A note on the Poljak-Rodl function
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Abstract

The Poljak-Rodl function is defined as f(c¢) = min{x(G x H) : x(G) = x(H) =

c}. This note proves that limsup,_, ., f(cc) < %

Mathematics Subject Classifications: 05C88, 05C89

The categorical product (also known as the tensor product or the direct product) G x H
of G and H has vertex set

V(G x H) ={(z,y) :x € V(G),y € V(H)}
and edge set
BE(G x H) ={(z,y)(@",y) : 22" € E(G),yy’ € E(H)}.
The Poljak-Rodl function [8] is defined as

f(e) = min{x(G x H) : x(G) = x(H) = c}.
A proper colouring ¢ of G induces a proper colouring ® of G x H defined as ®(x,y) =
d(z). So x(G x H) < x(G). Therefore f(c) < c for all positive integers ¢. Hedetniemi
conjectured in 1966 [4] that f(c) = c for all positive integers c. This conjecture received a
lot of attention [1, 5, 9, 12, 14, 15] and was confirmed for ¢ < 4 [1]. However the conjecture
was disproved by Shitov in [10] in 2019. For a positive integer ¢, let [¢] = {1,2,...,¢c}.
For a graph G, the exponential graph K¢ has vertex set

V(K®) ={f: fisamapping V(G) — [}

and in which f and ¢ are adjacent if and only if for any edge zy of G, f(x) # g(y). For
any graph G and any positive integer ¢, the mapping ¢ : V(G x K&) — [c] defined as
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é(x, f) = f(x) is a proper c-colouring of G x K¢. So x(G x K&) < ¢. On the other hand,
if ¢ is a proper c-colouring of G x H, then the mapping sending v € V(H) to f, € V(K&)
defined as f,(v) = ¢(v,u) is a homomorphism from H to K& and hence x(H) < x(K9).
Thus Hedetniemi’s conjecture is equivalent to the statement that “if x(G) > ¢, then K¢
is c-colourable.”

The lexicographic product G[K,] of G and K|, is the graph obtained from G by replacing
each vertex of G with a g-clique. Thus G[K,] has vertex set {(z,%) : x € V(G),i € V(K,)}
and (z,i) ~ (y,j) if x ~y or =y and i # j. The fractional chromatic number of G is

defined as
(G[K))

x7(G) :inf{X :q € N}

Shitov disproved Hedetniemi’s conjecture by showing the following result:

Theorem 1 (Shitov). Assume |[V(G)| = p, x;(G) = 3.1, girth(G) > 6, q is sufficiently

large and ¢ = [3.1q|. Then x(G[K,]) > ¢ and x (KCG[KQ}> > c.

As a consequence of this result, we have f(c) < ¢ for sufficiently large ¢. Using Shitov’s
result, Tardif and Zhu [13] showed that for sufficiently large ¢, f(c) < ¢ — (logc)'/4=o),
Tardif and Zhu also asked if there is a constant ¢ > 0 such that f(c) < (1 — €)c for
sufficiently large ¢ and showed that if a special case of Stahl’s conjecture in [11] on the
multi-chromatic number of Kneser graphs is true, then limsup,_, . f(c)/c < 1/2. The
above question was answered by He and Wigderson [3], who showed that for € ~ 1079,
f(c) < (1 — €)c for sufficiently large c.

On the other hand, the problem whether f(c) is bounded by a constant remains a
challenging open problem. It is known [7, 8, 14] that f(c) is either bounded by 9 to goes
to infinity.

This note shows that limsup,_,, f(c)/c < 1/2 without assuming Stahl’s conjecture.

Theorem 2. For d > 1, let G be a graph of girth 6 and with x;(G) > 6.3d. Let
p = |V(G)|, q is sufficiently large and ¢ = [3.1q]. Then x(G[K,]) > 2dc — 2¢ + 2
and X(KdGC[K”’}) > 2dc — 2c+ 2. Consequently, f(2dc — 2c+ 2) < dc.

Proof. 1t is well-known that x(G[K,]) > x;(G)q = 6.3dg > 2dc > 2dc — 2¢ + 2. Now we
show that X(Kci[Kq}) > 2dc — 2c + 2.

Assume W is a (dc+t)-colouring of Kfc[KQ] with colour set [dc+t]. We shall show that
de+t > 2dc—2c+2,ie.,t>dc—2c+2. Let S =[dc+t]\ [dec]. The colours in [dc] are
called primary colours and colours in S are called secondary colours.

For i € [dc], denote by g; € V(KCG[K"}) the constant map g;((z,7)) =i for all (x,j) €

G[K,]. The set {g; : i € [dc|} induces a dc-clique in Kfc[KQ]. Thus we may assume that
U(g;) =i for i € [dc].

For any ¢ € V(KE[KQ]), let Im(¢) = {o(x,i) : (x,i) € V(G[K,])} be the image set of
¢. 1f i ¢ Im(¢), then ¢ ~ g;. Hence W($) # W(g;) = i. Thus for any ¢ € V(K55

W(6) € Im(d) U S.
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For positive integers m > 2k, let K(m,k) be the Kneser graph whose vertices are
k-susbets of [m], and for two k-subsets A, B of [m], A ~ B if AN B = (). It was proved
by Lovész in [6] that x(K(m,k)) = m — 2k + 2.

For a c-subset A of [cd], let H4 be the subgraph of KCC;[K‘Z] induced by

{¢ € V(KS™ ) Im(¢) C A},

Then H 4 is isomorphic to K&, By Theorem 1, |W(Ha)| = c+1. For every ¢ € V(Hj,),
we have Im(¢) C A. Since |W(Ha)| = ¢+ 1 > |A|, ¥(H4) contains at least one secondary
colour. Let 7(A) be an arbitrary secondary colour contained in W(H4).

If A, B are c-subsets of [dc] and AN B = (), then every vertex in Hy is adjacent to
every vertex in Hp. Hence W(H4) NV (Hpg) = 0. In particular, 7(A) # 7(B). Thus 7 is a
proper colouring of the Kneser graph K (dc, c). As x(K(dc,c)) = dc— 2c+ 2, we conclude
that t = |S| > dc — 2¢ + 2. This completes the proof of Theorem 2. O

For a positive integer d, let p = p(d) be the minimum number of vertices of a graph
G with girth 6 and xf(G) > 6.2d. It follows from Theorem 2 that for any sufficiently
large integer ¢ (which depends on p), f(2(d — 1) x [3.1q] +2) < [3.1¢]d. As f(c) is non-
decreasing, for integers ¢ in the interval [2(d —1) x [3.1¢] +3, 2(d—1) x [3.1(¢+1)] + 2],
we have f(c) < [3.1(¢ + 1)]d.

Hence for all integers ¢ > 2 x [3.1¢](d — 1) + 2,

fle) - [Blg+1)]d
c 2(d—1)x[3.1q] +2°

Note that if d — oo, then p = p(d) goes to infinity, and hence g goes to infinity. Hence

lim sup M < 1
c—00 & 2
Remark The number ¢ in Theorem 1 is required to be large enough so that some in-
equalities in the proof are satisified. A careful analysis of these inequalities shows that
g > 3Pp? is enough. Let p be the minimum number of vertices of a graph of girth 6 and
fractional chromatic number 3.1. The exact value of p is also unknown. A recent com-
puter search by Exoo [2] found a graph on 83 vertices which has odd girth 7 and fractional
chromatic number greater than 3.07 (which is enough for Shitov’s proof). For p = 83,
we have ¢ > 3%. So the graphs in Theorem 1 have huge chromatic number. Recently, a
relatively small counterexample to Hedetniemi’s conjecture was constructed in [16]. It is
now known that Hedetniemi’s conjecture fails for ¢ > 125. Two graphs G and H were
constructed in [16], such that x(G), x(H) > 125 and x(G x H) < 125, and G and H have
3,403 and 10, 501 vertices respectively.
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