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Abstract

The Poljak-Rödl function is defined as f(c) = min{χ(G×H) : χ(G) = χ(H) =

c}. This note proves that lim supc→∞
f(c)
c 6 1

2 .

Mathematics Subject Classifications: 05C88, 05C89

The categorical product (also known as the tensor product or the direct product) G×H
of G and H has vertex set

V (G×H) = {(x, y) : x ∈ V (G), y ∈ V (H)}

and edge set
E(G×H) = {(x, y)(x′, y′) : xx′ ∈ E(G), yy′ ∈ E(H)}.

The Poljak-Rödl function [8] is defined as

f(c) = min{χ(G×H) : χ(G) = χ(H) = c}.
A proper colouring φ of G induces a proper colouring Φ of G × H defined as Φ(x, y) =
φ(x). So χ(G × H) 6 χ(G). Therefore f(c) 6 c for all positive integers c. Hedetniemi
conjectured in 1966 [4] that f(c) = c for all positive integers c. This conjecture received a
lot of attention [1, 5, 9, 12, 14, 15] and was confirmed for c 6 4 [1]. However the conjecture
was disproved by Shitov in [10] in 2019. For a positive integer c, let [c] = {1, 2, . . . , c}.
For a graph G, the exponential graph KG

c has vertex set

V (KG
c ) = {f : f is a mapping V (G)→ [c]}

and in which f and g are adjacent if and only if for any edge xy of G, f(x) 6= g(y). For
any graph G and any positive integer c, the mapping φ : V (G × KG

c ) → [c] defined as
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φ(x, f) = f(x) is a proper c-colouring of G×KG
c . So χ(G×KG

c ) 6 c. On the other hand,
if φ is a proper c-colouring of G×H, then the mapping sending u ∈ V (H) to fu ∈ V (KG

c )
defined as fu(v) = φ(v, u) is a homomorphism from H to KG

c and hence χ(H) 6 χ(KG
c ).

Thus Hedetniemi’s conjecture is equivalent to the statement that “if χ(G) > c, then KG
c

is c-colourable.”
The lexicographic product G[Kq] of G and Kq is the graph obtained from G by replacing

each vertex of G with a q-clique. Thus G[Kq] has vertex set {(x, i) : x ∈ V (G), i ∈ V (Kq)}
and (x, i) ∼ (y, j) if x ∼ y or x = y and i 6= j. The fractional chromatic number of G is
defined as

χf (G) = inf{χ(G[Kq])

q
: q ∈ N}.

Shitov disproved Hedetniemi’s conjecture by showing the following result:

Theorem 1 (Shitov). Assume |V (G)| = p, χf (G) > 3.1, girth(G) > 6, q is sufficiently

large and c = d3.1qe. Then χ(G[Kq]) > c and χ
(
K

G[Kq ]
c

)
> c.

As a consequence of this result, we have f(c) < c for sufficiently large c. Using Shitov’s
result, Tardif and Zhu [13] showed that for sufficiently large c, f(c) 6 c − (log c)1/4−o(1).
Tardif and Zhu also asked if there is a constant ε > 0 such that f(c) 6 (1 − ε)c for
sufficiently large c and showed that if a special case of Stahl’s conjecture in [11] on the
multi-chromatic number of Kneser graphs is true, then lim supc→∞ f(c)/c 6 1/2. The
above question was answered by He and Wigderson [3], who showed that for ε ≈ 10−9,
f(c) 6 (1− ε)c for sufficiently large c.

On the other hand, the problem whether f(c) is bounded by a constant remains a
challenging open problem. It is known [7, 8, 14] that f(c) is either bounded by 9 to goes
to infinity.

This note shows that lim supc→∞ f(c)/c 6 1/2 without assuming Stahl’s conjecture.

Theorem 2. For d > 1, let G be a graph of girth 6 and with χf (G) > 6.3d. Let
p = |V (G)|, q is sufficiently large and c = d3.1qe. Then χ(G[Kq]) > 2dc − 2c + 2

and χ(K
G[Kq ]
dc ) > 2dc− 2c+ 2. Consequently, f(2dc− 2c+ 2) 6 dc.

Proof. It is well-known that χ(G[Kq]) > χf (G)q > 6.3dq > 2dc > 2dc− 2c + 2. Now we

show that χ(K
G[Kq ]
dc ) > 2dc− 2c+ 2.

Assume Ψ is a (dc+ t)-colouring of K
G[Kq ]
dc with colour set [dc+ t]. We shall show that

dc+ t > 2dc− 2c+ 2, i.e., t > dc− 2c+ 2. Let S = [dc+ t] \ [dc]. The colours in [dc] are
called primary colours and colours in S are called secondary colours.

For i ∈ [dc], denote by gi ∈ V (K
G[Kq ]
c ) the constant map gi((x, j)) = i for all (x, j) ∈

G[Kq]. The set {gi : i ∈ [dc]} induces a dc-clique in K
G[Kq ]
dc . Thus we may assume that

Ψ(gi) = i for i ∈ [dc].

For any φ ∈ V (K
G[Kq ]
dc ), let Im(φ) = {φ(x, i) : (x, i) ∈ V (G[Kq])} be the image set of

φ. If i /∈ Im(φ), then φ ∼ gi. Hence Ψ(φ) 6= Ψ(gi) = i. Thus for any φ ∈ V (K
G[Kq ]
dc ),

Ψ(φ) ∈ Im(φ) ∪ S.
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For positive integers m > 2k, let K(m, k) be the Kneser graph whose vertices are
k-susbets of [m], and for two k-subsets A,B of [m], A ∼ B if A ∩ B = ∅. It was proved
by Lovász in [6] that χ(K(m, k)) = m− 2k + 2.

For a c-subset A of [cd], let HA be the subgraph of K
G[Kq ]
cd induced by

{φ ∈ V (K
G[Kq ]
cd ) : Im(φ) ⊆ A}.

Then HA is isomorphic to K
G[Kq ]
c . By Theorem 1, |Ψ(HA)| > c+1. For every φ ∈ V (HA),

we have Im(φ) ⊆ A. Since |Ψ(HA)| > c+ 1 > |A|, Ψ(HA) contains at least one secondary
colour. Let τ(A) be an arbitrary secondary colour contained in Ψ(HA).

If A,B are c-subsets of [dc] and A ∩ B = ∅, then every vertex in HA is adjacent to
every vertex in HB. Hence Ψ(HA)∩Ψ(HB) = ∅. In particular, τ(A) 6= τ(B). Thus τ is a
proper colouring of the Kneser graph K(dc, c). As χ(K(dc, c)) = dc− 2c+ 2, we conclude
that t = |S| > dc− 2c+ 2. This completes the proof of Theorem 2.

For a positive integer d, let p = p(d) be the minimum number of vertices of a graph
G with girth 6 and χf (G) > 6.2d. It follows from Theorem 2 that for any sufficiently
large integer q (which depends on p), f(2(d− 1)× d3.1qe+ 2) 6 d3.1qed. As f(c) is non-
decreasing, for integers c in the interval [2(d− 1)×d3.1qe+ 3, 2(d− 1)×d3.1(q+ 1)e+ 2],
we have f(c) 6 d3.1(q + 1)ed.

Hence for all integers c > 2× d3.1qe(d− 1) + 2,

f(c)

c
6

d3.1(q + 1)ed
2(d− 1)× d3.1qe+ 2

.

Note that if d→∞, then p = p(d) goes to infinity, and hence q goes to infinity. Hence

lim sup
c→∞

f(c)

c
6

1

2
.

Remark The number q in Theorem 1 is required to be large enough so that some in-
equalities in the proof are satisified. A careful analysis of these inequalities shows that
q > 3pp3 is enough. Let p be the minimum number of vertices of a graph of girth 6 and
fractional chromatic number 3.1. The exact value of p is also unknown. A recent com-
puter search by Exoo [2] found a graph on 83 vertices which has odd girth 7 and fractional
chromatic number greater than 3.07 (which is enough for Shitov’s proof). For p = 83,
we have c > 396. So the graphs in Theorem 1 have huge chromatic number. Recently, a
relatively small counterexample to Hedetniemi’s conjecture was constructed in [16]. It is
now known that Hedetniemi’s conjecture fails for c > 125. Two graphs G and H were
constructed in [16], such that χ(G), χ(H) > 125 and χ(G×H) 6 125, and G and H have
3, 403 and 10, 501 vertices respectively.
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