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Abstract

We give a positive answer to a question raised by Davis et al. (Discrete Math-
ematics 341, 2018), concerning permutations with the same πi−1 < πi > πi+1. The
question is: given π, π′ ∈ Sn with the same pinnacle set S, is there a sequence of
operations that transforms π into π′ such that all the intermediate permutations
have pinnacle set S? We introduce balanced reversals, defined as reversals that do
not modify the pinnacle set of the permutation to which they are applied. Then
we show that π may be sorted by balanced reversals (i.e. transformed into a stan-
dard permutation IdS), implying that π may be transformed into π′ using at most
4n−2 min{p, 3} balanced reversals, where p = |S| > 1. In case p = 0, at most 2n−1
balanced reversals are needed.

Mathematics Subject Classifications: 05A05

1 Introduction

In a permutation π = (π1 π2 . . . πn) from the symmetric group Sn, a peak is an index
i 6= 1, n such that πi−1 < πi > πi+1, whereas a valley is an index i 6= 1, n such that
πi−1 > πi < πi+1. Descents and ascents respectively identify indices i such that πi > πi+1

and πi < πi+1.
Many studies have been devoted to the combinatorics of peaks, especially to enumer-

ation and counting problems [1, 2, 3, 6, 9, 11] (and many others). They identify strong
and elegant relationships between peaks or descents in permutations, on the one hand,
and Fibonacci numbers, Eulerian numbers, chains in Eulerian posets, etc. on the other
hand.

In [5], Davis et al. revive the point of view considered in [4], and propose to identify
peaks by their values rather than by their positions. They call a pinnacle any element πi
with i 6= 1, n such that πi−1 < πi > πi+1, and show that considering pinnacles instead of
peaks changes the combinatorial considerations behind counting and enumerating permu-
tations with a given peak/pinnacle set. They characterize the sets of integers that may
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be the pinnacle set of a permutation (so-called admissible pinnacle sets), count them,
and propose bounds, involving the Stirling number, on the numbers of permutations with
given pinnacle set.

They further ask several questions, one of which is considered in this paper:

Question 4.2 in [5]. For a given admissible pinnacle set S, is there a class of operations
that one may apply to any π ∈ Sn whose pinnacle set is S to obtain any other permutation
π′ ∈ Sn with the same pinnacle set, in such a way that all the intermediate permutations
have pinnacle set S?

This question is motivated by the search for similarities between pinnacles and peaks
[5]. In this paper we give a positive answer to this question. More particularly, we identify
a reduced set of reversals (the operation that reverses a block of a permutation) - called
balanced reversals - which do not modify the set of pinnacles. Then we show that it is
possible to transform any permutation with pinnacle set S into a canonical permutation
of the same size with pinnacle set S by applying a sequence of at most 2n − min{p, 3}
balanced reversals. As the inverse transformation is always possible, this answers Question
4.2. above.

The paper is organized as follows. Section 2 contains the main definitions and nota-
tions. In Section 3 we identify balanced reversals and state the main results. Section 4 is
devoted to the proof of our main theorem. This proof describes the algorithm allowing us
to find the sequence of reversals transforming a given permutation into the canonical per-
mutation. For the sake of completeness, we give in Section 5 the implementation details
for an optimal running time of our algorithm. Section 6 is the conclusion.

2 Definitions and notations

Permutations π, π′, π′′ we use in the paper belong to the symmetric group Sn, for a
given integer n. Elements n + 1 and n + 2 are artificially added at the beginning and
respectively the end of each permutation, so that a permutation π ∈ Sn is written as
π = (π0 π1 π2 . . . πn πn+1) with π0 = n + 1 and πn+1 = n + 2. For each i > 0, we define
Predπ(πi) = πi−1 and for each i < n+ 1 we define Nextπ(πi) = πi+1. The block of π with
endpoints πa and πb (where a 6 b) is defined as (πa πa+1 . . . πb−1 πb).

A pinnacle is any element πi with i 6= 0, n + 1 such that πi−1 < πi > πi+1. Similarly
to pinnacles (whose indices are the peaks), we define the dells (whose indices are the
valleys). A dell of π is any element πi with i 6= 0, n + 1 such that πi−1 > πi < πi+1. The
shape of the permutation π is the permutation Bπ = (y0 v1 y1 v2 y2 . . . , yp vp+1 yp+1) where
v1, . . . , vp+1 are the dells of π, y1, . . . , yp are its pinnacles, whereas y0 = π0 = n + 1 and
yp+1 = πn+1 = n+ 2. The presence of the elements n+ 1 and n+ 2 at the beginning and
the end of the permutation adds no pinnacle to the initial permutation, and ensures that
dells v1, vp+1 exist. Note that in a shape two consecutive dells are always separated by
a pinnacle (and viceversa) since the first dell and its following element start a sequence
of increasing elements, whereas the element preceding the second dell and the second
dell itself end a sequence of decreasing elements. The elements belonging to both these
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sequences is necessarily a pinnacle.
Moreover, let Aπ(vi, yi) with 1 6 i 6 p+1 be the set of elements in the block of π with

endpoints vi and yi, which are neither a dell nor a pinnacle. Similarly let Dπ(yi, vi+1) with
0 6 i 6 p be the set of elements in the block of π with endpoints yi and vi+1, which are
neither a dell nor a pinnacle. Sets Aπ() and Dπ() are respectively called ascending and
descending sets of π. Note that y0 and yn belong respectively to the leftmost descending
and the rightmost ascending set. The dells and pinnacles belong to no such set.

Example 1. Consider π = (11 8 6 7 4 3 2 1 5 10 9 12) from S10 (thus n = 10) with elements
11 and 12 artificially added. Dells are underlined, pinnacles are overlined, p = 2. The
shape is Bπ = (11 6 7 1 10 9 12). The ascending sets are Aπ(6, 7) = ∅, Aπ(1, 10) = {5} and
Aπ(9, 12) = {12}, whereas the descending sets are Dπ(11, 6) = {8, 11}, Dπ(7, 1) = {2, 3, 4}
and Dπ(10, 9) = ∅.

We define a canonical permutation according to [5]. Given a set S = {s1, s2, . . . , sd}
and an integer n > 2d, the canonical permutation IdS ∈ Sn with pinnacle set S is the
permutation built as follows: place the elements of S in increasing order on positions
2, 4, . . . , 2d respectively; then place the elements in {1, 2, . . . , n}\S in increasing order on
positions 1, 3, . . . , 2d − 1, 2d + 1, . . . , n. With our convention, elements n + 1 and n + 2
are added at the beginning and respectively the end of IdS.

Definition 2. Let w1, w2 be two elements of π, such that w1 = πa, w2 = πb and 0 < a 6
b < p+ 1. The reversal ρ(w1, w2) is the operation that transforms

π = (π0 . . . πa−1 πa . . . πb πb+1 . . . πn+1)

into
π′ = (π0 . . . πa−1 πb πb−1 . . . πa+1 πa πb+1 . . . πn+1).

Notation: π′ = π · ρ(w1, w2).

Example 3. With S = {7, 10}, the canonical permutation IdS ∈ S10 is IdS = (11 1 7 2 10 3
4 5 6 8 9 12), with shape (11 1 7 2 10 3 12). Recall that π0 = n+1 = 11 and πn+1 = n+2 =
12 are added to each permutation in S10. Then S has the same pinnacle set as π in
Example 1, but not the same dells and thus not the same shape. Applying ρ(1, 10) to IdS
yields the permutation IdS · ρ(1, 10) = (11 10 2 7 1 3 4 5 6 8 9 12). It may be noticed that
the resulting permutation has pinnacle set {7}, showing that reversals may modify the
pinnacle set.

Definition 4. Let π ∈ Sn. A reversal ρ(w1, w2) is a balanced reversal for π if π and
π · ρ(w1, w2) have the same pinnacle set.

Balanced reversals are characterized in the next section. In order to identify appropri-
ate balanced reversals when needed, we make use of cutpoints. Let i be an integer with
1 6 i 6 p+ 1 and z be an element of π not belonging to Aπ(vi, yi), such that vi < z < yi.
The largest element e of Aπ(vi, yi) ∪ {vi} such that e < z is called the cutpoint of z on
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Aπ(vi, yi) and is denoted cutAπ(z, vi, yi). The similar definition holds for Dπ(yi, vi+1). Let
i be an integer with 0 6 i 6 p and z be an element of π not belonging to Dπ(yi, vi+1),
such that vi+1 < z < yi. The largest element e of Dπ(yi, vi+1) ∪ {vi+1} such that e < z is
called the cutpoint of z on Dπ(yi, vi+1) and is denoted cutDπ(z, yi, vi+1).

Example 5. Consider the permutation π = (11 7 6 8 4 3 1 2 5 10 9 12) from S10. Then we
have cutAπ(6, 1, 10) = cutAπ(9, 1, 10) = 5 whereas cutAπ(3, 1, 10) = 2. Also, we have
cutDπ(6, 8, 1) = 4 whereas cutDπ(2, 8, 1) = 1.

Finally, define the following problem:

Balanced Sorting Problem
Input: A permutation π ∈ Sn with pinnacle set S.
Question: Is it possible to transform π into IdS ∈ Sn using only balanced reversals?

The difficulty in solving this problem has mainly two origins: first, one cannot perform
any wished reversal since a reversal is not necessarily balanced (see Example 3); and
second, given a set S of pinnacles and a permutation σ of the elements in S, it is possible
that no permutation π of given size n and with pinnacle S exists that has the pinnacles
in the order (from left to right) given by σ.

Example 6. Let set S = {3, 5, 7}. Then with n = 7 and σ = (3 5 7) we may find the
permutation π = (8 2 3 1 5 4 7 6 9), but with n = 7 and σ = (3 7 5) there is no permutation
from Sn with pinnacles in this order.

Therefore, the Balanced Sorting Problem is a question of feasibility in the first
place. The optimal sorting is proposed as an open problem in the conclusion.

3 Main results

Let π ∈ Sn be a permutation with pinnacle set S such that |S| = p. The main result of
the paper is the following one.

Theorem 7. There is a sequence R that solves the Balanced Sorting Problem on π
using at most 2n−min{p, 3} balanced reversals when p > 1, and at most 2n− 1 reversals
when p = 0.

An answer to Question 4.2 is an immediate consequence of this theorem.

Corollary 8. Let π, π′ ∈ Sn be two permutations with pinnacle set S such that |S| = p.
Then, when p > 1 there is a sequence T of at most 4n−2 min{p, 3} balanced reversals that
transforms π into π′, using only intermediate permutations with pinnacle set S. When
p = 0, T contains at most 4n− 2 balanced reversals.
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Figure 1: Intuitive description of types A.1 (left) and B.1 (right) where elements are placed
on ascending and descending regions according to their values (high or low). A consequence is
that neighboring elements on the permutation are not always at equal distance on the horizontal
axis. Elements w1 and w2 are drawn as grey circles, Predπ(w1) is drawn as a white square and
Nextπ(w2) is drawn as a black square. a) Permutation π. b) Result once the reversal ρ(w1, w2)
is applied.

Proof. Let R be the sequence of balanced reversals needed to sort π according to Theorem
7. Similarly, let R′ = (ρ(w1, w

′
1), ρ(w2, w

′
2), . . . , ρ(wq, w

′
q)) be the sequence of balanced

reversals needed to sort π′. Let T be the sequence made of R followed by the sequence
ρ(w′q, wq), ρ(w′q−1, wq−1), . . . , ρ(w′1, w1). Then T transforms π into IdS and subsequently
IdS into π′ using only balanced reversals. The definition of a balanced reversal guarantees
that all the intermediate permutations have pinnacle set S.

Recall that, by Definition 2, in a reversal ρ(w1, w2) the endpoints w1 and w2 are in this
order from left to right on π and are distinct from y0, yp+1. Depending on the position of
w1 and w2 in π, balanced reversals are of different types and imply different constraints,
that need to be satisfied in order to guarantee that the reversal is balanced. Table 1
presents the different possible positions for w1 and w2, each defining a type. On the
rightmost column are given the constraints that w1, w2 and their adjacent elements must
fulfill in order to obtain a balanced reversal. For instance, reversal ρ(w1, w2) of type A.1 is
obtained when w1 belongs to an ascending set of π and w2 belongs to a descending set of
π. One further requires that the following constraints be verified: when Nextπ(w2) 6= vj+1

we must have w1 > Nextπ(w2); when Predπ(w1) 6= vi we must have w2 > Predπ(w1).
The standard cases A.1 and B.1 are shown in Figure 1. The other cases are obtained

from A.1 or B.1 when w1 or w2 or both of them are a pinnacle or a dell. Cases denoted
A.x are obtained from case A.1 only, cases B.x are obtained from B.1 only and cases C.x
are obtained from both A.1 and B.1. Symmetrical cases are identified by an “s”. We
show below that these types form altogether the entire collection of balanced reversals.

Proposition 9. Reversal ρ(w1, w2) is balanced iff it belongs to the collection of types in
Table 1.
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Type Positions of w1, w2 Constraints
A.1 w1 ∈ Aπ(vi, yi), if Nextπ(w2) 6= vj+1 then w1 > Nextπ(w2) and

w2 ∈ Dπ(yj , vj+1), i 6 j if Predπ(w1) 6= vi then w2 > Predπ(w1)
A.2 w1 = yi, w2 ∈ Dπ(yj , vj+1), i 6 j w1 > Nextπ(w2)
A.2s w1 ∈ Aπ(vi, yi), w2 = yj , i 6 j w2 > Predπ(w1)
A.3 w1 = vi, w2 ∈ Dπ(yj , vj+1), i 6 j if Nextπ(w2) 6= vj+1 then w1 > Nextπ(w2) and

if Predπ(w1) = yi−1 6= y0 then w2 < Predπ(w1)
A.3s w1 ∈ Aπ(vi, yi), w2 = vj+1, i 6 j if Predπ(w1) 6= vi then w2 > Predπ(w1) and

if Nextπ(w2) = yj+1 6= yp+1 then w1 < Nextπ(w2)
B.1 w1 ∈ Dπ(yi−1, vi), w2 ∈ A(vj , yj), w1 < Nextπ(w2) and w2 < Predπ(w1)

i 6 j
B.2 w1 = yi, w2 ∈ Aπ(vj , yj), i < j Predπ(w1) = vi, w2 < Predπ(w1),Nextπ(w2) 6= yj and

Nextπ(w2) < w1

B.2s w1 ∈ D(yi−1, vi), w2 = yj , i 6 j Predπ(w1) 6= yi−1,Predπ(w1) < w2,Nextπ(w2) = vj+1

and w1 < Nextπ(w2)
B.3 w1 = vi, w2 ∈ Aπ(vj , yj), i 6 j w2 < Predπ(w1) and

if Nextπ(w2) = yj 6= yp+1 then w1 < Nextπ(w2)
B.3s w1 ∈ Dπ(yi−1, vi), w2 = vj , i 6 j w1 < Nextπ(w2) and

if Predπ(w1) = yi−1 6= y0 then w2 < Predπ(w1)
C.1 w1 = vi, w2 = yj , i 6 j Predπ(w1) 6= yi−1, w2 > Predπ(w1) and

w1 > Nextπ(w2)
C.1s w1 = yi, w2 = vj , i 6 j Nextπ(w2) 6= yj+1, w1 > Nextπ(w2) and

w2 > Predπ(w1)
C.2 w1 = vi, w2 = vj , i < j if Predπ(w1) = yi−1 6= y0 then w2 < Predπ(w1) and

if Nextπ(w2) = yj+1 6= yp+1 then w1 < Nextπ(w2)
C.3 w1 = yi, w2 = yj , i < j w1 > Nextπ(w2) and w2 > Predπ(w1)

Table 1: Different types of balanced reversals. Each reversal is defined by constraints on
w1 and w2, defining their places (middle column) and the relative orders required between
some elements (rightmost column). Recall that w1 and w2 are in this order from left to
right on π and are distinct from y0, yp+1. Then Predπ(w1) and Nextπ(w2) always exist.

Proof. ′′ ⇒′′: Several cases may appear.
If both w1 and w2 belong to ascending sets of the permutation, that is w1 ∈ Aπ(vi, yi)

and w2 ∈ Aπ(vj, yj) with i 6 j, then when the reversal is performed w2 or Predπ(w1)
becomes a new pinnacle, a contradiction. A similar reasoning holds when both w1 and
w2 belong to descending sets of the permutation. So these cases cannot appear.

If one element among w1 and w2 belongs to an ascending set of the permutation, and
the other one to a descending set of it, then it is easy to check that only the conditions
in type A.1. or in type B.1. guarantee that no new pinnacle is added.

If exactly one element among w1 and w2 is a dell, then we necessarily have one of
the types A.3, B.3, C.1 (or the symmetric ones) since any other condition creates a new
pinnacle or removes an existing one.

If exactly one element among w1 and w2 is a pinnacle, then the other one is either a
dell or belongs to an ascending or descending set of π. The former possibility necessarily
leads to type C.1 (or the symmetric one). The latter possibility results into types A.2,
A.2s, B.2 or B.2s.
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If both w1 and w2 are pinnacles, or both are dells, then we must have the conditions
in types C.2 or C.3 to preserve the pinnacle set.

′′ ⇐′′: This part only requires to check, for each type, that the pinnacle set is not
modified under the indicated conditions.

4 Proof of Theorem 7

We assume below that p > 1 and postpone the case p = 0 to Remark 19, at the end of
the section.

In order to build the sequence R required in Theorem 7, we follow three steps:

1. Sort the p pinnacles of π in increasing order.

2. Place the wished dells (i.e. the dells of IdS) as dells of π, in increasing order.

3. Move each element belonging to an ascending or descending set of π on the rightside
of the last dell of π, in increasing order.

The result of these three steps is IdS. Then R is the sequence of all the balanced
reversals performed during these three steps in order to transform π into IdS.

Remark 10. Note that in the subsequent, when permutation π is successively transformed
using balanced reversals into some other permutation π′, the elements of π′ are identified
both by their names in π′, i.e. π′1, π

′
2 etc. and by their names in π, according to the

needs. Once a given task is fulfilled by applying one or several balanced reversals, the
resulting permutation is renamed as π, so that the following task begins with an initial
permutation still denoted π.

4.1 Step 1: Sort the pinnacles

This is done by successively replacing the pinnacle yk, for k = 1, 2, . . . , p− 1, by the k-th
lowest pinnacle without modifying the set of pinnacles. Then in the resulting permutation
the highest pinnacle is necessarily yp. The other elements are not constrained at this
step. Algorithm 1 presents the balanced rotations to be performed, as identified in this
subsection.

Lemma 11. There is a sequence of at most p−1 balanced reversals that transforms π with
pinnacle S into π∗ with pinnacle S such that y∗1 is the lowest pinnacle in π∗. Moreover,
when p > 3, exactly one of the two following configurations occurs:

(X) the sequence contains exactly p− 1 balanced reversals and y∗p is the highest pinnacle
in S.

(Y) the sequence contains at most p− 2 balanced reversals.
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Proof. If y1 is already the lowest pinnacle, then nothing is done. Assume now the lowest
pinnacle is yi with i 6= 1. Several cases are possible, that we present below, before giving
the algorithm.

Case 1). yi < v1 and for all h > i, we have yh < v1.
Then vp+1 < yp < v1 and the balanced reversal (type C.2) ρ(v1, vp+1) allows to obtain

a permutation π′ with v′1 = vp+1 < v1. In π′:

a) if yi = y′1, then we are done.

b) if yi 6= y′1 and yi < v′1, then we have that y′p+1 = y1 > v1 > v′1 and we deduce that at
least one pinnacle placed on the rightside of yi is larger than v′1. Then π′ satisfies
Case 2 below.

c) if yi 6= y′1 and yi > v′1, then π′ satisfies Case 3 below.

Case 2) yi < v1 and there is h > i such that yh > v1.
Then we assume w.l.o.g. that h is the minimum index with this property. Then

vh < v1, otherwise we also have yh−1 > vh > v1 which contradicts the choice of h. Now,
ρ(v1, vh) is a balanced reversal (type C.2) since Predπ(v1) is not a pinnacle and even if
it may happen that Nextπ(vh) = yh we have yh > v1. Once ρ(v1, vh) is performed, the
new first dell is v′′1 = vh and is smaller than v1 as proved above. Let us call π′′ this new
permutation, whose elements satisfy y′′t = yi for some t, y′′h−1 = y1, y

′′
h = yh, y

′′
1 = yh−1. In

π′′:

a) if t = 1, then we are done.

b) if t 6= 1 and yi < v′′1 , then π′′ satisfies Case 2 since v′′1 = vh < v1 < y1 = y′′h−1, so
there is at least one index as required in Case 2. The smaller such index, say g,
satisfies t < g < h.

c) if t 6= 1 and yi > v′′1 , then π′′ is in Case 3 below.

Condition t < g < h in item b means that the recursivity we find here will end, as we
show later (once Case 3 is presented).

Case 3) yi > v1.
Let e = cutAπ(yi, v1, y1). Then ρ(Nextπ(e), yi) is a balanced reversal (type A.2s if

Nextπ(e) 6= y1 and type C.3 otherwise) since yi > e and Nextπ(e) > yi > Nextπ(yi), both
by the definition of the cutpoint e. This reversal places yi as the leftmost pinnacle.

The algorithm consists in applying Case 1 if necessary, then Case 2 as long as the
current permutation requires it (in item b of Case 2) and finally Case 3 if needed. It is
presented in Algorithm 1. In order to compute the number of balanced reversals performed
in the worst case, we denote:

• π the initial permutation
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Algorithm 1 Permutation sorting by balanced reversals : Step 1

Input: A permutation π ∈ Sn with pinnacle set S of cardinality p.
Output: The permutation π whose pinnacles have been placed in increasing order (Proposition

14)

1: x← min{y1, . . . , yp} // x is the lowest pinnacle
2: let yi = x // x has index i
3: if (i 6= 1) and yi < v1 then
4: h← min{h |h > i, yh > v1} ∪ {0} // h = 0 occurs when the first set is empty
5: if h = 0 then
6: π ← π · ρ(v1, vp+1) // Case 1
7: end if
8: end if
9: while x is not the leftmost pinnacle of π do

10: let yi = x // x has index i 6= 1
11: if yi < v1 then
12: h← min{h |h > i, yh > v1}
13: π ← π · ρ(v1, vh) //Case 2
14: else
15: e← cutAπ(yi, v1, y1); π ← π · ρ(Nextπ(e), yi) //Case 3
16: end if
17: end while // the lowest pinnacle is now placed in position y1
18: for k = 1 to p− 2 do
19: x← min{yk+1, . . . , yp}; let yt = x // x is the lowest remaining pinnacle
20: if t 6= k + 1 then
21: e← cutAπ(yt, vk+1, yk+1); π ← π · ρ(Nextπ(e), yt) //x is now in position yk+1

22: end if
23: end for

24: Return π

• π0 the permutation obtained at the end of Case 1, whether it is applied or not (so
that π0 = π if not).

• π1, . . . , πm the m successive permutations obtained using Case 2 (m = 0 if Case 2
is not applied).

• πm+1 the permutation obtained once Case 3 is applied, if it is applied.

As a consequence, if m > 0 then for 0 6 q 6 m − 1, permutation πq is transformed
into permutation πq+1 using the balanced reversal ρ(vq1, v

q
hq) of type C.2, as mentioned in

Case 2 before. Here, hq denotes the minimum index h computed in Case 2 for each πq,
i.e. h0 = h (see Case 2), h1 = g (see item b in Case 2), and so on. Indices h0, h1 . . . , hm−1

computed respectively in π0, π1 . . . , πm−1 satisfy (see again Case 2 item b where we show
that g < h):

(i) hm−1 < hm−2 < · · · < h1 < h0
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(ii) yqhq , y
q
hq−1 , . . . , y

q
h1 , y

q
h0 are pinnacles in the permutation πq for each q with 0 6 q 6

m− 1, in this order from left to right. Moreover, each permutation πq inherits the
pinnacles of the previous permutation πq−1, that is, yqhs = yq−1hs for all 0 6 s 6 q− 1
(meaning that the pinnacles as well as their indices in the permutation are the
same).

(iii) hq and vq1 satisfy the conditions of Case 2 item b in πq for each q with 0 6 q 6 m−1.

(iv) permutation πm obtained when Case 2 does not apply any longer contains all the
pinnacles ymhm−1 , ymhm−2 , . . . , ymh1 , y

m
h0 built by the previous iterations, in this order

from left to right.

The number of balanced reversals performed in this step strongly depends on the num-
ber m of reversals performed at worst in Case 2. By item (iv) above, ymhm , y

m
hm , . . . , y

m
h1 , y

m
h0

are m pinnacles in the permutation πm obtained when Case 2 does not apply any longer,
in this order from left to right. The number of such pinnacles (i.e. m) is upper bounded
by p − 2, since (1) m 6 p, and (2) when the m-th reversal is applied (to πm−1), at least
two pinnacles exist in the block to be reversed, the current leftmost pinnacle ym−11 and
yi. They are distinct, otherwise no reversal is applied. Thus m 6 p− 2. Now:

• If m = p − 2, then the pinnacles of πm−1 are necessarily, in this order from left to
right, ym−11 , yi (= ym−12 ), ym−1hm−1 (= ym−13 ), . . . , ym−1h0 (= ym−1p ). The last reversal

due to Case 2, i.e. ρ(vm−11 , vm−1hm−1), places yi as the leftmost pinnacle, and thus we
are done. Item a in Case 2 applies, and no other reversal is needed. Then the
total number of reversals applied in Step 1 is p− 1 when Case 1 applies and p− 2
otherwise. In the latter case, configuration (Y) in the lemma occurs. The former
case is fixed using property (P) below.

• If m 6 p− 3, then we distinguish again several situations:

– When m 6 p− 4, the total number of reversals applied in Step 1 is p− 3 when
exactly one of Case 1 and Case 3 applies, and p − 2 when both Case 1 and
Case 3 apply. Configuration (Y) then occurs.

– When m = p − 3 and h0 6= p, then as above the pinnacles of πm−1 must be
ym−11 , yi (= ym−12 ), ym−1hm−1 (= ym−13 ), . . . , ym−1h0 (= ym−1p−1 ) and ym−1p , where ym−1p is
the rightmost pinnacle, that is never involved in the reversals. The last reversal
due to Case 2, i.e. ρ(vm−11 , vm−1hm−1), places yi as the leftmost pinnacle, and thus
we are done. Item a in Case 2 applies, and no other reversal is needed. Then
the total number of reversals in step 1 is p− 2 when Case 1 applies and p− 3
otherwise, yielding configuration (Y) again.

– When m = p− 3 and h0 = p, the total number of reversals applied in Step 1 is
p−2 when at most one of Case 1 and Case 3 applies (configuration (Y) again),
and p − 1 when both Case 1 and Case 3 apply. The latter case is fixed using
property (P) below.
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We now finish the two unresolved cases, both of which occur when Case 1 applies
and ymp = ymh0 (recall that the pinnacles with indices h0, . . . , hm−1 are inherited from one
execution of Case 2 to the next one, by affirmation (ii) above).

(P) If Case 1 applies and in Case 2 we have h0 = p, then ymp is the highest pinnacle
in πm.

Indeed, since Case 1 applies, in π we have yt < v1, for all t > i. Thus in π′ (see Case
1) we have y′u < v′p+1 = v1 for all u 6 s, where y′s = yi. When π′ is renamed as π0, we
have:

y0u < v0p+1 = v1 for all u 6 s, where y0s = yi. (1)

Moreover, since Case 2 applies with h0 = p, we have that:

y0p > v01 = vp+1 (2)

y0r < v01, for all r with s 6 r < p. (3)

By (1), y0u < v0p+1 and by definition v0p+1 < y0p, thus y0u < y0p for all u 6 s, where y0s = yi.
By (2) and (3), y0r < v01 < y0p for all r with s 6 r < p. Thus y0p is the highest pinnacle in
π0. Due to affirmation (ii) above, ymp is the highest pinnacle in πm and property (P) is
proved.

Now, property (P) applies in each of the two unresolved cases and yield configuration
(X). Lemma 11 is proved.

Once the lowest pinnacle is placed first, i.e. it is y1, each of the other pinnacles is
easily placed. The reasoning is by induction.

Lemma 12. Assume that y1, y2, . . . , yk are the k lowest pinnacles, with k > 1, and assume
yt with t 6= k + 1 is the next lowest pinnacle. Then there is a balanced reversal allowing
to replace yk+1 with yt, which does not modify the pinnacles ys, with s ∈ {1, . . . , k, t +
1, . . . , p}.

Proof. We notice that yk+1 > yt > yk > vk+1. With e = cutAπ(yt, vk+1, yk+1), the reversal
ρ(Nextπ(e), yt) is balanced (type A.2s if Nextπ(e) 6= yk+1 and type C.3 otherwise) and
moves yt at the sought place.

Example 13. Consider π = (20 16 10 11 6 17 18 7 8 1 3 2 5 4 13 12 9 15 14 19 21) Here, n =
19, p = 7, the dells are underlined and the pinnacles are overlined. Then S = {3, 5, 8, 11,
13, 15, 18}. The first and last elements are the bounds y0 and yn+1 that are artificially
added. Table 2 indicates the reversals needed to achieve step 1, according to Algorithm 1.

Lemmas 11 and 12 allow to deduce the following result.
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Reversal Permutation (once the reversal is performed) Remarks
Initial π = (20 16 10 11 6 17 18 7 8 1 3 2 5 4 13 12 9 15 14 19 21) Notations: dell: 10; pinnacle: 3

Step 1
ρ(16, 14) π = (20 14 15 9 12 13 4 5 2 3 1 8 7 18 17 6 11 10 16 19 21) Case 1 was applied. x = y4 = 3.
ρ(14, 7) π = (20 7 8 1 3 2 5 4 13 12 9 15 14 18 17 6 11 10 16 19 21) Case 2 was applied.
ρ(7, 4) π = (20 4 5 2 3 1 8 7 13 12 9 15 14 18 17 6 11 10 16 19 21) Case 2 here (and on the next line)
ρ(4, 1) π = (20 1 3 2 5 4 8 7 13 12 9 15 14 18 17 6 11 10 16 19 21) 3 is now y1; 5, 8 are also correct
ρ(13, 11) π = (20 1 3 2 5 4 8 7 11 6 17 18 14 15 9 12 13 10 16 19 21) 11 is now y4
ρ(17, 13) π = (20 1 3 2 5 4 8 7 11 6 13 12 9 15 14 18 17 10 16 19 21) 13 is now y5; 15, 18 are also correct

Step 2
ρ(7, 6) π′ = (20 1 3 2 5 4 8 6 11 7 13 12 9 15 14 18 17 10 16 19 21)

.
= π k = 3, w = 6, k + 1 = j − 1 = 4

ρ(14, 10) π′ = (20 1 3 2 5 4 8 6 11 7 13 12 9 15 10 17 18 14 16 19 21)
.
= π k = 6, w = 10, k + 1 = j − 1 = 7

ρ(9, 14) π′ = (20 1 3 2 5 4 8 6 11 7 13 12 14 18 17 10 15 9 16 19 21) k = 7, w = 12 = Predπ(9)
ρ(12, 9) π′′ = (20 1 3 2 5 4 8 6 11 7 13 9 15 10 17 18 14 12 16 19 21)

.
= π

Step 3
ρ(14, 16) π′ = (20 1 3 2 5 4 8 6 11 7 13 9 15 10 17 18 16 12 14 19 21) Item a), u = 16, e = 14
ρ(12, 14) π′ = (20 1 3 2 5 4 8 6 11 7 13 9 15 10 17 18 16 14 12 19 21)

.
= π

ρ(17, 18) π′ = (20 1 3 2 5 4 8 6 11 7 13 9 15 10 18 17 16 14 12 19 21) Item b), i = 7, u = 17, e = 16
ρ(18, 18) π′ = (20 1 3 2 5 4 8 6 11 7 13 9 15 10 18 17 16 14 12 19 21)

.
= π trivial

ρ(17, 12) π′ = (20 1 3 2 5 4 8 6 11 7 13 9 15 10 18 12 14 16 17 19 21)
.
= π Item c)

π = IdS Item d) does nothing here

Table 2: Execution of Steps 1, 2 and 3 on the permutation π = (20 16 10 11
6 17 18 7 8 1 3 2 5 4 13 12 9 15 14 19 21). Notation π′ = (. . .)

.
= π means that once π′ is

computed according to the algorithm, the algorithm does not compute π′′ and thus π′ is
renamed π. Notation π′′ = (. . .)

.
= π means that both π′ and π′′ have been computed,

and π′′ is renamed π.

Proposition 14. There is a sequence R1 of at most one reversal (when p = 2), and at
most 2p − 4 reversals (when p > 3) allowing to order the pinnacles of π in increasing
order.

Proof. When p = 2, Lemma 11 guarantees that at most p− 1(= 1) reversals are needed.
For p > 3, in configuration (X) from Lemma 11 the leftmost pinnacle is already the

highest one, so that in Step 18 of Algorithm 1 the last execution (for k = p − 2) will
find the pinnacle yp−1 already on its place (since y1, . . . , yp−2 and yp are already correctly
placed). Therefore, only p − 3 applications of Lemma 12 are required in this case. The
total number of reversals is then (p− 1) + (p− 3) = 2p− 4.

For p > 3, in configuration (Y) from Lemma 11, we apply Lemma 12 for each k in
{1, 2, . . . , p−2} (see Algorithm 1). The number of reversals is then at most (p−2) + (p−
2) = 2p− 4.

4.2 Step 2: Place the wished dells

Now we replace v1, v2, . . . , vp+1 respectively with the lowest, the second lowest etc. element
which is not a pinnacle, in order to have in π the same dells as in IdS. To this end, we
need the following technical lemmas.
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Algorithm 2 ApplyLemma15

Input: A permutation π ∈ Sn, pinnacles vi, vq satisfying the hypothesis of Lemma 15.
Output: The permutation π′′ obtained according to Lemma 15.

1: u = Predπ(vi)
2: if u > vq then
3: e← cutAπ(u, vq, yq); π

′ ← π · ρ(u, e); π′′ ← π′ · ρ(e, vi); //case i)
4: else
5: π′ ← π · ρ(vi, vq); π

′′ ← π′ · ρ(u, vi) //case ii)
6: end if

7: Return π′′

Lemma 15. Assume vi 6 vq, with i 6 q, such that Predπ(vi) is not a pinnacle and
satisfies y0 6= Predπ(vi) < yq. Then there exist two balanced reversals transforming π into
π′′ such that the only differences between π and π′′ are the following ones:

i) if Predπ(vi) > vq, then Predπ(vi) is moved immediately after cutAπ(Predπ(vi), vq,
yq), so that Predπ(vi) ∈ Aπ′′(vq, yq).

ii) if Predπ(vi) < vq, Predπ(vi) is moved immediately after vq and becomes v′′q .

Proof. Let u = Predπ(vi). See Algorithm 2.
i) If u > vq then let e = cutAπ(u, vq, yq). Then ρ(u, e) is a balanced reversal (type

B.1 if e 6= vq or type B.3s otherwise), since u < Nextπ(e) and e < u < Predπ(u), both
by the definition of the cutpoint e. When applied, this reversal yields a permutation π′

where v′i = vq, e ∈ Dπ′(y
′
i−1, v

′
i),Predπ′(e) = Predπ(u), v′q = vi and Nextπ′(vi) = u. Then

ρ(e, vi) is a balanced reversal (type B.3s if e 6= vq and type C.2 otherwise) in π′ for we have
e < Nextπ′(vi) = u by the definition of the cutpoint e, and vi < u < Predπ(u) = Predπ′(e).
The resulting permutation π′′ satisfies the conditions in the lemma.

ii) If u < vq then ρ(vi, vq) is a balanced reversal (type C.2) since Predπ(vi) 6= yi−1,
and we have vi < u < vq < Nextπ(vq) whether Nextπ(vq) = yq or not. In the permu-
tation π′ resulting once ρ(vi, vq) is applied, v′i = u (since u < vq), Nextπ′(v

′
i) = vq, v

′
q =

vi,Nextπ′(vi) = Nextπ(vq). Then ρ(u, vi) is a balanced reversal (type C.2) in π′. To see
this, we need to show that vi < Predπ(u) which is true since Predπ(u) > u > vi in π,
and that u < Nextπ′(vi) which is also true since Nextπ′(vi) = Nextπ(vq) > vq > u. The
permutation π′′ obtained after the execution of the reversal ρ(u, vi) satisfies the conditions
in the lemma.

Lemma 16. Assume vi 6 vq, with i 6 q, such that Nextπ(vi) is not a pinnacle and
satisfies and Nextπ(vi) < yq−1. Then there exist two balanced reversals transforming π
into π′′ such that the only differences between π and π′′ are the following ones:

i) if Nextπ(vi) > vq, then Nextπ(vi) is moved immediately before cutDπ(Nextπ(vi), yq−1,
vq), so that Nextπ(vi) ∈ Dπ′′(yq−1, vq),
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Algorithm 3 ApplyLemma16

Input: A permutation π ∈ Sn, pinnacles vi, vq satisfying the hypothesis of Lemma 16.
Output: The permutation π′′ obtained according to Lemma 16.

1: u = Nextπ(vi)
2: if u > vq then
3: e← cutDπ(u, yq−1, vq) //case i)
4: π′ ← π · ρ(u,Predπ(e)); π′′ ← π′ · ρ(Predπ(e),Nextπ(u))
5: else
6: π′ ← π · ρ(u,Predπ(vq)) //case ii)
7: π′′ ← π′ · ρ(Predπ(vq),Nextπ(u))
8: end if

9: Return π′′

ii) if Nextπ(vi) < vq, Predπ(vi) is moved immediately before vq and becomes v′′q .

Proof. Let u = Nextπ(vi). See Algorithm 3.
i) If u > vq then let e = cutDπ(u, yq−1, vq) et f = Predπ(e). Then ρ(u, f) is a balanced

reversal (type A.1 if f 6= yq−1, type A.2s otherwise), since u > e and f > u > Predπ(u),
both by the definition of a cutpoint and whether f = yq−1 or not. When applied, this
reversal yields a permutation π′ where v′i = vi,Nextπ(v′i) = f with f ∈ Aπ′(vi, yq−1) or
f = yq−1, as well as v′q = vq, y

′
q−1 = yi, and u ∈ Dπ′(yi, vq) with Nextπ′(u) = e and

Predπ′(u) = Nextπ(u). Let t = Nextπ(u). Then t = Predπ′(u) and ρ(f, t) is a balanced
reversal in π′ (type A.1 if t 6= yi and f 6= yq−1, type A.2 or A.2s if exactly one equality
holds and type C.3. otherwise). Indeed, in all types but A.2 we need to show that
t > Predπ′(f) and this is true since Predπ′(f) = v′i = vi < u < t, because vi, u, t occur
in this order on Aπ(vi, yi). Moreover, types A.1, A.2 and C.3 require that f > Nextπ′(t),
which is true since Nextπ′(t) = u and u < f by the definition of the cutpoint e. The
permutation π′′ resulting once ρ(f, t) is performed satisfies the conditions in the lemma.

ii) If u < vq then ρ(u,Predπ(vq)) is a balanced reversal (type A.1 if Predπ(vq) 6= yq−1,
type A.2s otherwise). Indeed, with the notation s = Predπ(vq), in case that s 6= yq−1
the reversal is of type A.1. and we have Nextπ(s) = vq and Predπ(u) = vi, so that the
conditions in type A.1 are trivially verified. If s = yq−1 we have to check for type A.2s
that s > Predπ(u), which is true as s > vq > u > vi = Predπ(u). In the permutation
π′ resulting once ρ(u, s) is applied, v′i = vi,Nextπ(v′i) = s ∈ Aπ′(vi, yq−1) since s > vq >
u > vi, v

′
q = u, deduced because u < vq, and Nextπ′(u) = vq. With t = Nextπ(u), we also

have that t = Predπ′(u). Then, in π′, ρ(s, t) is a balanced reversal (type A.1 if t 6= yi and
s 6= yq−1, type A.2 or A.2s if exactly one equality occurs, resp. type C.3 if both equalities
occur). Type A.1 is trivially verified, types A.2 and A.2s are guaranteed by s > vq > u
respectively t = Nextπ(u) > u = Nextπ(vi) > vi, whereas type C.3 is guaranteed by the
latter two conditions together. Once this reversal is applied, the resulting permutation
π′′ satisfies the lemma.

We are now able to place the dells in IdS as dells of π, in increasing order from left to
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right according to the method described in Proposition 17 below and its proof. Algorithm
4 presents the approach. The continued example in Table 2 illustrates it.

Proposition 17. Let π ∈ Sn be a permutation with pinnacles y1 < y2 < . . . < yp. There
is a sequence R2 of at most 2p+2 balanced reversals that places the dells in IdS as dells of
π, in increasing order from left to right, without modifying the pinnacles of π (nor their
order).

Proof. Assume the lowest k < p + 1 dells (k = 0 is admitted here) are correctly placed
as v1, v2, . . . , vk respectively, and let w be the next lowest element in π which is not a
pinnacle. Then w must replace vk+1. We have that w < yk since w < vk+1 < yk.

Then either w is adjacent to a dell among v1, v2, . . . , vk, or w is itself a dell. In all the
other cases, a smaller element would be found, contradicting the choice of w.

Case 1. w is adjacent to a dell
Let w = Predπ(vj) or w = Nextπ(vj) for some j with 1 6 j 6 k. Then we use Lemma

15, respectively Lemma 16 with i = j and q = k + 1. We have that vj < vk+1 by the
minimality of the elements v1, v2, . . . , vk. We also have w < yk as proved above, and thus
w < yk+1 by the increasing order of the pinnacles. So the hypothesis of the appropriate
Lemma is satisfied. As w < vk+1 by the minimality of w, item ii) of the lemma holds.
Consequently, after two balanced reversals, π′′ is the same as π except that w has been
removed from its place and has been placed before or after vk+1 (depending on which
lemma is applied), thus becoming the dell v′′k+1. Then we are done in this case.

Case 2. w is a dell
If w is already a dell, let w = vj with k + 1 < j 6 p + 1. Then w < vk+1 by the

minimality of w and vk+1 < yj since vk+1 < yk+1 6 yj. Let e = cutAπ(vk+1, vj, yj) and,
if it exists, f = Nextπ(e). Then ρ(vk+1, e) is a balanced reversal (type B.3 if e 6= vj and
type C.2 otherwise) since e 6= yj (vk+1 is an intermediate value among them), e < vk+1 <
Predπ(vk+1) and vk+1 < f by the definition of the cutpoint e. In the permutation π′

resulting once ρ(vk+1, e) is applied, v′k+1 = vj, y
′
k+1 = yj−1, y

′
j−1 = yk+1, v

′
j = vk+1 and

y′j = yj. If k + 1 = j − 1, then the order of the pinnacles does not change since the
reversed block contains a unique pinnacle. In this case we are done. Otherwise, due to
k + 1 < j − 1 we deduce that yk+1 < yj−1 and thus vk+1 < yk+1 < yj−1. The cutpoint
defined as e′ = cutAπ′(yk+1, vj, yj−1) satisfies then the condition e′ ∈ {vj} ∪Aπ′(vj, yj−1).
As a consequence, with f ′ = Nextπ′(e

′) we have that ρ(f ′, yk+1) is a balanced reversal
(type A.2s if f ′ 6= yj−1, type C.3 otherwise). The required conditions are fulfilled since
both types need yk+1 > Predπ′(f

′) and this is true by the definition of the cutpoint e′,
which is Predπ′(f

′); and in type C.3 we moreover need f ′ > Nextπ′(yk+1) and this is true
too by the definition of the cutpoint e′, since f ′ > yk+1 > Nextπ′(yk+1). The resulting
permutation π′′ has v′′k+1 = v′k+1 = vj and the pinnacles are in increasing order.

Using the previous approach for each k = 0, 1, . . . , p, we obtain a permutation still
denoted π whose pinnacles are in increasing order and whose dells are identical to those
of IdS, and in increasing order. Each k requires 0 or 2 balanced reversals, depending
whether vk+1 is already correct or not, so that at most 2p+2 reversals are performed.
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Algorithm 4 Permutation sorting by balanced reversals: Step 2

Input: A permutation π ∈ Sn with pinnacle set S of cardinality p. The pinnacles of π are
increasingly ordered.

Output: The permutation π with pinnacles still in increasing order, and whose dells have
become equal to the dells of IdS , in increasing order (Proposition 17)

1: for k = 0 to p do
2: w ← min({1, 2, . . . , n} − S − {v1, . . . , vk}) // x is the lowest wished dell
3: if ∃vj such that w = Predπ(vj) then
4: π ← ApplyLemma15(π, vj , vk+1)
5: else
6: if ∃vj such that w = Nextπ(vj) then
7: π ← ApplyLemma16(π, vj , vk+1)
8: else
9: let vj = w //w is a dell

10: if j 6= k + 1 then
11: e← cutAπ(vk+1, vj , yj); π

′ ← π · ρ(vk+1, e); π
′′ ← π′

12: if k + 1 6= j − 1 then
13: e′ ← cutAπ′(yk+1, vj , yj−1); π

′′ ← π′ · ρ(Nextπ′(e
′), yk+1);

14: end if
15: π ← π′′

16: end if
17: end if
18: end if
19: end for

20: Return π

Table 2 shows an example.

4.3 Step 3: Move the remaining elements towards the place they occupy in
the canonical permutation

It remains to move in π the elements from each ascending and each descending set towards
the end of the permutation.

Proposition 18. Let π ∈ Sn be a permutation with pinnacles y1 < y2 · · · < yp, and dells
v1 < v2 < · · · < vp+1 which are the p + 1 lowest values in {1, 2, . . . , n} \ S. There is a
sequence R3 of at most 2(n− 2p)− 1 balanced reversals that transforms π into IdS.

Proof. This is done as follows. By hypothesis, vp+1 is smaller than all the elements from
each ascending and each descending set, since the dells are the smallest elements that are
not pinnacles.

a) As long as Nextπ(vp+1) < yp, we use the following trick to move Nextπ(vp+1) towards
Dπ(yp, vp+1) without changing the rest of π. Let πrev be the permutation obtained
from π by reversing the whole π. Lemma 15 i) may be applied to πrev with i =
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q = p+1 in order to move Predπrev(vp+1) towards Aπrev(vp+1, yp) using two balanced
reversals (recall that yp > Nextπ(vp+1) = Predπrev(vp+1) by the hypothesis above).
Now, if we apply the balanced reversals with the same endpoints in π (without
reversing the whole permutation), we obtain that Nextπ(vp+1) is moved towards
Dπ(yp, vp+1) without changing the rest of π. The resulting permutation is still
called π and we continue. When the process is finished, each t ∈ Aπ(vp+1, yp+1)
satisfies t > yp.

b) For each i 6 p, as long as Nextπ(vi) 6= yi, use Lemma 16 to move Nextπ(vi), which
is smaller than yi and thus smaller than yp, towards Dπ(yp, vp+1), without changing
the rest of π. More precisely, item i) in the lemma is used, by the minimality of
vp+1. When this step is finished, we have Aπ(vi, yi) = ∅ for all i with 1 6 i 6 p.

c) If Nextπ(yp) 6= vp+1, the reversal ρ(Nextπ(yp), vp+1) is balanced (type B.3s), since
Nextπ(yp) < yp < Nextπ(vp+1) by the constructions in the two previous items above,
and vp+1 < Predπ(Nextπ(yp)) = yp. Then, in the new permutation still denoted π,
Dπ(yp, vp+1) = ∅.

d) For each i 6 p, as long as Predπ(vi) 6= yi−1, use Lemma 15 to move Predπ(vi) towards
Aπ(vp+1, yp+1) (item i) in the lemma) without changing the rest of π. When this
step is finished, we have Dπ(vi, yi) = ∅ for all i with 0 6 i 6 p.

It is easy to see that the result of these transformations is IdS. Indeed, item b)
ensures that vi immediately precedes yi, for each pinnacle yi, 1 6 i 6 p. Once step b)
is performed, the elements in Dπ(yp, vp+1) are smaller than yp whereas by item a) those
in Aπ(vp+1, yp+1) (if any) exceed yp. The reversal in item c) thus only makes yp adjacent
to vp+1 by concatenating the elements in Dπ(yp, vp+1) to those in Aπ(vp+1, yp+1). Finally,
item d) ensures that each yi is adjacent to each vi+1 for 0 6 i 6 p − 1, by successively
inserting each element in Dπ(yi, vi+1) into {vp+1} ∪ Aπ(vp+1, yp+1).

As a consequence, all elements but the p pinnacles and the p + 1 dells are possibly
moved in items a), b) and d) using Lemma 15 or Lemma 16, thus performing two reversals
per element. Since in item c) only one reversal is performed, the total number of reversals
is at most 2(n− p− (p+ 1)) + 1 = 2(n− 2p)− 1.

See the example in Table 2.

Proof of Theorem 7 The sequence R obtained by concatenating the sequences R1, R2,
R3 issued from Propositions 14, 17 and respectively Proposition 18 transforms π into IdS
as shown by these propositions. The number of balanced reversals in R needs to identify
three cases:

• when p = 1, Steps 1, 2, 3 respectively take at most 0, 2p + 2 and 2(n − 2p) − 1
reversals, so the total number is 0 + (2p+ 2) + (2n− 4p− 1) = 2n− 2p+ 1, so that
with p = 1 we have 2n− 1 reversals.
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Algorithm 5 Permutation sorting by balanced reversals: Step 3

Input: A permutation π ∈ Sn with pinnacle set S of cardinality p. The pinnacles of π are
increasingly ordered. The dells of π are the same as those of IdS .

Output: The permutation IdS , obtained after placing into their correct places the elements of
π not yet correctly placed (Proposition 18)

1: while Nextπ(vp+1) < yp do
2: u ← Nextπ(vp+1); e ← cutDπ(u, yp, vp+1); π

′ ← π · ρ(e, u); π′′ ← π′ · ρ(vp+1, e); π ← π′′

//item a)
3: end while
4: for i = 1 to p do
5: while Nextπ(vi) 6= yi do
6: π ← ApplyLemma16(π, vi, vp+1) //item b)
7: end while
8: end for
9: if Nextπ(yp) 6= vp+1 then

10: π ← π · ρ(Nextπ(yp), vp+1) //item c)
11: end if
12: for i = 1 to p do
13: while Predπ(vi) 6= yi−1 do
14: π ← ApplyLemma15(π, vi, vp+1) //item d)
15: end while
16: end for

17: Return π

• when p = 2, Steps 1, 2, 3 respectively take at most 1, 2p + 2 and 2(n − 2p) − 1
reversals, so the total number is 1 + (2p+ 2) + (2n− 4p− 1) = 2n− 2p+ 2, so that
with p = 2 we have 2n− 2 reversals.

• when p > 3, Steps 1, 2, 3 respectively take at most 2p− 4, 2p+ 2 and 2(n− 2p)− 1
reversals, so the total number is (2p−4)+(2p+2)+(2n−4p−1) = 2n−3 reversals.

The number of reversals is therefore bounded by 2n−min{p, 3} in all cases if p > 1.�

Remark 19. In the case where p = 0, Steps 1 and 2 in the algorithm are not performed.
Step 3 reduces to items c) and d) which perform 1 and respectively at most 2(n − 1)
reversals. The total number of reversals is thus upper bounded by 2n− 1 in this case.

5 Running time

The algorithm for transforming π in IdS is the concatenation of Algorithms 1, 4 and 5
above, and is called Algorithm BalancedSorting. In this section we briefly show that
BalancedSorting may be implemented in O(n log n).

The operations that need to be efficiently implemented, i.e. in O(log n) each, are
easily identified.
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• In Algorithm 1: successively computing the first, second etc. minimum of the initial
set S of pinnacles (lines 1 and 19), computing cutAπ for a given element and a
given pinnacle (lines 15 and 21), finding the leftmost pinnacle larger than a given
value and with index larger than a given value (lines 4 and 12), computing Nextπ(x)
for a given element x (lines 15 and 21), performing the reversal between two given
elements (lines 15 and 21).

• In addition, in Algorithm 4: computing the first, second etc. minimum of the set
of wished dells (line 2), computing cutDπ for a given element and a given pinnacle
(line 7), computing Predπ(x) for a given element x (lines 3, 4, 7), deciding whether
a given element is adjacent to a dell (lines 3 and 6).

• Algorithm 5 has no supplementary requirements.

These operations require to combine several efficient data structures that allow both
a rapid access to the information and an efficient update. In particular, performing
a reversal is a sensitive issue since it modifies the places of many elements, and - in the
precise case we study here - swaps ascending and descending sets of the reversed block. In
order to avoid recording all these changes one by one, the solutions proposed in literature
in order to perform a (not necessarily balanced) reversal use three types of approaches.
They are due to Kaplan and Verbin [8] (needs O(

√
n log n) time to perform a reversal

whose endpoints are known), Han [7] (needs O(
√
n) time for the same task) and Rusu

[10] (needs O(log n) time for the same task). The latter one, that we choose for efficiency
reasons, uses so-called log-lists. Log-lists may be assimilated, with a view to simplification,
to double-linked lists in which a collection of operations may be performed in O(log n).
The ones we are interested in here are: given (a pointer on) x, compute (the pointers
on) Predπ(x) and Nextπ(x); change the sign (positive or negative) of all the elements of
a sublist; perform a reversal (and update the structure).

The data structure we propose for the implementation of our algorithm combines
log-lists, binary search trees (BSTs, for short), arrays and pointers. The shape of the
permutation π is stored in a log-list L. For each pinnacle yi in the shape, two pointers
toA and toD go towards the roots of two BSTs. BST toA (respectively toD) contains
the elements in Aπ(vi, yi) (respectively in Dπ(yi, vi+1)) represented as pairs (πa, a). The
order between pairs is defined as the standard (increasing) order between their left values
(the elements). This implies that the pairs are also ordered according to the increasing
order of their right values (the indices) in toA, respectively according to the decreasing
order of their right values (the indices) in toD. Both of them, elements and indices, are
used by the algorithm. An array P of pointers contains, in this order, the pointers to
the pinnacles in L in increasing order of the pinnacles, followed by pointers to the wished
dells (the dells of IdS), in increasing order of the dells. The wished dells belong either to
L or to one of the 2p BSTs pointed by the pointers toA, toD of each pinnacle.

With this data structure, we have:

• All the operations except finding the leftmost pinnacle larger than a given value and
with index larger than a given value (lines 4 and 12 of Algorithm 1) take O(log n)
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time each. This is quite easy, given the abovementioned properties of a log-list and
those of a BST (searching a value in a BST, cutting a BST, merging two BSTs take
O(log n) time). It is important to notice that a reversal is performed on the shape
of the permutation (thus in the log-list L), but: 1) it cuts either toA or toD at each
endpoint of the reversed block (except when the endpoint is a pinnacle or a dell) and
recombines the resulting BSTs (also modifying the dells at the endpoints if needed)
once the reversal is performed, both in O(log n) time; 2) it swaps the roles of toA
and toD for each pinnacle situated strictly inside the reversed block, and thus each
reversal must be followed by a sign change (in O(log n) time) in the reversed block
of L (whose meaning is that when the value of the pinnacle is positive, toA and
toD correspond respectively to the ascending and descending sets neighboring the
pinnacle, whereas when the value is negative their roles are swapped).

• The operation of finding the leftmost pinnacle larger than a given value and with
index larger than a given value (lines 4 and 12 of Algorithm 1) cannot be imple-
mented in O(log n) time per operation. Instead, it may be shown that all these
operations (in lines 4 and 12 of Algorithm 1) may be implemented altogether in
O(n log n) time.

To this end, one has to remember that in Lemma 11 when Case 2 (tested in lines
4 and 12) is applied to yi, one finds a first index h > i such that v1 < yh. Then
we reverse the block with endpoints v1 and vh. Again as proved in Lemma 11,
the values hq computed similarly with h in the next executions of the while loop
(lines 9-17 in Algorithm 1) belong to the block of π situated between v1 and yh, and
become smaller at each execution. That means each reversal due to Case 2 reverses
a proper prefix of the block resulting after the latest reversal. Then it is sufficient to
perform in O(n log n) time a pre-treatment of the block of the (initial) permutation
π with endpoints v1 and yh (once h is known). This pre-treatment affects to each
dell vj with j < i a pointer to the leftmost pinnacle yh′ such that yh′ > vj and
i < h′ < h, and symmetrically affects to each dell vj with j > i a pointer to the
rightmost pinnacle yh′ such that yh′ > vj and h′ < i. By the previous considerations,
the reversals performed by the algorithm do not affect the meaning of the pointers
affected to the dells vq1 obtained during the execution of Case 2. These pointers,
computed independently from the data structure presented above, may be stored
as additional information in the cells representing the dells in the log-list. They
allow to find the pinnacles yqhq in O(1) time each, and thus the dells vh needed by
Algorithm 1 (line 13) in O(log n) time each.

6 Conclusion

We have shown in this paper that the Balanced Sorting problem has a solution using
at most 2n − min{p, 3} balanced reversals (when p > 1), for each permutation of n
elements. This is an upper bound, but many permutations may be sorted using less
balanced reversals. Then we can ask:
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Question 1. (Minimum Balanced Sorting) Given π ∈ Sn with pinnacle set S,
find the minimum number of balanced reversals needed to transform π into IdS.

A similar question may be asked when transforming a permutation π into a permuta-
tion π′ with the same pinnacle set:

Question 2. (Minimum Balanced Transformation) Given π, π′ ∈ Sn with the
same pinnacle set S, find the minimum number of balanced reversals needed to transform
π into π′.

This question is probably different from the previous one, since the left-invariance is
not ensured with respect to the canonical permutation. Indeed, examples exist where using
the canonical permutation as intermediate permutation in the transformation of π into π′

(therefore solving Minimum Balanced Sorting twice) does not allow to reach the min-
imum number of balanced reversals obtained when solving Minimum Balanced Trans-
formation. An example is given by π = (8 5 2 6 4 7 1 3 9) and π′ = (8 5 1 7 4 6 2 3 9), where
one balanced reversal of type (C2), namely ρ(2, 1), allows us to transform π into π′ without
using the canonical permutation as an intermediate permutation.

A related problem is raised by Example 6. Even when a set is admissible as the
pinnacle set of a permutation, the order of the pinnacles in the permutation is important,
since some orders may be impossible to respect. Identifying these orders could be a way
to better target the balanced reversals yielding a minimum sorting.

Question 3. Let S be an admissible pinnacle set. Give a characterization of the total
orders σ on S such that a permutation π ∈ Sn exists whose sequence of pinnacles read
from left to right is exactly σ.

Note that Davis et al. [5] study the number of permutations on n elements with a
given admissible set S, and give recursive formulas for it. This is a related question,
which involves however supplementary combinatorial aspects related to the elements not
belonging to S.
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