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Abstract

Given two 3-graphs F and H, an F -covering of H is a collection of copies of
F in H such that each vertex of H is contained in at least one copy of them. Let
c2(n, F ) be the minimum integer t such that every 3-graph with minimum codegree
greater than t has an F -covering. In this note, we answer an open problem of
Falgas-Ravry and Zhao (SIAM J. Discrete Math., 2016) by determining the exact
value of c2(n,K

−
4 ) and c2(n,K

−
5 ), where K−

t is the complete 3-graph on t vertices
with one edge removed.

Mathematics Subject Classifications: 05C35, 05C65,05C70

1 Introduction

Given a set V and a positive integer k, let
(
V
k

)
be the collection of k-element subsets of V .

A simple k-uniform hypergraph (or k-graph for short) H = (V,E) consists of a vertex set
V and an edge set E ⊆

(
V
k

)
. We write graph for 2-graph for short. For a set S ⊆ V (H),

the neighbourhood NH(S) of S is {T ⊆ V (H)\S : T ∪ S ∈ E(H)} and the degree of S
is dH(S) = |NH(S)|. The minimum (resp. maximum) s-degree of H, denoted by δs(H)
(resp. ∆s(H)), is the minimum (resp. maximum ) dH(S) taken over all s-element sets
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of V (H). δk−1(H) and δ1(H) are usually called the minimum codegree and the minimum
degree of H, respectively. An r-graph H is called an r-partite r-graph if the vertex set of H
can be partitioned into r parts such that each edge of H intersects each part exactly one
vertex. Given disjoint sets V1, V2, · · · , Vr, let K(V1, V2, . . . , Vr) be the complete r-partite
r-graph with vertex classes V1, V2, . . . , Vr.

Given a k-graph F , we say a k-graph H has an F -covering if each vertex of H is
contained in some copy of F . For 0 6 i < k, define

ci(n, F ) = max{δi(H) : H is a k-graph on n vertices with no F -covering}.

We call ck−1(n, F ) the minimum codegree threshold for F -covering.
There are two well studied extremal problems related to the covering problem. Given

a k-graph F , a k-graph H is F -free if H does not contain a copy of F as a subgraph. For
0 6 i < k, define

exi(n, F ) = max{δi(H) : |V (H)| = n and H is F -free}.

The quantity ex0(n, F ) is known as the Turán number of F , and exk−1(n, F ) was studied
by Mubayi and Zhao [7]. For an overview of the Turán problem for hypergraphs, one
can see a survey given by Keevash [5]. Given two k-graphs H and F with |V (H)| is
divisible by |V (F )|, a perfect F -tiling (or an F -factor) in H is a spanning collection of
vertex-disjoint copies of F . For 0 6 i < k and n divisible by |V (F )|, define

ti(n, F ) = max{δi(H) : |V (H)| = n and H does not have an F -factor}.

The study of the tiling problem also has a long history. For detailed discussion of the
area, one can refer to the surveys due to Rödl and Ruciński [8] and Zhao [10]. Trivially,
for 0 6 i < k, we have

exi(n, F ) 6 ci(n, F ) 6 ti(n, F ).

So the covering problem is an intermediate but distinct problem from the well-studied
Turán and tiling problems. This is also partial motivation for the study of covering
problems.

For graphs F , the F -covering problem was solved asymptotically in [9] by showing that

c1(n, F ) = (χ(F )−2
χ(F )−1

+ o(1))n, where χ(F ) is the chromatic number of F . For general k-

graphs, the function ci(n, F ) was determined for some special families of k-graphs F . For

example, Han, Lo, and Sanhueza-Matamala [3] proved that ck−1(n,C
(k,k−1)
s ) 6 (1

2
+o(1))n

for k > 3, s > 2k2 and the result is asymptotically tight if k and s satisfy some special
constrains, where C

(k,`)
s (1 6 ` < k) is the k-graph on s vertices such that its vertices can

be ordered cyclicly so that every edge consists of k consecutive vertices under this order
and two consecutive edges intersect in exactly ` vertices. Han, Zang, and Zhao showed
in [4] that c1(n,K) = (6−4

√
2+o(1))

(
n
2

)
, where K is a complete 3-partite 3-graph with at

least two vertices in each part. Let Kt denote the complete 3-graph on t vertices and let
K−
t denote the 3-graph obtained from Kt by removing one edge. Recently, Falgas-Ravry,

Markström, and Zhao [1] asymptotically determined c1(n,K−
4 ) and gave close to optimal
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bounds for c1(n,K−
4 ). In this note, we focus on the problem to determine the exact value

of c2(n,K−
t ) when t = 4 and 5. Falgas-Ravry and Zhao [2] determined the exact value of

c2(n,K4) for n > 98 and gave lower and upper bounds of c2(n,K−
4 ) and c2(n,K−

5 ). More
specifically, they proved the following theorem.

Theorem 1.1 (Theorem 1.2 in [2]). Suppose n = 6m + r for some r ∈ {0, 1, 2, 3, 4, 5}
and m ∈ N with n > 7. Then

c2(n,K−
4 ) =


2m− 1 or 2m if r = 0,

2m if r ∈ {1, 2},
2m or 2m+ 1 if r ∈ {3, 4},
2m+ 1 if r = 5.

Theorem 1.2 (Theorem 1.4 in [2]). b2n−5
3
c 6 c2(n,K−

5 ) 6 b2n−2
3
c.

Falgas-Ravry and Zhao [2] also conjectured that the gap between the upper and lower
bounds for c2(n,K−

4 ) could be closed and left this as an open problem.

Problem 1.3 ([2]). Determine the exact value of c2(n,K−
4 ) in the case n ≡ 0, 3, 4

(mod 6).

In this note, we determine not only the exact value of c2(n,K−
4 ) but also the exact

value of c2(n,K−
5 ), thereby resolving Problem 1.3 and sharpening Theorem 1.5.

Theorem 1.4. c2(n,K−
4 ) = bn

3
c.

Theorem 1.5. c2(n,K−
5 ) = b2n−2

3
c.

The following are some definitions and notation used in our proofs. For a k-graph H
and x ∈ V (H), the link graph of x, denoted by H(x), is the (k − 1)-graph with vertex
set V (H) \ {x} and edge set NH(x). Given a graph G and a positive integer vector

k ∈ ZV (G)
+ , the k-blowup of G, denoted by G(k), is the graph obtained by replacing every

vertex v of G with an independent k(v)-set Xv, and placing a complete bipartite graph
between Xu and Xv whenever u and v are adjacent in G. We call the independent set
Xv in G(k) the blowup of v in G. When there is no confusion, we write ab and abc as a
shorthand for {a, b} and {a, b, c}, respectively. Given a positive integer n, write [n] for
the set {1, 2, . . . , n}.

In the rest of the note, we give proofs of Theorems 1.4 and 1.5.

2 Proof of Theorems 1.4 and 1.5

We will construct extremal 3-graphs for K−
4 and K−

5 with minimum codegree matching
the upper bounds in Theorems 1.1 and 1.2, respectively.

the electronic journal of combinatorics 27(3) (2020), #P3.22 3



2.1 Proof of Theorem 1.4

We first give an observation, which can be verified directly from the definitions.

Observation 1. Let H be a 3-graph and x ∈ V (H). x is not covered by a copy of K−
4 if

and only if (i) H(x) is triangle-free, and (ii) every edge in H induces at most one edge
in H(x).

By Theorem 1.1, to show Theorem 1.4, it is sufficient to construct 3-graphs H on n
vertices for n ≡ 0, 3, 4 (mod 6) and with δ2(H) = bn

3
c such that H has no K−

4 -covering.
In the proof we distinguish three cases. Let C6 be the 6-cycle v1v2v3v4v5v6v1 and let
12 . . . k1 be a k-cycle on vertices 1, 2, . . . , k for some positive integer k.

Construction A: Let G1 be the graph obtained from C6 and the 5-cycle 123451 by
adding the edges 1v1, 1v3, 2v2, 2v5, 3v4, 3v6, 4v3, 4v5, 5v2, 5v6.

Construction B: Let G2 be the graph obtained from C6 and the 8-cycle 123456781 by
adding the edges 1v1, 1v3, 2v2, 2v6, 3v1, 3v5, 4v3, 4v6, 5v2, 5v4, 6v3, 6v5, 7v4, 7v6, 8v2, 8v5.

Construction C: Let G3 be the graph obtained from C6 and the 8-cycle 123456781
by adding a new vertex 9 and the edges 19, 39, 79, 1v1, 1v3, 2v2, 2v6, 3v1, 3v4, 4v3, 4v5, 5v4,
5v6, 6v1, 6v5, 7v3, 7v6, 8v2, 8v4, 9v2, 9v5.

It can be checked that G1, G2, G3 are triangle-free (see Fig.1); therefore, so are their
blowups.

Figure 1: The graphs G1, G2 and G3

Case 1. n = 6m for some integer m > 1.

Define a positive integer vector k1 ∈ ZV (G1)
+ by k1(vi) = m−1 for i ∈ [6] and k1(i) = 1

for i ∈ [5].

Construction 1. Let V1, . . . , V6 be six disjoint sets of the same size m − 1 and let x be
a specific vertex. Define the 3-graph H1 on vertex set {x} ∪ [5] ∪ (∪6

i=1Vi) such that the
following holds:
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(1) The link graph of x, H1(x), consists of the k1-blowup of G1 by replacing vi by Vi for
i ∈ [6] and adding a perfect matching between V1 and V4.

(2) A triple abc with x ∈ {a, b, c} belongs to E(H1) if and only if it is P2-free in H1(x).

Claim 1. H1 contains no K−
4 -covering and δ2(H1) = 2m = bn

3
c.

Proof of Claim 1. By the definition of G1, v1 and v4 have no common neighbor. So by
(1) of Construction 1, H1(x) is triangle-free. By (2) of Construction 1, any two incident
edges of H1(x) are not contained in one edge of H1. By Observation 1, x is contained in
no copy of K−

4 in H1. So H1 has no K−
4 -covering.

By (1) of Construction 1, one can check that H1(x) is 2m-regular. So dH1(x, a) = 2m
for all a ∈ V \ {x}. Now we consider the degree of the pair {a, b} with x /∈ {a, b}. If ab ∈
E(H1(x)), then by (2) of Construction 1, NH1(x, a)∩NH1(a, b) = ∅, NH1(x, b)∩NH1(a, b) =
∅ and NH1(x, a) ∩ NH1(x, b) = ∅; or equivalently, for any c /∈ NH1(x, a) ∪ NH1(x, b),
{a, b, c} forms an edge of H1. So dH1(a, b) = 6m− 2× 2m = 2m. If ab /∈ E(H1(x)) then
x /∈ NH1(a, b). By (2) of the construction of H1, NH1(x, a) ∩ NH1(x, b) ∩ NH1(a, b) = ∅;
or equivalently, for any c /∈ (NH1(x, a) ∩ NH1(x, b)) ∪ {x, a, b}, we have abc ∈ E(H1). So
dH1(a, b) = 6m − 3 − |NH1(a, x) ∩ NH1(b, x)| > 4m − 3 > 2m if m > 1. If m = 1, then
H1(x) is the 5-cycle 123451, one can check that dH1(a, b) > 2 = 2m.

Case 1 follows directly from Claim 1.

Case 2: n = 6m+ 3 for some integer m > 1.
Define a positive integer vector k2 ∈ ZV (G2)

+ by k2(vi) = m−1 for i ∈ [6] and k2(i) = 1
for i ∈ [8].

Construction 2. Let V1, . . . , V6 be six disjoint sets of the same size m − 1 and let x be
a specific vertex. Define the 3-graph H2 on vertex set {x} ∪ [8] ∪ (∪6

i=1Vi) such that the
following holds:

(1) The link graph of x, H2(x), consists of the k2-blowup of G2 by replacing vi with Vi
for 1 6 i 6 6, and adding a perfect matching between V1 and V4 and a matching
{15, 26, 37, 48}.

(2) A triple abc with x ∈ {a, b, c} belongs to E(H1) if and only if it is P2-free in H1(x).

Claim 2. H2 contains no K−
4 -covering and δ2(H2) = 2m+ 1 = bn

3
c.

Proof of Claim 2. By the definition of G2, NG2(v1)∩NG2(v4) = ∅ and NG2(1)∩NG2(5) =
NG2(2)∩NG2(6) = NG2(3)∩NG2(7) = NG2(4)∩NG2(8) = ∅. So by (1) of Construction 2,
H2(x) is triangle-free, too; and by (2) of Construction 2, any two incident edges of H2(x)
are not contained in one edge of H2. By Observation 1, x is contained in no copy of K−

4

in H2. So H2 has no K−
4 -covering.

By (1) of Construction 2, H2(x) is (2m + 1)-regular. So dH2(x, a) = 2m + 1 for all
a ∈ V (H2) \ {x}. Now assume {a, b} ⊆ V (H2) \ {x}. If ab ∈ E(H2(x)), then by (2)
of Construction 2, NH2(x, a) ∩ NH2(a, b) = ∅, NH2(x, b) ∩ NH2(a, b) = ∅ and NH2(x, a) ∩
NH2(x, b) = ∅; or equivalently, for any c /∈ NH2(x, a) ∪ NH2(x, b), {a, b, c} forms an edge
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of H2. So dH2(a, b) = 6m+ 3− 2(2m+ 1) = 2m+ 1. If ab /∈ E(H2(x)) then x /∈ NH2(a, b).
By (2) of the construction of H2, NH2(x, a) ∩ NH2(x, b) ∩ NH2(a, b) = ∅; or equivalently,
for any c /∈ (NH2(x, a) ∩ NH2(x, b)) ∪ {x, a, b}, abc ∈ E(H2). So we have dH2(a, b) =
6m+ 3− 3− |NH2(a, x) ∩NH2(b, x)| > 4m− 1 > 2m+ 1.

Case 2 follows from Claim 2.

Case 3: n = 6m+ 4 for some integer m > 1.
Define a positive integer vector k3 ∈ ZV (G3)

+ by k3(vi) = m−1 for i ∈ [6] and k3(i) = 1
for i ∈ [9].

Construction 3. Let V1, . . . , V6 be six disjoint sets of the same size m − 1 and let x be
a specific vertex. Define a 3-graph H3 on vertex set {x} ∪ [9] ∪ (∪6

i=1Vi) such that the
following holds:

(1) The link graph of x, H3(x), consists of the k3-blowup of G3 by replacing vi by Vi for
1 6 i 6 6, and adding a matching {15, 26, 48}.

(2) A triple abc with x ∈ {a, b, c} belongs to E(H1) if and only if it is P2-free in H1(x).

Claim 3. H3 contains no K−
4 -covering and δ2(H3) = 2m+ 1 = bn

3
c.

Proof of Claim 3: By (1) of Construction 3, one can check that H3(x) is triangle-free;
and by (2) of Construction 3, any two incident edges of H3(x) are not contained in one
edge of H3. By Observation 1, x is contained in no copy of K−

4 in H3. So H3 has no
K−

4 -covering.
By the construction of H3(x), one can check that H3(x) is almost (2m + 1)-regular,

i.e. dH3(x)(a) = 2m + 1 for all vertices a ∈ V (H3) \ {x, 1} and dH3(x)(1) = 2m + 2. So
dH3(x, a) = 2m + 1 for all a ∈ V (H3) \ {x, 1} and dH3(x, 1) = 2m + 2. Now assume
{a, b} ⊆ V (H3)\{x}. If ab ∈ E(H3(x)), by (2) of Construction 3, NH3(x, a)∩NH3(a, b) =
∅, NH3(x, b) ∩ NH3(a, b) = ∅, and for any c ∈ V (H3) \ (NH3(x, a) ∪ NH3(x, b)), {a, b, c}
forms an edge of H3. Since H3(x) is triangle-free, NH3(x, a)∩NH3(x, b) = ∅. If 1 /∈ {a, b}
then dH3(a, b) = |V (H3)| − |NH3(x, a)| − |NH3(x, b)| = 6m + 4 − 2(2m + 1) = 2m + 2.
Now assume 1 ∈ {a, b}, say a = 1. Then dH3(1, b) = |V (H3)| − |NH3(x, 1)| − |NH3(x, b)| =
6m + 4 − (2m + 2) − (2m + 1) = 2m + 1. If ab /∈ E(H3(x)) then x /∈ NH3(a, b). By
(2) of the construction of H3, NH3(x, a) ∩ NH3(x, b) ∩ NH3(a, b) = ∅; or equivalently,
for any c /∈ (NH3(x, a) ∩ NH3(x, b)) ∪ {x, a, b}, abc ∈ E(H3). So we have dH3(a, b) =
6m+ 4− 3− |NH3(a, x) ∩NH3(b, x)| > 4m > 2m+ 1.

Case 3 follows from Claim 3.
Theorem 1.4 follows from Cases 1,2,3 and Theorem 1.1.

2.2 Proof of Theorem 1.5

The following theorem is well known in graph theory.

Theorem 2.1 (König [6]). Let G be a bipartite graph with maximum degree ∆. Then E(G)
can be partitioned into M1,M2, . . . ,M∆ so that each Mi (1 6 i 6 ∆) is a matching in G.
In particular, if G is ∆-regular then E(G) can be partitioned into ∆ perfect matchings.
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Construction 4. Given positive integers m, ` with m 6 ` and two disjoint sets V1, V2 with
|V1| 6 |V2| = m, by Theorem 2.1, the edge set of the complete bipartite graph K(V1, V2)
has a partition M1,M2, . . . ,Mm such that each Mi (1 6 i 6 m) is a matching. Let T be
the 3-partite 3-graph with vertex classes V1 ∪ V2 ∪ [`] and edge set

E(H) =
m⋃
i=1

{e ∪ {i} : e ∈Mi}.

Proof of Theorem 1.5. We first give the extremal 3-graph for K−
5 .

Construction 5. Given a positive integer m and three disjoint sets V1, V2, V3 such that
m − 1 6 |V1| 6 |V2| = m 6 |V3| 6 m + 1 and |V3| − |V1| 6 1. Let V3 = [`]. Let T
be the 3-partite 3-graph on vertex set V1 ∪ V2 ∪ V3 constructed by Construction 4. Let x
be a specific vertex not belonging to V1 ∪ V2 ∪ V3. Define the 3-graph H4 on vertex set
V1 ∪ V2 ∪ V3 ∪ {x} such that the following holds.

(1) The link graph of x, H4(x), consists of the union of the three complete bipartite
graphs K(V1, V2), K(V1, V3) and K(V2, V3).

(2) Each triple e /∈ E(K(V1, V2, V3)) with x /∈ e is an edge of H4.
(3) E(H4) ∩ E(K(V1, V2, V3)) = E(T ).

Remark. By the definition of Construction 5, we have 3m − 1 6
3∑
i=1

|Vi| 6 3m + 1 and

` = m or m+ 1.

Let n = |V (H4)|. Then 3m 6 n 6 3m+ 2.

Claim 4. H4 has no K−
5 -covering and δ2(H) > b3n−2

3
c.

Proof of Claim 4: We show that x is contained in no copy of K−
5 in H4. Choose a

4-set {a, b, c, d} ⊆ V1 ∪ V2 ∪ V3. If it contains at least three vertices in the same part Vi or
at least two vertices in at least two different parts Vi, Vj, then by (1) of Construction 5,
{a, b, c, d} spans at least two non-edges in H4(x). Otherwise, two vertices in {a, b, c, d},
say a, b, lie in the same part (whence they span a non-edge in H4(x)) while the other two
vertices c and d lie one each in the two other parts. Since ∆2(T ) 6 1 (by Construction 4)
and (3) of Construction 5, at most one of a and b makes an edge of T (and hence H4)
with cd. Thus in either case, {x, a, b, c, d} spans at least two non-edges of H4 and hence
x is not covered by a copy of K−

5 .
Now we compute the minimum codegree of H4. Choose two distinct vertices a, b ∈

V (H4). If x ∈ {a, b}, assume x = a and b ∈ Vi, then by (1) of Construction 5,

d(x, b) = n− 1− |Vi| > n− 1−
⌈
n− 1

3

⌉
=

⌊
2n− 2

3

⌋
.

If a, b ∈ Vi for some 1 6 i 6 3 then, by (2) of Construction 5, d(a, b) =
3∑
i=1

|Vi| − 2 =

n− 3 >
⌊

2n−2
3

⌋
. If a ∈ Vi, b ∈ Vj (i 6= j), then

d(a, b) = |Vi|+ |Vj| − 2 + 1 + dT (a, b) >

⌊
2n− 2

3

⌋
,
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where the inequality holds since dT (a, b) = 1 for {i, j} = {1, 2}, {i, j} = {1, 3} with
|V3| = m, or {i, j} ⊆ {1, 2, 3} with |V1| = |V2| = |V3| = m.

This completes the proof of Claim 4.
By Claim 4, we have

c2(n,K−
5 ) > δ2(H4) =

⌊
2n− 2

3

⌋
.

By Theorem 1.2, we have Theorem 1.5.
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