ln) = dik/Ln(1+o(1))

and similarly djk/(djk + Ln) = djk/Ln(1 + o(1)). Thus, in Range I,

E
[
c(W k

n (ε))
]

=
∑

(i,j)∈Wk
n (ε)

1

L2
n

d2
i d

2
j

didj + Ln
(1 + o(1)). (5.16)

We now analyze the convergence of this expression similarly as in the proof of [15, Lemma
6]. The only differences with the expression in [15, Lemma 6] are that [15, Lemma
6] contains the term 1 − e−didj/Ln , whereas (5.16) contains the term didj/(didj + Ln)
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instead, which is also a bounded, continuous function. Furthermore, in [15, Lemma 6] the
degree sequence satisfies Assumption 1(ii) with high probability, changing convergence
in probability of [15, Lemma 6] to a deterministic limit, similarly as in (4.19). Thus, a
similar analysis as in [15, Lemma 6] then results in

E
[
c(W k

n (ε))
]

f(n, k)
→ (C(τ − 1))2µ−τ

3− τ
τ − 1

A(ε), (5.17)

which concludes the proof for Range I.
Similarly, in Range II we analyze (5.15) using [15, Lemma 7], again replacing the

function 1 − e−xy/Ln by xy/(Ln + xy) and convergence in probability by convergence.
Then applying [15, Lemma 7] with this replaced function proves the lemma for Range II.

Finally, in Range IV, when (i, j) ∈ W k
n (ε), didj = o(n) so that didj/(didj + Ln) =

didj/L
−1
n (1 + o(1)). Thus, (5.15) becomes

E
[
c(W k

n (ε))
]

=
1

k2Ln

∑
(i,j)∈Wk

n (ε)

d2
i k

dik + Ln

d2
jk

djk + Ln
(1 + o(1)). (5.18)

Now applying [15, Lemma 8], replacing the function 1 − e−xy/Ln by xy/(Ln + xy) and
convergence in probability by convergence again proves the lemma, now for Range IV.

Finally, we show that the variance of c(k) is small in the major contributing regime:

Lemma 11. When dn satisfies Assumption 2 for some τ ∈ (2, 3), then in Ranges I, II
and IV,

Var
(
c(W k

n (ε))
)

E [c(W k
n (ε))]2

P−→ 0. (5.19)

Proof. We can write the variance as

Var
(
c(W k

n (ε))
)

=
1

k4N2
k

∑
i,j:

di,dj=k

∑
(u,v),(w,z)

∈Wk
n (ε)

(
P (4i,u,v4j,w,z)− P (4i,u,v)P (4j,w,z)

)
. (5.20)

Again, the contribution of the summand depends on the size of {i, j, u, v, w, z}. We first
investigate the case where all 6 indices are different and we denote the contribution by
this term as V (6). Let g(x, y, z) be the function defined in (4.14). Since kdi, kdj and didj
are all O(n) when (i, j) ∈ W k

n (ε) as well as di, dj � 1, we may apply (3.1) to obtain

P (4i,u,v)P (4j,w,z) = g(k, du, dv)g(k, dw, dz)(1 + o(1)) (5.21)

P (4i,u,v4j,w,z) = g(k, du, dv)g(k, dw, dz)(1 + o(1)). (5.22)

Note that when di = dj = k and (u,w), (v, z) ∈ W k
n (ε), g(di, du, dv) ∈ [ε2f̃(n, k), f̃(n, k)/ε2]

for some function f̃(n, k) depending on the range of k. Therefore, the o(1) terms are
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uniform in i, j with di = dj = k and (u, v), (w, z) ∈ W k
n (ε). We then obtain

V (6) =
1

k4N2
k

∑
i,j:di,dj=k

∑
(u,v),(w,z)∈Wk

n (ε)

o (g(k, du, dv)g(k, dw, dz))

= o
(
E
[
c(W k

n (ε))
]2)

, (5.23)

where the last equality follows from (5.15).
When {i, j, u, v, w, z} = 5, there are no overlapping edges of the two triangles involved.

Thus, we can use the same estimates as in (5.21) and (5.22) to show that this contribu-
tion is small. We now bound the contributions to (5.20) from {i, j, u, v, w, z} 6 4. By
Lemma 10 we have to show that these contributions are o(f(n, k)2). We use that, by (1.2),

P (4i,u,v4j,w,z)− P (4i,u,v)P (4j,w,z) 6 P (4i,u,v4j,w,z)

6 K1 min

(
duk

Ln
, 1

)
min

(
dvk

Ln
, 1

)
min

(
dudv
Ln

, 1

)
×min

(
dzk

Ln
, 1

)
min

(
dwk

Ln
, 1

)
min

(
dwdz
Ln

, 1

)
, (5.24)

for someK1 > 0. This is the same bound as in [15, Eq. (5.61)], where it is shown that these
contributions are o(f(n, k)2) by using a first moment method. The only difference with
our setting is that [15, Eq. (5.61)] considers i.i.d. degrees sampled from (1.5), whereas we
assume that the empirical degree distribution converges to (1.5). This does not influence
the expected value, so that we can follow the proof of [15, Lemma 9] to show that these
contributions are o(f(n, k)2), as required.

We now use the above lemmas to prove Theorem 2:

Proof of Theorem 2. Fix ε > 0. By Lemmas 10 and 11,

c(W k
n (ε))

f(n, k)

P−→


(C(τ − 1))2µ−τ 3−τ

τ−1
A(ε) for k in Range I,

(C(τ − 1))2µ−τA(ε) for k in Range II,

(C(τ − 1))2µ3−2τ 3−τ
τ−1

A(ε)2 for k in Range IV.

(5.25)

Combining this with Lemma 9 results in

c(k)

f(n, k)
=
c(W k

n (ε)) + c(W̄ k
n (ε))

f(n, k)

P−→


(C(τ − 1))2µ−τ 3−τ

τ−1
A(ε) +O(h(ε)) for k in Range I,

(C(τ − 1))2µ−τA(ε) +O(h(ε)) for k in Range II,

(C(τ − 1))2µ3−2τ 3−τ
τ−1

A(ε)2 +O(h(ε)) for k in Range IV.

(5.26)

We then take the limit of ε ↓ 0. By [9, Eq. 3.194.3]

lim
ε↓0

A(ε) =

∫ ∞
0

t2−τ

1 + t
dt = − π

sin(π(2− τ))
=

π

sin(πτ)
, (5.27)
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which is equal to the constant A of Theorem 2. Therefore, taking the limit of ε ↓ 0
in (5.26) results in

c(k)

f(n, k)

P−→


(C(τ − 1))2µ−τ 3−τ

τ−1
A for k in Range I,

(C(τ − 1))2µ−τA for k in Range II,

(C(τ − 1))2µ3−2τ 3−τ
τ−1

A2 for k in Range IV,

(5.28)

which proves the theorem for Ranges I,II and IV
We now analyze c(k) for Range III where k = dB√ne. Note that Lemmas 6 and 11

also hold for k = dB√ne, following the proofs for c(k) in Range IV. We therefore only
need to analyze E

[
c(WB

√
n

n (ε))
]
. Using (5.15) yields

E
[
c(WB

√
n

n (ε))
]

= (1 + o(1))
1

B2n

∑
(i,j)∈Wk

n (ε)

didj
didj + µn

diB
√
n

diB
√
n+ µn

djB
√
n

djB
√
n+ µn

.

Define the measure

N (n)([a, b]) =
(µ
√
n)τ−1

n

∑
i∈[n]

1{di∈µ/√n[a,b]}. (5.29)

Then,

E
[
c(WB

√
n

n (ε))
]

= (1 + o(1))
µ2−2τn3−τ

B2n

∫ 1/ε

ε

∫ 1/ε

ε

xy

xy + µ−1

xB

xB + 1

yB

yB + 1
dN (n)(x)dN (n)(y)

= (1 + o(1))µ2−2τn2−τ
∫ 1/ε

ε

∫ 1/ε

ε

xy

xy + µ−1

x

xB + 1

y

yB + 1
dN (n)(x)dN (n)(y). (5.30)

Using similar techniques as in (4.21), we can prove that

E
[
c(WB

√
n

n (ε))
]

µ2−2τn2−τ → (C(τ − 1))2

∫ 1/ε

ε

∫ 1/ε

ε

(t1t2)2−τ

t1t2 + µ−1

1

t1B + 1

1

t2B + 1
dt1dt2. (5.31)

Combining this with Lemmas 6 and 11 and taking the limit of ε ↓ 0 then proves that

c(k)

n2−τ
P−→ µ2−2τ (C(τ − 1))2

∫ ∞
0

∫ ∞
0

(t1t2)2−τ

(1 + t1B)(1 + t2B)(µ−1 + t1t2)
dt1dt2. (5.32)

Finally, evaluating the double integral yields (see Appendix A)∫ ∞
0

∫ ∞
0

(t1t2)2−τ

(1 + t1B)(1 + t2B)(µ−1 + t1t2)
dt1dt2

=
π csc(πτ)

(
πµ2B2τ csc(πτ)−B4µτ

(
log
(
B2

µ

)
+ π cot(πτ)

))
B4µ (B2 + µ)
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= µ−1A

(
Aµ2B2τ−4 − µτ

(
log
(
B2

µ

)
+ A cos(πτ)

))
(B2 + µ)

,

where we have used that A = π/ sin(πτ). Combined with (5.32), this proves the theorem
for Range III.

6 Conclusion

In this paper, we have studied the number of triangles in uniform random graphs with
given degrees, when the degree sequence follows a power-law distribution with degree-
exponent τ ∈ (2, 3). We have shown that the rescaled number of triangles converges in
probability to a constant. We have further shown that most triangles occur on vertices
of degrees proportional to

√
n. Another interesting conclusion is that uniform random

graphs asymptotically contain less triangles than the erased configuration model which is
often used to approximate uniform random graphs with a given degree sequence.

We have also shown that the local clustering coefficient c(k) of uniform random graphs
with scale-free degrees behaves differently in three ranges. For small values of k, c(k) is
independent of k. In the second range, c(k) starts to decay slowly in k, and in the fourth
range c(k) decays as a power of k.

The triangle is an interesting subgraph since it allows one to analyze clustering prop-
erties, but counting other subgraphs in uniform graphs with scale-free degrees would also
be interesting. We believe that our results easily extend to a wider class of subgraphs,
as for the erased configuration model in [14, Theorem 2.2]. In this class of subgraphs,
most subgraphs are also supported on vertices of degree proportional to

√
n. This class of

subgraphs contains for example cliques of any fixed order that is at least three. Extending
the results to count subgraphs outside this class would also be an interesting question for
further research.
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A Mathematica code to evaluate the integrals in (5.32)

In[ ]:= assume = {2 < τ < 3, B > 0, μ > 0};

int3 = Integrate
t1 t22-τ

1 + B t1 1 + B t2 μ-1 + t1 t2
,

{t1, 0, ∞}, {t2, 0, ∞}, Assumptions → assume

Out[ ]=

π Csc[π τ] B2 τ π μ2 Csc[π τ] - B4 μτ π Cot[π τ] + Log B2

μ


B4 μ B2 + μ
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