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Abstract

In this paper, we define the 1/k-Eulerian polynomials of type B. Properties of
these polynomials, including combinatorial interpretations, recurrence relations and
γ-positivity are studied. In particular, we show that the 1/k-Eulerian polynomials
of type B are γ-positive when k > 0. Moreover, we define the 1/k-derangement
polynomials of type B, denoted dBn (x; k). We show that the polynomials dBn (x; k)
are bi-γ-positive when k > 1/2. In particular, we get a symmetric decomposition of
the polynomials dBn (x; 1/2) in terms of the classical derangement polynomials.

Mathematics Subject Classifications: 05A05, 05A15

1 Introduction

Throughout this paper, we always let k be a fixed positive number. Following Savage and
Viswanathan [23], the 1/k-Eulerian polynomials A

(k)
n (x) are defined by

∞∑
n=0

A(k)
n (x)

zn

n!
=

(
1− x

ekz(x−1) − x

) 1
k

. (1)
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When k = 1, the polynomial A
(k)
n (x) reduces to the classical Eulerian polynomial An(x).

Savage and Viswanathan [23] showed that

A(k)
n (x) =

∑
e∈In,k

xasc (e),

where In,k = {e | 0 6 ei 6 (i− 1)k} is the set of n-dimensional k-inversion sequences
with e = (e1, e2, . . . , en) ∈ Zn and

asc (e) = #

{
i : 1 6 i 6 n− 1

∣∣ ei
(i− 1)k + 1

<
ei+1

ik + 1

}
.

In the following, we first recall the other combinatorial interpretations of A
(k)
n (x), and

then we define the 1/k-Eulerian polynomials of type B as well as the 1/k-derangement
polynomials of type B.

Let Sn denote the symmetric group of all permutations of [n] = {1, 2, . . . , n} and
let π = π(1)π(2) · · · π(n) ∈ Sn. A descent (resp. ascent, excedance) of π is an index
i ∈ [n − 1] such that π(i) > π(i + 1) (resp. π(i) < π(i + 1), π(i) > i). Let des (π)
(resp. asc (π), exc (π)) denote the number of descents (resp. ascents, excedances) of π. It
is well known that the statistics des (π), asc (π) and exc (π) are equidistributed over Sn,
and their common enumerative polynomial is the Eulerian polynomial An(x), i.e.,

An(x) =
∑
π∈Sn

xdes (π) =
∑
π∈Sn

xasc (π) =
∑
π∈Sn

xexc (π).

In [13], Foata and Schützenberger introduced a q-analog of An(x) defined by

An(x, q) =
∑
π∈Sn

xexc (π)qcyc (π),

where cyc (π) is the number of cycles of π. Brenti [6] showed that some crucial properties
of Eulerian polynomials have nice q-analogues for the polynomials An(x, q). According
to [6, Proposition 7.3], we have

∞∑
n=0

An(x, q)
zn

n!
=

(
1− x

ez(x−1) − x

)q
.

By comparing this with (1), one can immediately get that

A(k)
n (x) = knAn(x, 1/k) =

∑
π∈Sn

xexc (π)kn−cyc (π).

A left-to-right minimum in π is an index i such that π(i) < π(j) for any j < i or i = 1.
Let lrmin (π) denote the number of left-to-right minima of π. By using the fundamental
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transformation of Foata and Schützenberger [13], the pairs of statistics (exc , cyc ) and
(asc , lrmin ) are equidistributed over Sn. Thus∑

e∈In,k

xasc (e) =
∑
π∈Sn

xasc (π)kn−lrmin (π). (2)

A bijective proof of (2) was recently given in [7]. According to [18, Theorem 2], the 1/k-

Eulerian polynomial A
(k)
n (x) is also the longest ascent plateau polynomial of k-Stirling

permutations of order n.
Let f(x) =

∑n
i=0 fix

i be a symmetric polynomial, i.e., fi = fn−i for any 0 6 i 6 n.

Then f(x) can be expanded uniquely as f(x) =
∑bn

2
c

k=0 γkx
k(1 +x)n−2k, and it is said to be

γ-positive if γk > 0 for 0 6 k 6 bn
2
c (see [15, 16]). The γ-positivity of f(x) implies uni-

modality of f(x). We refer the reader to Athanasiadis’s survey article [1] for details. The
γ-positivity of Eulerian polynomials was first obtained by Foata and Schützenberger [13].
Subsequently, Foata and Strehl [14] proved the γ-positivity of Eulerian polynomials by
using a group action. Using the theory of enriched P -partitions, Stembridge [28, Remark
4.8] showed that

An(x) =
1

2n−1

b(n−1)/2c∑
i=0

4iP (n, i)xi(1 + x)n−1−2i,

where P (n, i) is the number of permutations in Sn with i interior peaks, i.e., the indices
i ∈ {2, . . . , n− 1} such that π(i− 1) < π(i) > π(i+ 1). It should be noted that if k 6= 1,

then the polynomial A
(k)
n (x) is not symmetric, and so it is not γ-positive.

A permutation π ∈ Sn is a derangement if it has no fixed points, i.e., π(i) 6= i for all
i ∈ [n]. Let Dn be the set of derangements in Sn, and let dn(x) =

∑
π∈Dn

xexc (π) be the
derangement polynomials. It is well known that the generating function of dn(x) is given
as follows (see [4, Proposition 6]):

d(x, z) =
∑
n>0

dn(x)
zn

n!
=

1− x
exz − xez

. (3)

Using continued fractions, Shin and Zeng [24, Theorem 11] obtained the following result.

Theorem 1. For n > 2, we have

∑
π∈Dn

xexc (π)qcyc (π) =

bn/2c∑
i=1

cn,k(q)x
k(1 + x)n−2k,

where cn,k(q) =
∑

π∈Dn(k) q
cyc (π) and Dn(k) is the subset of derangements in Dn with

exactly k cyclic valleys and without cyclic double descents.

Let ±[n] = [n]∪{−1, . . . ,−n}. Let Bn be the hyperoctahedral group of rank n and let
w = w(1)w(2) · · ·w(n) ∈ Bn. Elements of Bn are permutations of ±[n] with the property
that w(−i) = −w(i) for all i ∈ [n]. Let

des B(w) = #{i ∈ {0, 1, . . . , n− 1} | w(i) > w(i+ 1)},
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where w(0) = 0. As usual, we denote by i the negative element −i. We say that i ∈ [n] is
a weak excedance of w if w(i) = i or w(|w(i)|) > w(i) (see [5, p. 431]). An excedance of w is
an index i ∈ [n] such that w(|w(i)|) > w(i). A fixed point (resp. singleton) of w is an index
i ∈ [n] such that w(i) = i (resp. w(i) = i). Let wexc (w) (resp. exc (w), fix (w), single (π))
denote the number of weak excedances (resp. excedances, fixed points, singletons) of w.
By definition, we have wexc (w) = exc (w) + fix (w). According to [5, Theorem 3.15], the
statistics des B(w) and wexc (w) have the same distribution over Bn, and their common
enumerative polynomial is the Eulerian polynomial of type B:

Bn(x) =
∑
w∈Bn

xdes B(w) =
∑
w∈Bn

xwexc (w).

A left peak of π ∈ Sn is an index i ∈ [n−1] such that π(i−1) < π(i) > π(i+1), where
we take π(0) = 0. Let lpk (π) be the number of left peaks in π. Let Q(n, i) be the number
of permutations in Sn with i left peaks. By using the theory of enriched P -partitions,
Petersen [21, Proposition 4.15] obtained the following result.

Theorem 2. We have Bn(x) =
∑bn/2c

i=0 4iQ(n, i)xi(1 + x)n−2i.

In recent years, various refinements of Theorem 2 have been studied by several authors,
see [16, 25, 29] and references therein.

For w ∈ Bn, we say that w is a type B derangement if fix (w) = 0. Let DBn be the set
of all type B derangements in Bn. Clearly, wexc (w) = exc (w) for w ∈ DBn . The type B
derangement polynomials dBn (x) are defined by

dBn (x) =
∑
π∈DB

n

xexc (π),

which have been studied by Chen et al. [9] in a slightly different form. According to [11,
Theorem 3.2], the generating function of dBn (x) is given as follows:

∞∑
n=0

dBn (x)
zn

n!
=

(1− x)ez

e2xz − xe2z
. (4)

Combining (3) and (4), we obtain dBn (x) =
∑n

i=0

(
n
i

)
2idi(x).

The type B 1/k-Eulerian polynomials B
(k)
n (x) and the type B 1/k-derangement poly-

nomials dBn (x; k) are defined by using the following generating functions:

∞∑
n=0

B(k)
n (x)

zn

n!
=

(
(1− x)ekz(1−x)

1− xe2kz(1−x)

) 1
k

, (5)

∞∑
n=0

dBn (x; k)
zn

n!
=

(
(1− x)ekz

e2kxz − xe2kz

) 1
k

. (6)
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In particular, B
(1)
n (x) = Bn(x) and dBn (x; 1) = dBn (x). Comparing (5) with (6), we have

B(k)
n (x) =

n∑
i=0

(
n

i

)
dBi (x; k)xn−i.

This paper is organized as follows. In the next section, we present the main results.
In particular, we show that the type B 1/k-Eulerian polynomials B

(k)
n (x) are γ-positive

when k is positive and the type B 1/k-derangement polynomials dBn (x; k) are bi-γ-positive
when k > 1/2. In Sections 3 and 4, we respectively prove Theorem 4 and Theorem 9.

2 Main results

2.1 The 1/k-Eulerian polynomials of type B

An element is a left-to-right maximum of π ∈ Sn if it is larger than or equal to all
the elements to its left. We always assume that π(1) is a left-to-right maximum. Let
lrmax (π) be the number of left-to-right maxima of π. We can write π ∈ Sn in standard
cycle decomposition, where each cycle is written with its largest entry first and the cycles
are written in increasing order of their largest entry. A cycle peak of π is an index i such
that π−1(i) < i > π(i). Let cpk (π) be the number of cycle peaks of π. By using the
fundamental transformation of Foata and Schützenberger [13], it is easy to verify that∑

π∈Sn

xcpk (π)ycyc (π) =
∑
π∈Sn

xlpk (π)ylrmax (π).

In the following discussion, we always write w ∈ Bn by using its standard cycle de-
composition, in which each cycle is written with its largest entry last and the cycles are
written in ascending order of their last entry. It should be noted that the n letters ap-
pearing in the cycle notation of w ∈ Bn are the letters w(1), w(2), . . . , w(n). Let cyc (w)
be the number of cycles of w.

Example 3. The signed permutation w = 351724689 can be written as

(9)(3, 1)(2, 5)(4, 7, 6)(8).

Moreover, w has only one singleton 9, one fixed point 8, cyc (w) = 5 and exc (w) = 3.

We can now present the first main result of this paper.

Theorem 4. (i) For n > 1, we have

B(k)
n (x) =

∑
w∈Bn

xwexc (w)kn−cyc (w),

and the polynomials B
(k)
n (x) satisfy the recurrence relation

B
(k)
n+1(x) = (1 + x+ 2knx)B(k)

n (x) + 2kx(1− x)
d

dx
B(k)
n (x), (7)
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with the initial conditions B
(k)
0 (x) = 1 and B

(k)
1 (x) = 1 + x;

(ii) When k > 0, the polynomial B
(k)
n (x) is γ-positive. More precisely, we have

B(k)
n (x) =

bn/2c∑
i=0

(
n−1∑
j=i

bn,i,jk
j4i

)
xi(1 + x)n−2i, (8)

where the numbers bn,i,j satisfy the recurrence relation

bn+1,i,j = bn,i,j + 2ibn,i,j−1 + (n− 2i+ 2)bn,i−1,j−1, (9)

with b1,0,0 = 1 and b1,i,j = 0 for (i, j) 6= (0, 0);
(iii) For n > 1, we define

bn(x, q) =

bn/2c∑
i=0

n−1∑
j=i

bn,i,jx
iqj.

Set b0(x, q) = 1. Then the generating function of bn(x, q) is given as follows:

b(x, q, z) =
∞∑
n=0

bn(x, q)
zn

n!
=

( √
1− x√

1− x cosh(qz
√

1− x)− sinh(qz
√

1− x)

) 1
q

;

(iv) For n > 1, we have

bn(x, q) =
∑
π∈Sn

xcpk (π)qn−cyc (π); (10)

(v) For n > 1, we have

B
(k)
n+1(x) = (1 + x)B(k)

n (x) + x
n−1∑
i=0

(
n

i

)
2n+1−ikn−iB

(k)
i (x)An−i(x). (11)

When q = 1, the generating function b(x, q, z) reduces to the the generating function

of the polynomials
∑bn/2c

i=0 Q(n, i)xi, which is due to Gessel [26, A008971]. Thus the
polynomial bn(x, q) can be called the 1/q-left peak polynomial. From the explicit formula
of b(x, q, z), it is routine to verify the following result.

Corollary 5. For n > 1, we have∑
π∈Sn

xcpk (π)(−1)n−cyc (π) = (1− x)bn/2c.

Let

T (n, i) =
n!

i!(n− 2i)!2i

be the Bessel number, which is the number of involutions of [n] with i pairs. In other
words, the number T (n, i) counts involutions of [n] with n− i cycles. Note that

bn,i,i = #{π ∈ Sn : cpk (π) = i, cyc (π) = n− i}.

So the following corollary is immediate.
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Corollary 6. For 0 6 i 6 bn/2c, we have bn,i,i = T (n, i).

It follows from (9) that

bn+1,i,n = 2ibn,i,n−1 + (n− 2i+ 2)bn,i−1,n−1. (12)

Let π ∈ Sn+1 with cpk (π) = i + 1 and cyc (π) = 1. We write π in standard cycle
decomposition. If π′ is obtained from π by deleting its parentheses and the element n+ 1,
then π′ is a permutation in Sn with i interior peaks. So we get the following corollary.

Corollary 7. For 0 6 i 6 b(n − 1)/2c, the number bn+1,i+1,n equals the number of
permutations in Sn with i interior peaks.

2.2 The 1/k-derangement polynomials of type B

Let p(x) =
∑d

i=0 pix
i. There is a unique decomposition: p(x) = a(x) + xb(x), where

a(x) =
p(x)− xd+1p(1/x)

1− x
, b(x) =

xdp(1/x)− p(x)

1− x
. (13)

It is clear that a(x) and b(x) are symmetric polynomials satisfying a(x) = xda( 1
x
) and

b(x) = xd−1b( 1
x
). We call the ordered pair of polynomials (a(x), b(x)) the symmetric

decomposition of p(x) (see [2]).

Definition 8. Let (a(x), b(x)) be the symmetric decomposition of p(x). If a(x) and b(x)
are both γ-positive, then we say that p(x) is bi-γ-positive.

We say that p(x) is alternatingly increasing if

p0 6 pd 6 p1 6 pd−1 6 · · · 6 pb d+1
2
c.

As pointed out by Brändén and Solus [3], the polynomial p(x) is alternatingly increasing
if and only if the pair of polynomials in its symmetric decomposition are both unimodal
and have nonnegative coefficients. Thus the bi-γ-positivity of p(x) implies that p(x) is
alternatingly increasing.

We now present a counterpart of Theorem 1.

Theorem 9. For n > 1, we have

dBn (x; k) =
∑
π∈DB

n

xexc (π)kn−cyc (π). (14)

When k > 1/2, the polynomials dBn (x; k) are bi-γ-positive. More precisely, we have

dBn (x; k) =

b(n−1)/2c∑
j=0

p(n, j; k)xj(1 + x)n−1−2j +

bn/2c∑
j=0

q(n, j; k)xj(1 + x)n−2j, (15)

the electronic journal of combinatorics 27(3) (2020), #P3.27 7



where the numbers p(n, j; k) and q(n, j; k) satisfy the following recurrence system:

p(n+ 1, j; k) = (1 + 2kj)p(n, j; k) + 4k(n− 2j + 1)p(n, j − 1; k)+

2knp(n− 1, j − 1; k) + q(n, j; k),

q(n+ 1, j; k) = 2kjq(n, j; k) + 4k(n− 2j + 2)q(n, j − 1; k) + 2knq(n− 1, j − 1; k)+

(2k − 1)p(n, j − 1; k),

with the initial conditions q(0, 0; k) = 1, q(0, j; k) = 0 for j 6= 0, p(0, j; k) = 0 for any j.

For n > 1, we define

Pn(x; k) =

b(n−1)/2c∑
j=0

p(n, j; k)xj(1 + x)n−1−2j,

Qn(x; k) =

bn/2c∑
j=0

q(n, j; k)xj(1 + x)n−2j.

The first few Pn(x; k) and Qn(x; k) are given as follows:

P1(x; k) = 1, P2(x; k) = 1 + x, P3(x; k) = 1 + (1 + 12k)x+ x2,

Q1(x; k) = 0, Q2(x; k) = (4k − 1)x, Q3(x; k) = (8k2 − 1)x(1 + x).

Corollary 10. The polynomials Pn(x; k) and Qn(x; k) satisfy the recurrence system

Pn+1(x; k) = (1 + (2kn− 2k + 1)x)Pn(x; k) + 2kx(1− x)P ′n(x; k)+

2knxPn−1(x; k) +Qn(x; k),

Qn+1(x; k) = 2knxQn(x; k) + 2kx(1− x)Q′n(x; k) + 2knxQn−1(x; k)+

(2k − 1)xPn(x; k),

with the initial conditions P0(x; k) = 0, P1(x; k) = 1, Q0(x; k) = 1 and Q1(x; k) = 0.

Proof. For n > 1, we define

pn(x) =

b(n−1)/2c∑
j=0

p(n, j; k)xj, qn(x) =

bn/2c∑
j=0

q(n, j; k)xj.

Multiplying both sides of the recurrence system of the numbers p(n, j; k) and q(n, j; k)
by xj and summing over all j, we get the following recurrence system:

pn+1(x) = (1 + 4k(n− 1)x)pn(x) + 2kx(1− 4x)p′n(x) + 2knxpn−1(x) + qn(x),

qn+1(x) = 4knxqn(x) + 2kx(1− 4x)q′n(x) + 2knxqn−1(x) + (2k − 1)xpn(x),
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with the initial conditions p0(x) = 0, p1(x) = 1, p2(x) = 1, q0(x) = 1, q1(x) = 0 and
q2(x) = (4k − 1)x. For n > 1, we have

Pn(x; k) = (1 + x)n−1pn

(
x

(1 + x)2

)
,

Qn(x; k) = (1 + x)nqn

(
x

(1 + x)2

)
.

Substituting x → x/(1 + x)2 into the recurrence system of the polynomials pn(x) and
qn(x) and simplifying some terms leads to the desired result.

A succession of π ∈ Sn is an index i such that π(i+ 1) = π(i) + 1, where i ∈ [n− 1].
Let Ss

n denote the set of permutations in Sn with no successions. We can now give the
following result.

Theorem 11. For n > 1, we have

dBn (x; 1/2) =
1

x
dn+1(x) + dn(x),

where dn(x) is the derangement polynomial. Moreover, we have

dBn (x; 1/2) =
∑

π∈Ss
n+1

xasc (π). (16)

Proof. Let Pn(x) = Pn(x; 1/2) and Qn(x) = Qn(x; 1/2). It follows from Theorem 9 that
dBn (x; 1/2) = Pn(x) + Qn(x). By using Corollary 10, we see that the polynomials Pn(x)
and Qn(x) satisfy the following recurrence system:

Pn+1(x) = (1 + nx)Pn(x) + x(1− x)P ′n(x) + nxPn−1(x) +Qn(x),

Qn+1(x) = nxQn(x) + x(1− x)Q′n(x) + nxQn−1(x),

with the initial conditions P0(x) = 0, P1(x) = 1, Q0(x) = 1 and Q1(x) = 0. According
to [17, Eq. (3.2)], the polynomials Qn(x) satisfy the same recurrence relation and initial
conditions as dn(x), so they agree. We now prove that

Pn(x) =
1

x
dn+1(x).

Clearly, it holds for n = 0, 1, 2. Assume it holds for n. Then we get

Pn+1(x) =
1 + nx

x
dn+1(x) +

x(1− x)

x2
(xd′n+1(x)− dn+1(x)) +

nx

x
dn(x) + dn(x)

= (n+ 1)dn+1(x) + (1− x)d′n+1(x) + (n+ 1)dn(x)

=
1

x
dn+2(x),

as desired. The combinatorial interpretation (16) follows immediately from [22, Eq. (3.8)].
This completes the proof.
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Let
Sn(x) =

∑
π∈Ss

n+1

xasc (π).

Combining (6) and (16), we obtain

∞∑
n=0

Sn(x)
zn

n!
= ez

(
1− x

exz − xez

)2

. (17)

Combining (1), (3), (4) and (17), we get the following result.

Theorem 12. For n > 0, we have

Sn(x) =
1

2n

n∑
i=0

(
n

i

)
dBi (x)dBn−i(x),

Sn(x) =
n∑
i=0

(
n

i

)
Ai(x)dn−i(x).

3 Proof of Theorem 4

In this section we complete the proof of Theorem 4 by using the theory of context-free
grammars. For an alphabet V , let Q[[V ]] be the rational commutative ring of formal
power series in monomials formed from letters in V . A context-free grammar over V is a
function G : V → Q[[V ]] that replaces a letter in V by an element of Q[[V ]] (see [8, 12]).
The formal derivative DG is a linear operator defined with respect to a grammar G. In
other words, DG is the unique derivation satisfying DG(x) = G(x) for x ∈ V , and for any
two formal functions u and v, we have

DG(u+ v) = DG(u) +DG(v), DG(uv) = DG(u)v + uDG(v).

For a constant c, we have DG(c) = 0. It follows from Leibniz’s rule that

Dn
G(uv) =

n∑
k=0

(
n

k

)
Dk
G(u)Dn−k

G (v). (18)

For example, if G = {x→ xy, y → y}, then

DG(x) = xy, DG(y) = y, D2
G(x) = DG(xy) = xy2 + xy.

A grammatical labeling is an assignment of the underlying elements of a combinatorial
structure with variables, which is consistent with the substitution rules of a grammar
(see [10]). Following [20, Definition 1], a change of grammars is a substitution method in
which the original grammars are replaced with functions of other grammars.

In the following discussion, we always write w ∈ Bn by its standard cycle decom-
position. For w ∈ Bn, we say that i ∈ [n] is an anti-excedance of w if w(i) = i or
w(i) > w(|w(i)|). Let aexc (w) be the number of anti-excedances of w. It is clear that
wexc (w) + aexc (w) = n for w ∈ Bn. The following lemma is fundamental.
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Lemma 13. Let G = {I → I(x+ y), x→ 2kxy, y → 2kxy}. We have

Dn
G(I) = I

∑
w∈Bn

xwexc (w)yaexc (w)kn−cyc (w). (19)

Proof. We first introduce a grammatical labeling of w ∈ Bn as follows:

(L1) If w(i) = i, then put a superscript label x right after i, i.e., (ix);

(L2) If w(i) = i, then put a superscript label y right after i, i.e., (i
y
);

(L3) If w(i) < w(|w(i)|), then put a superscript label x right after w(i);

(L4) If w(i) > w(|w(i)|), then put a superscript label y right after w(i);

(L5) Put a subscript label k just before every element of w except the first element in
each cycle;

(L6) Put a subscript label I right after w.

The weight of w is the product of its labels. Note that the weight of w is given by

Ixwexc (w)yaexc (w)kn−cyc (w).

Every permutation in Bn can be obtained from a permutation in Bn−1 by inserting n or
n. For n = 1, we have B1 = {(1x)I , (1

y
)I}. Note that D(I) = I(x + y). Then the sum

of weights of the elements in B1 is given by D(I). Hence the result holds for n = 1. We
proceed by induction on n. Suppose that we get all labeled permutations in w ∈ Bn−1,
where n > 2. Let w̃ be obtained from w ∈ Bn−1 by inserting n or n. When the inserted
n or n forms a new cycle, the insertion corresponds to the substitution rule I → I(x+ y).
Recall that each cycle of a signed permutation is written with its largest entry last and
the cycles are written in ascending order of their last entry. Now we insert n or n right
after w(i). If i is a weak excedance of w, then the changes of labeling are illustrated as
follows:

· · · (ix) · · · 7→ · · · (ixkny); · · · (ix) · · · 7→ · · · (nxkiy) · · · ;

· · · (· · ·w(i)xkw(|w(i)|) · · · ) · · · 7→ · · · (w(|w(i)|)k · · ·w(i)xkn
y);

· · · (· · ·w(i)xkw(|w(i)|) · · · ) · · · 7→ · · · (· · ·w(i)ykn
x
kw(|w(i)|) · · · ) · · · ;

If i is an anti-excedance of w, then the changes of labeling are illustrated as follows:

· · · (iy) · · · 7→ · · · (ixkny); · · · (i
y
) · · · 7→ · · · (nxki

y
) · · · ;

· · · (· · ·w(i)ykw(|w(i)|) · · · ) · · · 7→ · · · (w(|w(i)|)k · · ·w(i)xkn
y);

· · · (· · ·w(i)ykw(|w(i)|) · · · ) · · · 7→ · · · (· · ·w(i)ykn
x
kw(|w(i)|) · · · ) · · · ;

In each case, the insertion of n or n corresponds to one substitution rule in G. By
induction, it is routine to check that the action of DG on elements of Bn−1 generates all
elements of Bn. This completes the proof.
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Let
Fn(x, y; k) =

∑
w∈Bn

xwexc (w)yaexc (w)kn−cyc (w).

Lemma 14. We have

F (x, y, z; k) =
∞∑
n=0

Fn(x, y; k)
zn

n!
=

(
(y − x)ekz(y−x)

y − xe2kz(y−x)

) 1
k

.

Proof. From Lemma 13, we obtain Dn
G(I) = IFn(x, y; k). By using

Dn+1
G (I) = DG(IFn(x, y; k)),

we get that the polynomials Fn(x, y; k) satisfy the following recurrence relation

Fn+1(x, y; k) = (x+ y)Fn(x, y; k) + 2kxy

(
∂

∂x
+

∂

∂y

)
Fn(x, y; k), (20)

with the initial conditions F0(x, y; k) = 1 and F1(x, y; k) = x + y. By rewriting (20) in
terms of the generating function F := F (x, y, z; k), we have

∂

∂z
F = (x+ y)F + 2kxy

(
∂

∂x
+

∂

∂y

)
F. (21)

It is routine to check that the generating function

F̃ := F̃ (x, y, z; k) =

(
(y − x)ekz(y−x)

y − xe2kz(y−x)

) 1
k

satisfies (21). Also, this generating function gives F̃ (x, y, 0; k) = 1. Hence F = F̃ .

Proof of Theorem 4. We divide our proof into five parts.
(i) Comparing (5) with Lemma 14, we obtain

Fn(x, y; k) = ynB(k)
n

(
x

y

)
. (22)

Therefore,

B(k)
n (x) =

∑
w∈Bn

xwexc (w)kn−cyc (w).

Combining (20) and (22), it is routine to verify (7).
(ii) We now consider a change of the grammar G given in Lemma 13. Setting u = x+y

and v = xy, we get DG(I) = Iu, DG(u) = 4kv and DG(v) = 2kuv. We define

G1 = {I → Iu, u→ 4kv, v → 2kuv}. (23)
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Note that DG1(I) = Iu, D2
G1

(I) = I(u2 + 4kv), D3
G1

(I) = I(u3 + (12k + 8k2)uv) and
D4
G1

(I) = I(u4 + (24k + 32k2 + 16k3)u2v + (48k2 + 32k3)v2). By induction, it is routine
to verify that there exist nonnegative integers bn,i,j such that

Dn
G1

(I) = I

bn/2c∑
i=0

n−1∑
j=i

bn,i,jk
j4iviun−2i. (24)

It should be noted that bn,i,j = 0 if i and j are outside the bounds given in (24). Note
that

Dn+1
G1

(I) = DG1

I bn/2c∑
i=0

n−1∑
j=i

bn,i,jk
j4iviun−2i


=
∑
i,j

bn,i,jk
j4ivi

(
un−2i+1 + 2kiun−2i+1 + 4k(n− 2i)vun−2i−1

)
.

Equating the coefficients of kj4iviun+1−2i in both sides of the above expression, we get
the recurrence relation (9). Since DG1(I) = Iu, we see that b1,0,0 = 1 and b1,i,j = 0 if
(i, j) 6= (0, 0). Taking u = x+ y, v = xy in (24) and then setting y = 1, we get (8).

(iii) Multiplying both sides of (9) by xiqj and summing over all i and j, we obtain

bn+1(x, q) = (1 + nqx)bn(x, q) + 2qx(1− x)
∂

∂x
bn(x, q). (25)

In particular, b1(x, q) = 1 and b2(x, q) = 1 + qx. Set b = b(x, q, z). By rewriting (25) in
terms of b, we have

(1− qxz)
∂b

∂z
= b+ 2qx(1− x)

∂b

∂x
. (26)

It is routine to verify that

b̃(x, q, z) =

( √
1− x√

1− x cosh(qz
√

1− x)− sinh(qz
√

1− x)

) 1
q

satisfies (26). Also, this generating function gives b̃(x, q, 0) = 1 and b̃(0, q, z) = ez. Hence

b̃(x, q, z) = b(x, q, z).
(iv) Assume that (10) holds for n. Let π ∈ Sn, and let πi be an element of Sn+1

obtained from π by inserting the entry n + 1 right after i if i ∈ [n] or as a new cycle
(n+ 1) if i = n+ 1. It is clear that

cyc (πi) =

{
cyc (π), if i ∈ [n];
cyc (π) + 1, if i = n+ 1.
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Therefore, we have

bn+1(x, q)

=
n+1∑
i=1

∑
π∈Sn

xcpk (πi)qn+1−cyc (πi)

=
∑
π∈Sn

xcpk (π)qn−cyc (π) +
n∑
i=1

∑
π∈Sn

xcpk (πi)qn+1−cyc (π)

= bn(x, q) +
∑
π∈Sn

(
2cpk (π)xcpk (π) + (n− 2cpk (π))xcpk (π)+1

)
qn+1−cyc (π)

= bn(x, q) + nqxbn(x, q) + 2q(1− x)
∑
π∈Sn

cpk (π)xcpk (π)qn−cyc (π),

and (25) follows. Thus (10) holds for n+ 1.
(v) Let G be the grammar given in Lemma 13. It follows from (19) that

Dn
G(I) = I

∑
w∈Bn

xwexc (w)yn−wexc (w)kn−cyc (w).

Setting y = 1, we get Dn
G(I)|y=1 = IB

(k)
n (x). Dumont [12] discovered that if

G2 = {x→ xy, y → xy},

then we have

Dn
G2

(x) = x
∑
π∈Sn

xexc (π)yn−exc (π) = xynAn

(
x

y

)
. (27)

By using (27), it is easy to verify that for n > 1, we have

Dn
G(x+ y) = 2n+1knx

∑
π∈Sn

xexc (π)yn−exc (π) = 2n+1knxynAn

(
x

y

)
.

It follows from Leibniz’s rule (18) that for n > 1, we have

Dn+1
G (I) =

n∑
i=0

(
n

i

)
Di
G(I)Dn−i

G (x+ y)

= (x+ y)Dn
G(I) +

n−1∑
i=0

(
n

i

)
Di
G(I)Dn−i

G (x+ y).

Setting y = 1 in both sides of the above expression, we immediately get (11).
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4 Proof of Theorem 9

In this section we complete the proof of Theorem 9. A grammatical interpretation of the
polynomial dBn (x) was given by [19, Theorem 11]. We now give a refinement of Lemma 13.

Lemma 15. If G4 = {I → I(y + u), x→ 2kxy, y → 2kxy, u→ 2kxy}, then

Dn
G4

(I) = I
∑
w∈Bn

xexc (w)yaexc (w)ufix (w)kn−cyc (w). (28)

Proof. We now introduce a grammatical labeling of w ∈ Bn as follows:

(L1) If w(i) < w(|w(i)|), then put a superscript label x right after w(i);

(L2) If w(i) > w(|w(i)|) or w(i) = i, then put a superscript label y right after w(i);

(L3) If w(i) = i, then put a superscript label u right after w(i), i.e., (iu);

(L4) Put a subscript label I right after w;

(L5) Put a subscript label k just before every element of w except the first element in
each cycle.

Then the weight of w is given by

Ixexc (w)yaexc (w)ufix (w)kn−cyc (w).

For n = 1, we have B1 = {(1u)I , (1
y
)I}. Note that DG4(I) = I(y + u). Thus the sum of

weights of the elements in B1 is given by DG4(I). Hence the result holds for n = 1. We
proceed by induction on n. Suppose that we get all labeled permutations in Bn−1, where
n > 2. Let w̃ be obtained from w ∈ Bn−1 by inserting n or n. When the inserted n or n
forms a new cycle, the insertion corresponds to the substitution rule I → I(y+ u). If i is
a weak excedance of w, then the changes of labeling are illustrated as follows:

· · · (iu) · · · 7→ · · · (ixkny); · · · (iu) · · · 7→ · · · (nxkiy) · · · ;

· · · (· · ·w(i)xkw(|w(i)|) · · · ) · · · 7→ · · · (w(|w(i)|)k · · ·w(i)xkn
y);

· · · (· · ·w(i)xkw(|w(i)|) · · · ) · · · 7→ · · · (· · ·w(i)ykn
x
kw(|w(i)|) · · · ) · · · ;

If i is an anti-excedance of w, then the changes of labeling are illustrated as follows:

· · · (iy) · · · 7→ · · · (ixkny); · · · (i
y
) · · · 7→ · · · (nxki

y
) · · · ;

· · · (· · ·w(i)ykw(|w(i)|) · · · ) · · · 7→ · · · (w(|w(i)|)k · · ·w(i)xkn
y);

· · · (· · ·w(i)ykw(|w(i)|) · · · ) · · · 7→ · · · (· · ·w(i)ykn
x
kw(|w(i)|) · · · ) · · · .

In each case, the insertion of n or n corresponds to one substitution rule in G4. By
induction, it is routine to check that the action of DG4 on elements of Bn−1 generates all
elements of Bn. This completes the proof.
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We define
Hn(x, y, u; k) =

∑
w∈Bn

xexc (w)yaexc (w)ufix (w)kn−cyc (w),

H := H(x, y, u, z; k) =
∞∑
n=0

Hn(x, y, u; k)
zn

n!
.

Lemma 16. We have

H(x, y, u, z; k) =

(
(y − x)ekz(y+u−2x)

y − xe2kz(y−x)

) 1
k

. (29)

Proof. Since Dn+1
G4

(I) = DG4(IHn(x, y, u; k)), it follows that

Dn+1
G4

(I) = I(y + u)Hn(x, y, u; k) + 2kxyI

(
∂

∂x
+

∂

∂y
+

∂

∂u

)
Hn(x, y, u; k).

Thus Hn+1(x, y, u; k) = (y + u)Hn(x, y, u; k) + 2kxy
(
∂
∂x

+ ∂
∂y

+ ∂
∂u

)
Hn(x, y, u; k). By

rewriting this recurrence relation in terms of the generating function H, we have

∂

∂z
H = (y + u)H + 2kxy

(
∂

∂x
+

∂

∂y
+

∂

∂u

)
H. (30)

It is routine to check that the generating function

H̃(x, y, u, z; k) =

(
(y − x)ekz(y+u−2x)

y − xe2kz(y−x)

) 1
k

satisfies (30). Note that H̃(x, y, u, 0; k) = 1, H̃(0, y, u, z; k) = eu+y and H̃(x, 0, u, z; k) =

euz. Hence H̃(x, y, u, z; k) = H(x, y, u, z; k).

Let w ∈ Bn with exactly one fixed point. Suppose that cyc (w) = k and w(`) = `, i.e.,
` is the fixed point of w. Then the standard form of w can be written as w = C1C2 · · ·Ck,
where Ci = (ci1, · · · , cij), 1 6 i 6 k and 1 6 j 6 n. The reduction of w is defined by

red (w) = red (C1)red (C2) · · · red (Ck).

If Ci = (`), then red (Ci) = ∅, i.e., we delete the fixed point of w. If #Ci > 2, then let
red (Ci) = (c̃i1, · · · , c̃ij). For 1 6 s 6 j, the elements c̃is are defined as follows:

• If |cis| < `, then c̃is = cis;

• If cis > `, then c̃is = cis − 1;

• If cis < 0 and |cis| > `, then c̃is = cis + 1.

It should be noted that red (w) ∈ Bn−1 with no fixed points and the reduction map of w
does not change the numbers of excedances and anti-excedances of w.
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Proof of Theorem 9. Comparing (6) with (29), we immediately get (14). In the following,
we shall prove (15). We first consider a change of the grammar given in Lemma 15. Note
that DG4(I) = Iy + Iu and

DG4(Iy) = I(y2 + yu+ 2kxy) = Iy(x+ y) + Iyu+ (2k − 1)Ixy.

Setting a = xy, b = x+ y and c = Iy, we get DG4(a) = 2kab,DG4(b) = 4ka,

DG4(I) = c+ uI,DG4(c) = (b+ u)c+ (2k − 1)aI,DG4(u) = 2ka.

Consider the grammar

G5 = {I → c+ uI, c→ (b+ u)c+ (2k − 1)aI, u→ 2ka, a→ 2kab, b→ 4ka}.

Note that DG5(I) = c+ Iu and D2
G5

(I) = (b+ 2u)c+ (u2 + (4k − 1)a)I. By induction, it
is routine to verify that there exist nonnegative integers p(n, i, j; k) and q(n, i, j; k) such
that

Dn
G5

(I) =
n∑
i=0

ui

bn−1−i
2
c∑

j=0

p(n, i, j; k)ajbn−1−i−2jc+

bn−i
2
c∑

j=0

q(n, i, j; k)ajbn−i−2jI

 . (31)

Combining (31) and Lemma 15, we immediately obtain∑
w∈Bn

xexc (w)yaexc (w)ufix (w)kn−cyc (w)

=
n∑
i=0

ui
bn−1−i

2
c∑

j=0

p(n, i, j; k)(xy)j(x+ y)n−1−i−2jy+

n∑
i=0

ui
bn−i

2
c∑

j=0

q(n, i, j; k)(xy)j(x+ y)n−i−2j.

Since DG5(I) = c + Iu, we have p(1, 0, 0; k) = q(1, 1, 0; k) = 1, p(1, i, j; k) = 0 if (i, j) 6=
(0, 0) and q(1, i, j, ; k) = 0 if (i, j) 6= (1, 0). By induction, it is routine to verify that
p(n, i, j; k) = q(n, i, j; k) = 0 if i and j are outside the bounds given in (31).

Extracting the coefficients of ajbn−2jc and ajbn+1−2jI on both sides of the expression

Dn+1
G5

(I) = DG5

(∑
i,j

p(n, i, j; k)uiajbn−1−i−2jc+
∑
i,j

q(n, i, j; k)uiajbn−i−2jI

)
,

we obtain the following recurrence system:

p(n+ 1, 0, j; k) = (1 + 2kj)p(n, 0, j; k) + 4k(n− 2j + 1)p(n, 0, j − 1; k)+

2kp(n, 1, j − 1; k) + q(n, 0, j; k),

q(n+ 1, 0, j; k) = 2kjq(n, 0, j; k) + 4k(n− 2j + 2)q(n, 0, j − 1; k) + 2kq(n, 1, j − 1; k)+

(2k − 1)p(n, 0, j − 1; k).
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Let w ∈ Bn and fix (w) = 1. Then exc (w) + aexc (w) = n − fix (w) = n − 1. Recall
that we always write w in standard cycle decomposition. Since w has only one fixed point,
there are n choices for the fixed point of w. For the numbers p(n, i, j; k) and q(n, i, j; k),
by comparing (28) with (31), we see that the index i only marks the number of fixed
points, and the index j only depends on the numbers of excedances and anti-excedances.
Let w′ be the reduction of w. Then w′ ∈ Bn−1, cyc (w′) = cyc (w) − 1 and fix (w′) = 0.
Moreover, we have exc (w) = exc (w′) and aexc (w) = aexc (w′). By using the properties
of the reduction map, we get∑

w∈Bn
fix (w)=1

xexc (w)yaexc (w)kn−cyc (w) = n
∑

w′∈Bn−1

fix (w′)=0

xexc (w′)yaexc (w′)kn−1−cyc (w′). (32)

By using (31), we see that∑
w∈Bn

fix (w)=1

xexc (w)yaexc (w)kn−cyc (w)

=

bn
2
c−1∑
j=0

p(n, 1, j; k)(xy)j(x+ y)n−2−2jy +

bn−1
2
c∑

j=0

q(n, 1, j; k)(xy)j(x+ y)n−1−2j,

∑
w′∈Bn−1

fix (w′)=0

xexc (w′)yaexc (w′)kn−1−cyc (w′)

=

bn
2
c−1∑
j=0

p(n− 1, 0, j; k)(xy)j(x+ y)n−2−2jy +

bn−1
2
c∑

j=0

q(n− 1, 0, j; k)(xy)j(x+ y)n−1−2j.

Replacing j with j − 1 while adjusting the bounds of summation, and then equating
appropriate coefficients yields the following relations:

p(n, 1, j − 1; k) = np(n− 1, 0, j − 1; k), q(n, 1, j − 1; k) = nq(n− 1, 0, j − 1; k).

Therefore, by setting p(n, 0, j; k) = p(n, j; k) and q(n, 0, j; k) = q(n, j; k), we obtain the
recurrence system of the numbers p(n, j; k) and q(n, j; k).

Setting u = 0 in (31) and then taking a = x, b = 1+x and c = I, we get the symmetric
decomposition of the polynomials dBn (x; k). Clearly, when k > 1/2, the numbers p(n, j; k)
and q(n, j; k) are nonnegative, and so the polynomials dBn (x; k) are bi-γ-positive. This
completes the proof.
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ture Notes in Math., vol. 138, Springer, Berlin, 1970.

[14] D. Foata, V. Strehl. Euler numbers and variations of permutations in Colloquio
Internazionale sulle Teorie Combinatorie (Roma, 1973), Tomo I, Atti dei Convegni
Lincei, No. 17, Accad. Naz. Lincei, Rome, pp. 119–131, 1976.

[15] S.R. Gal. Real root conjecture fails for five and higher-dimensional spheres. Discrete
Comput. Geom., 34:269–284, 2005.

[16] Z. Lin, J. Zeng. The γ-positivity of basic Eulerian polynomials via group actions. J.
Combin. Theory Ser. A, 135:112–129, 2015.

[17] Lily L. Liu, Yi Wang. A unified approach to polynomial sequences with only real
zeros. Adv. in Appl. Math., 38:542–560, 2007.

[18] S.-M. Ma, T. Mansour. The 1/k-Eulerian polynomials and k-Stirling permutations.
Discrete Math., 338:1468–1472, 2015.

the electronic journal of combinatorics 27(3) (2020), #P3.27 19



[19] S.-M. Ma, J. Ma, Y.-N. Yeh, B.-X. Zhu. Context-free grammars for several poly-
nomials associated with Eulerian polynomials. Electron. J. Combin., 25(1):#P1.31,
2018.

[20] S.-M. Ma, J. Ma, Y.-N. Yeh. γ-positivity and partial γ-positivity of descent-type
polynomials. J. Combin. Theory Ser. A, 167:257–293, 2019.

[21] T.K. Petersen. Enriched P -partitions and peak algebras. Adv. Math., 209(2):561–610,
2007.

[22] D.P. Roselle. Permutations by number of rises and successions. Proc. Amer. Math.
Soc., 19:8–16, 1968.

[23] C.D. Savage, G. Viswanathan. The 1/k-Eulerian polynomials. Electron J. Combin.,
19(1):#P9, 2012.

[24] H. Shin, J. Zeng. The symmetric and unimodal expansion of Eulerian polynomials
via continued fractions. European J. Combin., 33:111–127, 2012.

[25] H. Shin, J. Zeng. Symmetric unimodal expansions of excedances in colored permu-
tations. European J. Combin., 52: 174–196, 2016.

[26] N.J.A. Sloane. The On-Line Encyclopedia of Integer Sequences, published electron-
ically at http://oeis.org, 2010.

[27] R.P. Stanley. A survey of alternating permutations. Contemp. Math., 531 (2010),
165–196.

[28] J. Stembridge. Enriched P -partitions. Trans. Amer. Math. Soc., 349(2):763–788,
1997.

[29] Y. Zhuang. Eulerian polynomials and descent statistics. Adv. in Appl. Math., 90:86–
144, 2017.

the electronic journal of combinatorics 27(3) (2020), #P3.27 20

http://oeis.org

	Introduction
	Main results
	The 1/k-Eulerian polynomials of type B
	The 1/k-derangement polynomials of type B

	Proof of Theorem 4
	Proof of Theorem 9

