Exact minimum codegree thresholds for \boldsymbol{K}_{4}^{-}-covering and \boldsymbol{K}_{5}^{-}-covering

Lei $\mathrm{Yu}^{a} \quad$ Xinmin Hou ${ }^{a, b *} \quad \mathrm{Yue} \mathrm{Ma}^{a} \quad$ Boyuan Liu ${ }^{a}$
${ }^{a}$ School of Mathematical Sciences
University of Science and Technology of China
Hefei, Anhui, 230026, PR China
\{yu1lei,mymy,lby1055\}@mail.ustc.edu.cn
${ }^{b}$ CAS Wu Wen-Tsun Key Laboratory of Mathematics
University of Science and Technology of China Hefei, Anhui, 230026, PR China
xmhou@ustc.edu.cn
Submitted: Jun 10, 2019; Accepted: Jul 2, 2020; Published: Aug 7, 2020
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Given two 3-graphs F and H, an F-covering of H is a collection of copies of F in H such that each vertex of H is contained in at least one copy of them. Let $c_{2}(n, F)$ be the minimum integer t such that every 3 -graph with minimum codegree greater than t has an F-covering. In this note, we answer an open problem of Falgas-Ravry and Zhao (SIAM J. Discrete Math., 2016) by determining the exact value of $c_{2}\left(n, K_{4}^{-}\right)$and $c_{2}\left(n, K_{5}^{-}\right)$, where K_{t}^{-}is the complete 3 -graph on t vertices with one edge removed.

Mathematics Subject Classifications: 05C35, 05C65,05C70

1 Introduction

Given a set V and a positive integer k, let $\binom{V}{k}$ be the collection of k-element subsets of V. A simple k-uniform hypergraph (or k-graph for short) $H=(V, E)$ consists of a vertex set V and an edge set $E \subseteq\binom{V}{k}$. We write graph for 2-graph for short. For a set $S \subseteq V(H)$, the neighbourhood $N_{H}(S)$ of S is $\{T \subseteq V(H) \backslash S: T \cup S \in E(H)\}$ and the degree of S is $d_{H}(S)=\left|N_{H}(S)\right|$. The minimum (resp. maximum) s-degree of H, denoted by $\delta_{s}(H)$ (resp. $\Delta_{s}(H)$), is the minimum (resp. maximum) $d_{H}(S)$ taken over all s-element sets

[^0]of $V(H) . \delta_{k-1}(H)$ and $\delta_{1}(H)$ are usually called the minimum codegree and the minimum degree of H, respectively. An r-graph H is called an r-partite r-graph if the vertex set of H can be partitioned into r parts such that each edge of H intersects each part exactly one vertex. Given disjoint sets $V_{1}, V_{2}, \cdots, V_{r}$, let $K\left(V_{1}, V_{2}, \ldots, V_{r}\right)$ be the complete r-partite r-graph with vertex classes $V_{1}, V_{2}, \ldots, V_{r}$.

Given a k-graph F, we say a k-graph H has an F-covering if each vertex of H is contained in some copy of F. For $0 \leqslant i<k$, define

$$
c_{i}(n, F)=\max \left\{\delta_{i}(H): H \text { is a } k \text {-graph on } n \text { vertices with no } F \text {-covering }\right\} .
$$

We call $c_{k-1}(n, F)$ the minimum codegree threshold for F-covering.
There are two well studied extremal problems related to the covering problem. Given a k-graph F, a k-graph H is F-free if H does not contain a copy of F as a subgraph. For $0 \leqslant i<k$, define

$$
\operatorname{ex}_{i}(n, F)=\max \left\{\delta_{i}(H):|V(H)|=n \text { and } H \text { is } F \text {-free }\right\}
$$

The quantity $\operatorname{ex}_{0}(n, F)$ is known as the Turán number of F, and $\mathrm{ex}_{k-1}(n, F)$ was studied by Mubayi and Zhao [7]. For an overview of the Turán problem for hypergraphs, one can see a survey given by Keevash [5]. Given two k-graphs H and F with $|V(H)|$ is divisible by $|V(F)|$, a perfect F-tiling (or an F-factor) in H is a spanning collection of vertex-disjoint copies of F. For $0 \leqslant i<k$ and n divisible by $|V(F)|$, define

$$
t_{i}(n, F)=\max \left\{\delta_{i}(H):|V(H)|=n \text { and } H \text { does not have an } F \text {-factor }\right\} .
$$

The study of the tiling problem also has a long history. For detailed discussion of the area, one can refer to the surveys due to Rödl and Ruciński [8] and Zhao [10]. Trivially, for $0 \leqslant i<k$, we have

$$
\operatorname{ex}_{i}(n, F) \leqslant c_{i}(n, F) \leqslant t_{i}(n, F)
$$

So the covering problem is an intermediate but distinct problem from the well-studied Turán and tiling problems. This is also partial motivation for the study of covering problems.

For graphs F, the F-covering problem was solved asymptotically in [9] by showing that $c_{1}(n, F)=\left(\frac{\chi(F)-2}{\chi(F)-1}+o(1)\right) n$, where $\chi(F)$ is the chromatic number of F. For general k graphs, the function $c_{i}(n, F)$ was determined for some special families of k-graphs F. For example, Han, Lo, and Sanhueza-Matamala [3] proved that $c_{k-1}\left(n, C_{s}^{(k, k-1)}\right) \leqslant\left(\frac{1}{2}+o(1)\right) n$ for $k \geqslant 3, s \geqslant 2 k^{2}$ and the result is asymptotically tight if k and s satisfy some special constrains, where $C_{s}^{(k, \ell)}(1 \leqslant \ell<k)$ is the k-graph on s vertices such that its vertices can be ordered cyclicly so that every edge consists of k consecutive vertices under this order and two consecutive edges intersect in exactly ℓ vertices. Han, Zang, and Zhao showed in [4] that $c_{1}(n, K)=(6-4 \sqrt{2}+o(1))\binom{n}{2}$, where K is a complete 3 -partite 3 -graph with at least two vertices in each part. Let K_{t} denote the complete 3 -graph on t vertices and let K_{t}^{-}denote the 3-graph obtained from K_{t} by removing one edge. Recently, Falgas-Ravry, Markström, and Zhao [1] asymptotically determined $c_{1}\left(n, K_{4}^{-}\right)$and gave close to optimal
bounds for $c_{1}\left(n, K_{4}^{-}\right)$. In this note, we focus on the problem to determine the exact value of $c_{2}\left(n, K_{t}^{-}\right)$when $t=4$ and 5 . Falgas-Ravry and Zhao [2] determined the exact value of $c_{2}\left(n, K_{4}\right)$ for $n>98$ and gave lower and upper bounds of $c_{2}\left(n, K_{4}^{-}\right)$and $c_{2}\left(n, K_{5}^{-}\right)$. More specifically, they proved the following theorem.

Theorem 1.1 (Theorem 1.2 in [2]). Suppose $n=6 m+r$ for some $r \in\{0,1,2,3,4,5\}$ and $m \in \mathbb{N}$ with $n \geqslant 7$. Then

$$
c_{2}\left(n, K_{4}^{-}\right)= \begin{cases}2 m-1 \text { or } 2 m & \text { if } r=0, \\ 2 m & \text { if } r \in\{1,2\}, \\ 2 m \text { or } 2 m+1 & \text { if } r \in\{3,4\}, \\ 2 m+1 & \text { if } r=5 .\end{cases}
$$

Theorem 1.2 (Theorem 1.4 in [2]). $\left\lfloor\frac{2 n-5}{3}\right\rfloor \leqslant c_{2}\left(n, K_{5}^{-}\right) \leqslant\left\lfloor\frac{2 n-2}{3}\right\rfloor$.
Falgas-Ravry and Zhao [2] also conjectured that the gap between the upper and lower bounds for $c_{2}\left(n, K_{4}^{-}\right)$could be closed and left this as an open problem.

Problem 1.3 ([2]). Determine the exact value of $c_{2}\left(n, K_{4}^{-}\right)$in the case $n \equiv 0,3,4$ $(\bmod 6)$.

In this note, we determine not only the exact value of $c_{2}\left(n, K_{4}^{-}\right)$but also the exact value of $c_{2}\left(n, K_{5}^{-}\right)$, thereby resolving Problem 1.3 and sharpening Theorem 1.5.

Theorem 1.4. $c_{2}\left(n, K_{4}^{-}\right)=\left\lfloor\frac{n}{3}\right\rfloor$.
Theorem 1.5. $c_{2}\left(n, K_{5}^{-}\right)=\left\lfloor\frac{2 n-2}{3}\right\rfloor$.
The following are some definitions and notation used in our proofs. For a k-graph H and $x \in V(H)$, the link graph of x, denoted by $H(x)$, is the $(k-1)$-graph with vertex set $V(H) \backslash\{x\}$ and edge set $N_{H}(x)$. Given a graph G and a positive integer vector $\mathbf{k} \in Z_{+}^{V(G)}$, the \mathbf{k}-blowup of G, denoted by $G^{(\mathbf{k})}$, is the graph obtained by replacing every vertex v of G with an independent $\mathbf{k}(v)$-set X_{v}, and placing a complete bipartite graph between X_{u} and X_{v} whenever u and v are adjacent in G. We call the independent set X_{v} in $G^{(\mathbf{k})}$ the blowup of v in G. When there is no confusion, we write $a b$ and $a b c$ as a shorthand for $\{a, b\}$ and $\{a, b, c\}$, respectively. Given a positive integer n, write $[n]$ for the set $\{1,2, \ldots, n\}$.

In the rest of the note, we give proofs of Theorems 1.4 and 1.5.

2 Proof of Theorems 1.4 and 1.5

We will construct extremal 3-graphs for K_{4}^{-}and K_{5}^{-}with minimum codegree matching the upper bounds in Theorems 1.1 and 1.2, respectively.

2.1 Proof of Theorem 1.4

We first give an observation, which can be verified directly from the definitions.
Observation 1. Let H be a 3 -graph and $x \in V(H)$. x is not covered by a copy of K_{4}^{-}if and only if (i) $H(x)$ is triangle-free, and (ii) every edge in H induces at most one edge in $H(x)$.

By Theorem 1.1, to show Theorem 1.4, it is sufficient to construct 3-graphs H on n vertices for $n \equiv 0,3,4(\bmod 6)$ and with $\delta_{2}(H)=\left\lfloor\frac{n}{3}\right\rfloor$ such that H has no K_{4}^{-}-covering. In the proof we distinguish three cases. Let C_{6} be the 6 -cycle $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$ and let $12 \ldots k 1$ be a k-cycle on vertices $1,2, \ldots, k$ for some positive integer k.

Construction A: Let G_{1} be the graph obtained from C_{6} and the 5 -cycle 123451 by adding the edges $1 v_{1}, 1 v_{3}, 2 v_{2}, 2 v_{5}, 3 v_{4}, 3 v_{6}, 4 v_{3}, 4 v_{5}, 5 v_{2}, 5 v_{6}$.
Construction B: Let G_{2} be the graph obtained from C_{6} and the 8-cycle 123456781 by adding the edges $1 v_{1}, 1 v_{3}, 2 v_{2}, 2 v_{6}, 3 v_{1}, 3 v_{5}, 4 v_{3}, 4 v_{6}, 5 v_{2}, 5 v_{4}, 6 v_{3}, 6 v_{5}, 7 v_{4}, 7 v_{6}, 8 v_{2}, 8 v_{5}$.
Construction C: Let G_{3} be the graph obtained from C_{6} and the 8-cycle 123456781 by adding a new vertex 9 and the edges $19,39,79,1 v_{1}, 1 v_{3}, 2 v_{2}, 2 v_{6}, 3 v_{1}, 3 v_{4}, 4 v_{3}, 4 v_{5}, 5 v_{4}$, $5 v_{6}, 6 v_{1}, 6 v_{5}, 7 v_{3}, 7 v_{6}, 8 v_{2}, 8 v_{4}, 9 v_{2}, 9 v_{5}$.

It can be checked that G_{1}, G_{2}, G_{3} are triangle-free (see Fig.1); therefore, so are their blowups.

Figure 1: The graphs G_{1}, G_{2} and G_{3}

Case 1. $n=6 m$ for some integer $m \geqslant 1$.
Define a positive integer vector $\mathbf{k}_{1} \in Z_{+}^{V\left(G_{1}\right)}$ by $\mathbf{k}_{1}\left(v_{i}\right)=m-1$ for $i \in[6]$ and $\mathbf{k}_{1}(i)=1$ for $i \in[5]$.

Construction 1. Let V_{1}, \ldots, V_{6} be six disjoint sets of the same size $m-1$ and let x be a specific vertex. Define the 3-graph H_{1} on vertex set $\{x\} \cup[5] \cup\left(\cup_{i=1}^{6} V_{i}\right)$ such that the following holds:
(1) The link graph of $x, H_{1}(x)$, consists of the \mathbf{k}_{1}-blowup of G_{1} by replacing v_{i} by V_{i} for $i \in[6]$ and adding a perfect matching between V_{1} and V_{4}.
(2) A triple abc with $x \in\{a, b, c\}$ belongs to $E\left(H_{1}\right)$ if and only if it is P_{2}-free in $H_{1}(x)$.

Claim 1. H_{1} contains no K_{4}^{-}-covering and $\delta_{2}\left(H_{1}\right)=2 m=\left\lfloor\frac{n}{3}\right\rfloor$.
Proof of Claim 1. By the definition of G_{1}, v_{1} and v_{4} have no common neighbor. So by (1) of Construction 1, $H_{1}(x)$ is triangle-free. By (2) of Construction 1, any two incident edges of $H_{1}(x)$ are not contained in one edge of H_{1}. By Observation 1, x is contained in no copy of K_{4}^{-}in H_{1}. So H_{1} has no K_{4}^{-}-covering.

By (1) of Construction 1, one can check that $H_{1}(x)$ is $2 m$-regular. So $d_{H_{1}}(x, a)=2 m$ for all $a \in V \backslash\{x\}$. Now we consider the degree of the pair $\{a, b\}$ with $x \notin\{a, b\}$. If $a b \in$ $E\left(H_{1}(x)\right)$, then by (2) of Construction 1, $N_{H_{1}}(x, a) \cap N_{H_{1}}(a, b)=\emptyset, N_{H_{1}}(x, b) \cap N_{H_{1}}(a, b)=$ \emptyset and $N_{H_{1}}(x, a) \cap N_{H_{1}}(x, b)=\emptyset$; or equivalently, for any $c \notin N_{H_{1}}(x, a) \cup N_{H_{1}}(x, b)$, $\{a, b, c\}$ forms an edge of H_{1}. So $d_{H_{1}}(a, b)=6 m-2 \times 2 m=2 m$. If $a b \notin E\left(H_{1}(x)\right)$ then $x \notin N_{H_{1}}(a, b)$. By (2) of the construction of $H_{1}, N_{H_{1}}(x, a) \cap N_{H_{1}}(x, b) \cap N_{H_{1}}(a, b)=\emptyset$; or equivalently, for any $c \notin\left(N_{H_{1}}(x, a) \cap N_{H_{1}}(x, b)\right) \cup\{x, a, b\}$, we have $a b c \in E\left(H_{1}\right)$. So $d_{H_{1}}(a, b)=6 m-3-\left|N_{H_{1}}(a, x) \cap N_{H_{1}}(b, x)\right| \geqslant 4 m-3 \geqslant 2 m$ if $m>1$. If $m=1$, then $H_{1}(x)$ is the 5 -cycle 123451 , one can check that $d_{H_{1}}(a, b) \geqslant 2=2 m$.

Case 1 follows directly from Claim 1.
Case 2: $n=6 m+3$ for some integer $m \geqslant 1$.
Define a positive integer vector $\mathbf{k}_{2} \in Z_{+}^{V\left(G_{2}\right)}$ by $\mathbf{k}_{2}\left(v_{i}\right)=m-1$ for $i \in[6]$ and $\mathbf{k}_{2}(i)=1$ for $i \in[8]$.

Construction 2. Let V_{1}, \ldots, V_{6} be six disjoint sets of the same size $m-1$ and let x be a specific vertex. Define the 3-graph H_{2} on vertex set $\{x\} \cup[8] \cup\left(\cup_{i=1}^{6} V_{i}\right)$ such that the following holds:
(1) The link graph of $x, H_{2}(x)$, consists of the \mathbf{k}_{2}-blowup of G_{2} by replacing v_{i} with V_{i} for $1 \leqslant i \leqslant 6$, and adding a perfect matching between V_{1} and V_{4} and a matching $\{15,26,37,48\}$.
(2) A triple abc with $x \in\{a, b, c\}$ belongs to $E\left(H_{1}\right)$ if and only if it is P_{2}-free in $H_{1}(x)$.

Claim 2. H_{2} contains no K_{4}^{-}-covering and $\delta_{2}\left(H_{2}\right)=2 m+1=\left\lfloor\frac{n}{3}\right\rfloor$.
Proof of Claim 2. By the definition of $G_{2}, N_{G_{2}}\left(v_{1}\right) \cap N_{G_{2}}\left(v_{4}\right)=\emptyset$ and $N_{G_{2}}(1) \cap N_{G_{2}}(5)=$ $N_{G_{2}}(2) \cap N_{G_{2}}(6)=N_{G_{2}}(3) \cap N_{G_{2}}(7)=N_{G_{2}}(4) \cap N_{G_{2}}(8)=\emptyset$. So by (1) of Construction 2, $H_{2}(x)$ is triangle-free, too; and by (2) of Construction 2, any two incident edges of $H_{2}(x)$ are not contained in one edge of H_{2}. By Observation $1, x$ is contained in no copy of K_{4}^{-} in H_{2}. So H_{2} has no K_{4}^{-}-covering.

By (1) of Construction 2, $H_{2}(x)$ is $(2 m+1)$-regular. So $d_{H_{2}}(x, a)=2 m+1$ for all $a \in V\left(H_{2}\right) \backslash\{x\}$. Now assume $\{a, b\} \subseteq V\left(H_{2}\right) \backslash\{x\}$. If $a b \in E\left(H_{2}(x)\right)$, then by (2) of Construction 2, $N_{H_{2}}(x, a) \cap N_{H_{2}}(a, b)=\emptyset, N_{H_{2}}(x, b) \cap N_{H_{2}}(a, b)=\emptyset$ and $N_{H_{2}}(x, a) \cap$ $N_{H_{2}}(x, b)=\emptyset$; or equivalently, for any $c \notin N_{H_{2}}(x, a) \cup N_{H_{2}}(x, b),\{a, b, c\}$ forms an edge
of H_{2}. So $d_{H_{2}}(a, b)=6 m+3-2(2 m+1)=2 m+1$. If $a b \notin E\left(H_{2}(x)\right)$ then $x \notin N_{H_{2}}(a, b)$. By (2) of the construction of $H_{2}, N_{H_{2}}(x, a) \cap N_{H_{2}}(x, b) \cap N_{H_{2}}(a, b)=\emptyset$; or equivalently, for any $c \notin\left(N_{H_{2}}(x, a) \cap N_{H_{2}}(x, b)\right) \cup\{x, a, b\}$, abc $\in E\left(H_{2}\right)$. So we have $d_{H_{2}}(a, b)=$ $6 m+3-3-\left|N_{H_{2}}(a, x) \cap N_{H_{2}}(b, x)\right| \geqslant 4 m-1 \geqslant 2 m+1$.

Case 2 follows from Claim 2.
Case 3: $n=6 m+4$ for some integer $m \geqslant 1$.
Define a positive integer vector $\mathbf{k}_{3} \in Z_{+}^{V\left(G_{3}\right)}$ by $\mathbf{k}_{3}\left(v_{i}\right)=m-1$ for $i \in[6]$ and $\mathbf{k}_{3}(i)=1$ for $i \in[9]$.

Construction 3. Let V_{1}, \ldots, V_{6} be six disjoint sets of the same size $m-1$ and let x be a specific vertex. Define a 3-graph H_{3} on vertex set $\{x\} \cup[9] \cup\left(\cup_{i=1}^{6} V_{i}\right)$ such that the following holds:
(1) The link graph of $x, H_{3}(x)$, consists of the \mathbf{k}_{3}-blowup of G_{3} by replacing v_{i} by V_{i} for $1 \leqslant i \leqslant 6$, and adding a matching $\{15,26,48\}$.
(2) A triple abc with $x \in\{a, b, c\}$ belongs to $E\left(H_{1}\right)$ if and only if it is P_{2}-free in $H_{1}(x)$.

Claim 3. H_{3} contains no K_{4}^{-}-covering and $\delta_{2}\left(H_{3}\right)=2 m+1=\left\lfloor\frac{n}{3}\right\rfloor$.
Proof of Claim 3: By (1) of Construction 3, one can check that $H_{3}(x)$ is triangle-free; and by (2) of Construction 3, any two incident edges of $H_{3}(x)$ are not contained in one edge of H_{3}. By Observation $1, x$ is contained in no copy of K_{4}^{-}in H_{3}. So H_{3} has no K_{4}^{-}-covering.

By the construction of $H_{3}(x)$, one can check that $H_{3}(x)$ is almost $(2 m+1)$-regular, i.e. $d_{H_{3}(x)}(a)=2 m+1$ for all vertices $a \in V\left(H_{3}\right) \backslash\{x, 1\}$ and $d_{H_{3}(x)}(1)=2 m+2$. So $d_{H_{3}}(x, a)=2 m+1$ for all $a \in V\left(H_{3}\right) \backslash\{x, 1\}$ and $d_{H_{3}}(x, 1)=2 m+2$. Now assume $\{a, b\} \subseteq V\left(H_{3}\right) \backslash\{x\}$. If $a b \in E\left(H_{3}(x)\right)$, by (2) of Construction 3, $N_{H_{3}}(x, a) \cap N_{H_{3}}(a, b)=$ $\emptyset, N_{H_{3}}(x, b) \cap N_{H_{3}}(a, b)=\emptyset$, and for any $c \in V\left(H_{3}\right) \backslash\left(N_{H_{3}}(x, a) \cup N_{H_{3}}(x, b)\right),\{a, b, c\}$ forms an edge of H_{3}. Since $H_{3}(x)$ is triangle-free, $N_{H_{3}}(x, a) \cap N_{H_{3}}(x, b)=\emptyset$. If $1 \notin\{a, b\}$ then $d_{H_{3}}(a, b)=\left|V\left(H_{3}\right)\right|-\left|N_{H_{3}}(x, a)\right|-\left|N_{H_{3}}(x, b)\right|=6 m+4-2(2 m+1)=2 m+2$. Now assume $1 \in\{a, b\}$, say $a=1$. Then $d_{H_{3}}(1, b)=\left|V\left(H_{3}\right)\right|-\left|N_{H_{3}}(x, 1)\right|-\left|N_{H_{3}}(x, b)\right|=$ $6 m+4-(2 m+2)-(2 m+1)=2 m+1$. If $a b \notin E\left(H_{3}(x)\right)$ then $x \notin N_{H_{3}}(a, b)$. By (2) of the construction of $H_{3}, N_{H_{3}}(x, a) \cap N_{H_{3}}(x, b) \cap N_{H_{3}}(a, b)=\emptyset$; or equivalently, for any $c \notin\left(N_{H_{3}}(x, a) \cap N_{H_{3}}(x, b)\right) \cup\{x, a, b\}$, abc $\in E\left(H_{3}\right)$. So we have $d_{H_{3}}(a, b)=$ $6 m+4-3-\left|N_{H_{3}}(a, x) \cap N_{H_{3}}(b, x)\right| \geqslant 4 m \geqslant 2 m+1$.

Case 3 follows from Claim 3 .
Theorem 1.4 follows from Cases 1,2,3 and Theorem 1.1.

2.2 Proof of Theorem 1.5

The following theorem is well known in graph theory.
Theorem 2.1 (König [6]). Let G be a bipartite graph with maximum degree Δ. Then $E(G)$ can be partitioned into $M_{1}, M_{2}, \ldots, M_{\Delta}$ so that each $M_{i}(1 \leqslant i \leqslant \Delta)$ is a matching in G. In particular, if G is Δ-regular then $E(G)$ can be partitioned into Δ perfect matchings.

Construction 4. Given positive integers m, ℓ with $m \leqslant \ell$ and two disjoint sets V_{1}, V_{2} with $\left|V_{1}\right| \leqslant\left|V_{2}\right|=m$, by Theorem 2.1, the edge set of the complete bipartite graph $K\left(V_{1}, V_{2}\right)$ has a partition $M_{1}, M_{2}, \ldots, M_{m}$ such that each $M_{i}(1 \leqslant i \leqslant m)$ is a matching. Let T be the 3-partite 3-graph with vertex classes $V_{1} \cup V_{2} \cup[\ell]$ and edge set

$$
E(H)=\bigcup_{i=1}^{m}\left\{e \cup\{i\}: e \in M_{i}\right\} .
$$

Proof of Theorem 1.5. We first give the extremal 3-graph for K_{5}^{-}.
Construction 5. Given a positive integer m and three disjoint sets V_{1}, V_{2}, V_{3} such that $m-1 \leqslant\left|V_{1}\right| \leqslant\left|V_{2}\right|=m \leqslant\left|V_{3}\right| \leqslant m+1$ and $\left|V_{3}\right|-\left|V_{1}\right| \leqslant 1$. Let $V_{3}=[\ell]$. Let T be the 3-partite 3-graph on vertex set $V_{1} \cup V_{2} \cup V_{3}$ constructed by Construction 4. Let x be a specific vertex not belonging to $V_{1} \cup V_{2} \cup V_{3}$. Define the 3-graph H_{4} on vertex set $V_{1} \cup V_{2} \cup V_{3} \cup\{x\}$ such that the following holds.
(1) The link graph of $x, H_{4}(x)$, consists of the union of the three complete bipartite graphs $K\left(V_{1}, V_{2}\right), K\left(V_{1}, V_{3}\right)$ and $K\left(V_{2}, V_{3}\right)$.
(2) Each triple $e \notin E\left(K\left(V_{1}, V_{2}, V_{3}\right)\right)$ with $x \notin e$ is an edge of H_{4}.
(3) $E\left(H_{4}\right) \cap E\left(K\left(V_{1}, V_{2}, V_{3}\right)\right)=E(T)$.

Remark. By the definition of Construction 5, we have $3 m-1 \leqslant \sum_{i=1}^{3}\left|V_{i}\right| \leqslant 3 m+1$ and $\ell=m$ or $m+1$.

Let $n=\left|V\left(H_{4}\right)\right|$. Then $3 m \leqslant n \leqslant 3 m+2$.
Claim 4. H_{4} has no K_{5}^{-}-covering and $\delta_{2}(H) \geqslant\left\lfloor\frac{3 n-2}{3}\right\rfloor$.
Proof of Claim 4: We show that x is contained in no copy of K_{5}^{-}in H_{4}. Choose a 4-set $\{a, b, c, d\} \subseteq V_{1} \cup V_{2} \cup V_{3}$. If it contains at least three vertices in the same part V_{i} or at least two vertices in at least two different parts V_{i}, V_{j}, then by (1) of Construction 5 , $\{a, b, c, d\}$ spans at least two non-edges in $H_{4}(x)$. Otherwise, two vertices in $\{a, b, c, d\}$, say a, b, lie in the same part (whence they span a non-edge in $H_{4}(x)$) while the other two vertices c and d lie one each in the two other parts. Since $\Delta_{2}(T) \leqslant 1$ (by Construction 4) and (3) of Construction 5, at most one of a and b makes an edge of T (and hence H_{4}) with $c d$. Thus in either case, $\{x, a, b, c, d\}$ spans at least two non-edges of H_{4} and hence x is not covered by a copy of K_{5}^{-}.

Now we compute the minimum codegree of H_{4}. Choose two distinct vertices $a, b \in$ $V\left(H_{4}\right)$. If $x \in\{a, b\}$, assume $x=a$ and $b \in V_{i}$, then by (1) of Construction 5,

$$
d(x, b)=n-1-\left|V_{i}\right| \geqslant n-1-\left\lceil\frac{n-1}{3}\right\rceil=\left\lfloor\frac{2 n-2}{3}\right\rfloor .
$$

If $a, b \in V_{i}$ for some $1 \leqslant i \leqslant 3$ then, by (2) of Construction $5, d(a, b)=\sum_{i=1}^{3}\left|V_{i}\right|-2=$ $n-3 \geqslant\left\lfloor\frac{2 n-2}{3}\right\rfloor$. If $a \in V_{i}, b \in V_{j}(i \neq j)$, then

$$
d(a, b)=\left|V_{i}\right|+\left|V_{j}\right|-2+1+d_{T}(a, b) \geqslant\left\lfloor\frac{2 n-2}{3}\right\rfloor,
$$

where the inequality holds since $d_{T}(a, b)=1$ for $\{i, j\}=\{1,2\},\{i, j\}=\{1,3\}$ with $\left|V_{3}\right|=m$, or $\{i, j\} \subseteq\{1,2,3\}$ with $\left|V_{1}\right|=\left|V_{2}\right|=\left|V_{3}\right|=m$.

This completes the proof of Claim 4.
By Claim 4, we have

$$
c_{2}\left(n, K_{5}^{-}\right) \geqslant \delta_{2}\left(H_{4}\right)=\left\lfloor\frac{2 n-2}{3}\right\rfloor .
$$

By Theorem 1.2, we have Theorem 1.5.

Acknowledgements

The authors thank the anonymous referees for their careful work, which helped improve the paper's clarity and presentation, and one referee for providing a simpler proof for Claim 4.

References

[1] V. Falgas-Ravry, K. Markström, Y. Zhao. Triangle-degrees in graphs and tetrahedron coverings in 3-graphs, arXiv:1901.09560v1, 2019.
[2] V. Falgas-Ravry, Y. Zhao. Codegree thresholds for covering 3-uniform hypergraphs, SIAM J. Discrete Math., 30(4): 1899-1917, 2016.
[3] J. Han, A. Lo, N. Sanhueza-Matamala. Covering and tiling hypergraphs with tight cycles, Electron. Notes Discrete Math., 61: 561-567, 2017.
[4] J. Han, C. Zang, Y. Zhao. Minimum vertex degree thresholds for tiling complete 3-partite 3-graphs, J. Combin. Theory Ser. A, 149: 115-147, 2017.
[5] P. Keevash. Hypergraph Turán problems, London Mathematical Society Lecture Note, 392(1):83-140, 2011.
[6] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann., 77: 453-465, 1916.
[7] D. Mubayi and Y. Zhao. Co-degree density of hypergraphs, J. Combin. Theory Ser. A, 114: 1118-1132, 2007.
[8] V. Rödl, A. Ruciński. Dirac-type questions for hypergraphs-a survey (or more problems for Endre to solve), in: An Irregular Mind (Szemerédi Is 70), in: Bolyai Soc. Math. Stud., vol. 21, 2010.
[9] C. Zang.Matchings and tilings in hypergraphs, PhD thesis, Georgia State University, 2016.
[10] Y. Zhao. Recent advances on Dirac-type problems for hypergraphs, In: A. Beveridge, J. Griggs, L. Hogben, G. Musiker, P. Tetali (eds) Recent Trends in Combinatorics, The IMA Volumes in Mathematics and its Applications 159. Springer, New York, 2016.

[^0]: *Supported by National Nature Science Foundation of China (No. 11671376) and Anhui Initiative in Quantum Information Technologies (AHY150200).

