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Abstract

Let D(n, r) be a random r-out regular directed multigraph on the set of vertices
{1, . . . , n}. In this work, we establish that for every r > 2, there exists ηr > 0 such
that diam(D(n, r)) = (1 + ηr + o(1)) logr n. The constant ηr is related to branching
processes and also appears in other models of random undirected graphs. Our
techniques also allow us to bound some extremal quantities related to the stationary
distribution of a simple random walk on D(n, r). In particular, we determine the
asymptotic behaviour of πmax and πmin, the maximum and the minimum values of
the stationary distribution. We show that with high probability πmax = n−1+o(1)

and πmin = n−(1+ηr)+o(1). Our proof shows that the vertices with π(v) near to πmin

lie at the top of “narrow, slippery towers”; such vertices are also responsible for
increasing the diameter from (1 + o(1)) logr n to (1 + ηr + o(1)) logr n.

Mathematics Subject Classifications: 05C80,05C81

1 Introduction

Call a random directed graph D with vertices V (D) = {v1, . . . , vn} a random r-out digraph
if each vertex in V (D) has out-degree r, and the nr heads of edges in E(D) are iid and
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uniformly distributed over V (D). We allow digraphs to have multiple edges and loops.
It is useful to have a canonical construction: for each pair (i, j) ∈ [n] × [r], let Li,j be a
uniformly random element of [n], and write D(n, d) for the random r-out digraph with
vertex set [n] = {1, . . . , n} and edge set {(i, Li,j) : (i, j) ∈ [n]× [r]}.

Given a digraph D, for u, v ∈ V (D) we write dist(u, v) = distD(u, v) for the number
of edges in a shortest oriented path from u to v, or set dist(u, v) = ∞ if there exists no
such path. The diameter of D is

diam(D) = max{dist(u, v) : u, v ∈ [n], dist(u, v) <∞}. (1)

Say D is strongly connected if dist(u, v) < ∞ for all u, v ∈ V (D). An induced subgraph
D[S] of D is a strongly connected component of D if D[S] is strongly connected but for
all S ′ with S ⊂ S ′, D[S ′] is not strongly connected. In order to study cases where D
is not necessarily strongly connected, we write D0 = D0(n, r) for the strongly connected
component of D(n, r) with the largest number of vertices (if there is more than one such
component, D0 is the one whose smallest labelled vertex is minimal).

Let λr = max{λ : 1− λ = e−rλ}, and let

ηr =
1

logr(1− λr)−1 − 1
=

log r

λrr − log r
. (2)

Observe that λr → 1 and ηr → 0 when r →∞.
The main contribution of this paper is to determine diam(D(n, r)) in probability1.

Theorem 1. For every r > 2, we have diam(D(n, r)) = (1 + ηr + op(1)) logr n and
diam(D0(n, r)) = (1 + ηr + op(1)) logr n.

As a consequence of our analysis we can obtain estimates for the smallest and largest
probability in the stationary distribution of a random walk on D(n, r). Before stating our
result we give a few classical definitions that can be found in [26, 30].

Given S ⊂ V (D), say that D[S] is attractive if for all v ∈ V (D) there is a directed path
from v to S. It is easily seen that a digraph can contain at most one attractive strongly
connected component D[S]. Grusho [19] proved that D0 is the unique attractive strongly
connected component of D(n, r), with high probability2. Recently, Balle [5] showed that
D0 is ergodic whp.

It is well-known that if D has an attractive and ergodic strongly connected component
D0, then a simple random walk on D has a unique stationary distribution π = πD with
support in D0. We write πmax(D) = max{πD(v) : v ∈ V (D)} and πmin(D) = min{πD(v) :
πD(v) > 0, v ∈ V (D)}, respectively.

Unlike in the undirected case, the stationary distribution of a directed graph is not
usually determined by the degree sequence and one can find pathological examples where

1A sequence of random variables Xn converges to X in probability if for every ε > 0, P(|Xn −X| >
ε)→ 0 as n→∞. If Xn/Yn → X in probability then we also write Xn = (X + op(1))Yn.

2Here and for the remainder of the paper, with high probability, or whp, means with probability tending
to 1 as n→∞.
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πmin(D) is exponentially small in the number of vertices of D. Moreover, having a large
πmin is crucial to ensure that the mixing time of a random walk in D is small.

In the second part we will obtain estimates for πmax(D(n, r)) and πmin(D(n, r)).

Theorem 2. For r > 2, we have

πmax(D(n, r)) = n−1+op(1)

and
πmin(D(n, r)) = n−(1+ηr)+op(1).

One of our main motivations for the study of D(n, r) comes from the analysis of
random Deterministic Finite Automata (DFA). DFA can be described using r-out regular
directed graphs, where each of the r out-going arcs is labeled with distinct symbols from
an alphabet of size r. A possible model of random DFA with n states can be obtained
by considering a random r-out directed graph D(n, r) and by assigning random labels on
the out-going arcs. This particular model has been used in the literature on automata
theory to study properties of “generic” DFA and average behavior of DFA algorithms (see
Section 2.1 for a more detailed account of related work). In particular, the first analysis
of the diameter of D(n, r) appeared in the classic book of Trakhtenbrot and Barzdin [37,
Theorem 5.5]. The authors of [37] showed that for every r > 2 there exists a constant
Cr > 1 such that with high probability diam(D) 6 Cr logr n. This upper bound has been
recently used, together with a lower bound on πmin(D(n, r)), to stablish the possibility of
efficently learning random DFA [1]. Thus, our results also have direct consequences on
the complexity of learning random DFA.

Here we present some other graph-theoretic implications of Theorems 1 and 2:

• The results obtained can be easily transferred to random simple r-out digraphs. Let
Dsim(n, r) be chosen uniformly at random from the set of directed simple graphs (no
loops or multiple edges) with vertex set [n] such that each vertex has out-degree r.
The conditional distribution of D(n, r), given that it is simple, is precisely that of
Dsim(n, r). Furthermore, it is not hard to show (see [27]) that

P(D(n, r) is simple) = e−Θ(r2) .

In particular, this probability is bounded away from zero for fixed r, so any property
that holds whp for D(n, r) also holds whp for Dsim(n, r).

• It is not hard to deduce from our arguments that for all u, v ∈ V (D(n, r)), condi-
tional on the event that v ∈ D0(n, r), we have distD(n,r)(u, v) = (1 + op(1)) logr n.
This shows that the typical distance in D(n, r) is (1 + op(1)) logr n. We leave the
details to the interested reader.

• The random r-out, s-in digraph D(n, r, s) is defined similarly to D(n, r), but each
vertex chooses s in-neighbours as well as r out-neighbours, all independently and

the electronic journal of combinatorics 27(3) (2020), #P3.28 3



uniformly at random; see [17]. In particular, D(n, r)
d
= D(n, r, 0)3. It may be

interesting to consider the diameter and the stationary distribution for D(n, r, s)
when s 6= 0. One case follows from Theorem 1: since the diameter of a digraph
is the same as the diameter of the digraph obtained by flipping the direction of all

the edges, diam(D(n, 0, r))
d
= diam(D(n, r, 0)). In contrast, studying the stationary

distribution of D(n, 0, r) seems less interesting: typically there will be many vertices
with no out-edges where a simple random walk will eventually become stuck.

Outline. The paper is organized as follows. We start in Section 2 by discussing our
motivation for addressing these problems and by putting our results in the context of
other models for random (di)graphs. In Section 3 we introduce the notation that will
be used throughout the paper and state some basic concentration inequalities and facts
about branching processes. In Section 4.1 we finish the proof of the upper bound on the
diameter of D(n, r) (Theorem 1) assuming some technical estimates. The breadth-first
search procedure that will be used to explore the graph is described in Section 5. In
Section 6 we study the behaviour of the in-neighbourhoods of D(n, r) by comparing them
with Poisson Galton-Watson trees, while in Section 7 we study its out-neighbourhoods.
In Section 8, we prove the technical estimates, completing the proof of the upper bound
given in Section 4.1. The proof of the lower bound on the diameter of D(n, r) (Theorem 1)
occupies Section 9. We conclude the paper by proving Theorem 2 in Section 10.

2 Related Work

In this section we survey related work, both arising from literature on random DFA and
from work on other models of random graphs.

2.1 Random Deterministic Finite Automata

A deterministic finite automaton (DFA) over an alphabet Σ = {σ1, . . . , σr} is given by a
set V = {v1, . . . , vn} and a function L : [n] × [r] → [n]. We think of the pair (V, L) as
specifying a directed multigraph D with vertices V and edges {(vi, L(i, j)) : i ∈ [n], j ∈
[r]}; every vertex of D has out-degree r, and the r edges leaving a vertex v are labeled
with distinct symbols from Σ. In addition, a DFA is equipped with a distinguished vertex
s called the initial state, and with a binary labelling B : V (D) → {0, 1}; the vertices in
B−1({1}) are the accepting states of the DFA. The DFA is formally given by the tuple
Q = (V,Σ, L, s, B).

Let Σ? denote the set of all finite strings with symbols in Σ. Words w = w1w2 . . . wt ∈
Σ? correspond to walks x0(w), x1(w), . . . , xt(w) on V : x0 = s and, for 1 6 i 6 t, xi
is reached from xi−1 by following the edge with label wi. We write Q(w) = xt(w) for
the final state of the walk. The DFA accepts the word w if B(Q(w)) = 1. The set

3For any two random variables X and Y , we use the notation X
d
= Y to denote that the corresponding

probability distributions are equal.
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L(Q) = {w ∈ Σ? : B(Q(w)) = 1} is the language recognized by the DFA. The set of
languages recognized by some DFA are precisely the regular languages.

To see the connection with random out-regular graphs, observe that we may build a
uniformly random DFA with n labelled states and alphabet of size r as follows. Let D(n, r)
be as in the first paragraph of the paper, using the random variables (Li,j : (i, j) ∈ [n]×[r]).
Then for (i, j) ∈ [n]× [r], let L(i, j) = Li,j); equivalently, assign label σi to edge (i, Li,j).
Choose the starting state s uniformly at random from [n], and choose B uniformly at
random from the set of functions f : [n]→ {0, 1}.

DFA and regular languages play a crucial role in language theory and there is a vast
literature on algorithms over DFA, ranging from minimization and property testing, to
synthesis, learning and composition [34]. Next we describe the problem of learning random
DFA from uniformly sampled examples, whose complexity is related to the diameter and
stationary distribution of D(n, r) [1].

Learning regular languages from different sources of information is a prominent prob-
lem in computational learning theory [24], which is most often studied within the context
of so-called grammatical inference problems [16]. An important problem in this area
concerns the possibility of learning regular languages under the probably approximately
correct (PAC) learning model introduced by Valiant [38]. Roughly speaking, this asks for
an efficient algorithm such that, when supplied with a large enough sample containing iid
strings drawn from some arbitrary probability distribution µ on Σ? and labels indicating
whether each string belongs to some hidden regular language, the algorithm outputs a
representation of a regular language (e.g. a DFA) which is close to the hidden regular
language in a sense that depends on the distribution which generated the sample strings.
Several results from the 90’s indicate that, in its full generality, PAC learning of DFA is
hard due to complexity-theoretic as well as cryptographic reasons [23, 32] (see also the
recent strengthened result [13]). A natural question to ask in such a scenario is whether
there exists a reasonable simplification of the problem for which a positive answer is pos-
sible. This requires one to come up with scenarios that rule out the worst-case problems
arising from specially crafted regular languages and distributions over examples appearing
in the proofs of the aforementioned lower bounds.

One possibility is to study the average case. This approach can be formalized by
considering regular languages defined by random DFA. In particular, one can ask for
an algorithm that with high probability (as the number of the states in the DFA goes
to infinity) can learn the regular language recognized by a random DFA. There exists
evidence suggesting that such relaxation might not be enough to achieve efficient learning
in general: it was recently showed by Angluin et al. that generic instances of DFA (as
well as decision trees and DNF formulas) are hard to learn from statistical queries when
examples can be sampled from an arbitrary distribution [3]. Nevertheless, prior to Angluin
et al.’s result it was showed that generic decision trees and generic DNF formulas can be
efficiently learned when samples are drawn according to the uniform distribution [20, 35].

In view of the panorama described in the previous paragraphs, a natural question to
ask is whether random DFA can be efficiently learned when sample strings are drawn from
the uniform distribution. More precisely, one would like to answer the following sorts of
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questions. Fix a uniformly random DFA Q with states [n] and alphabet [r]. Then fix
m ∈ N and let (xi, i > 1) be iid words sampled uniformly at random from [r]m.

1. Given the sequences (xi, i > 1) and (B(Q(xi)), i > 1), is it possible to construct a
DFA Q̂ that recognizes the same language as Q with high probability?

2. Given the sequences (xi, i > 1), (Q(xi)), i > 1) and (B(Q(xi)), i > 1), is it possible
to construct a DFA Q̂ that recognizes the same language as Q with high probability?

In both cases, if the answer is yes then it is natural to ask for efficient algorithms (average
case running time polynomial in n, m, r, and any other parameters involved). The
questions can be weakened by only requiring that Q̂ recognizes the same set of words of
length m. A further weakening is to only require that P(Q̂(y) = Q(y)) > 1− ε when y is
uniformly distributed over [r]m.

The results in [1] establish that in order to answer the second question, it would
be sufficient to understand several specific properties of a random walk on a randomly
generated DFA. When a string is sampled from the uniform distribution over [r]m and
is labeled according to the state that it reaches, the label immediately corresponds to
the final state of a simple random walk of length m over the DFA starting from the
initial state. Thus, the analysis of the algorithm in [1] relies on bounds on the diameter,
stationary distribution, and mixing time on random r-out regular digraphs.

Angluin and Chen base their analysis on previous results about the strongly con-
nected component D0 of D(n, r). The first of such results is due to Grusho, who showed
that the strongly connected component D0 is attractive and its order satisfies |V (D0)| =
(1 + op(1))λr · n [19] (we remark that its order is also the asymptotic order of the gi-
ant component in the Erdős-Rényi random graph G(n, r/n)). The average-case analysis
of algorithms for the minimization of Deterministic Finite Automata (DFA) has led to
multiple rediscoveries of Grusho’s result [7, 11, 12]. As mentioned above, the diameter of
D(n, r) was first studied by Trakhtenbrot and Barzdin in [37], who showed that for every
r > 2, we have diam(D(n, r)) = O(logr n), whp.

Several other properties of random DFA have been studied, both in learning theory
and in other contexts, using the D(n, r) model. For example, first Korshunov’s group, and
later Nicaud’s group, have studied the probability that random DFA exhibit particular
structures, mainly motivated by the analysis of sample and reject algorithms for enumer-
ation of subclasses of automata (see [28] and references therein). Motivated by worst-case
hardness results for learning a DFA, Angluin and co-authors have used properties of ran-
dom DFA to study the problem of learning a generic DFA [2, 3]. The average-case com-
plexity of DFA minimization algorithms has also received some attention recently [6, 15].
Finally, a series of results have led to a solution of the long-standing Černý conjecture
about synchronization of finite automata in the case of random DFA [8, 29, 36].

2.2 Diameter and stationary distribution of other random graph models

In this subsection we describe some previous results on the diameter and the stationary
distribution of certain random graph models and relate them to Theorem 1 and to The-
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orem 2. This provides an intuition for the results we have obtained on the diameter of
D(n, r). We consider the following models of random (di)graphs.

• For p ∈ [0, 1), G(n, p) is the random graph with vertex set [n] in which every edge
is included independently with probability p.

• For d ∈ N, G(n, d) is the random d-regular simple graph with vertex set [n] chosen
uniformly at random among all such graphs.

• For p ∈ [0, 1), D(n, p) is the random digraph with vertex set [n] in which every
oriented edge is included independently with probability p.

For an undirected graph G = (V,E) and u, v ∈ V we write distG(u, v) for the minimum
number of edges in a path from u to v, or set distG(u, v) =∞ if there exists no such path.
The diameter of G is then defined just as in (1). Bollobás and Fernandez de la Vega [10]
studied the diameter of G(n, d) and showed that for every integer r > 2, we have

diam(G(n, r + 1)) = (1 + op(1)) logr n . (3)

The diameter of G(n, p) was recently studied by Riordan and Wormald [33], who showed
that for every constant r > 0, we have

diam(G(n, r/n)) = (1 + 2ηr + op(1)) logr n . (4)

In fact, they proved a stronger result, showing convergence in distribution of the diameter
after appropriate recentering and rescaling. Although, in this paper we only determine the
first order asymptotic behaviour of diam(D(n, r)), it is possible that similar techniques as
the ones presented in [33] could be of use to determine its second order term. The extra
term 2ηr is essentially due to the existence of “remote” vertices in the giant component of
G(n, r/n), whose neighbourhoods are exceptionally small up to distance about ηr logr n.

Our result on the diameter of D(n, r) from Theorem 1 can be related to (3) and (4) in
the following way. Given u, v ∈ [n], one way to determine distD(n,r)(u, v) is to perform an
outward breadth-first search (BFS) starting at u, to perform an inward BFS (i.e. following
edges from head to tail) starting at v, and to stop at the first time the two searches uncover
a common vertex. (See Section 5.1 for a careful definition of breadth-first search.) This
technique was used by Bollobás and Fernandez de la Vega in [10]. Since the BFS explores
vertices in order of distance, such a procedure is guaranteed to build a shortest path from
u to v.

On the one hand, in the outward BFS of D(n, r) starting from u, every vertex has
exactly r out-edges when explored. Similarly, in a BFS exploration of G(n, r+ 1), when a
vertex v is discovered via an edge from one of its neighbours, this leaves r edges to unveil
when v is itself explored (unless v is discovered multiple times, which at least at the start
of the BFS is unlikely). Thus, a BFS of G(n, r + 1) looks similar to an outward BFS of
D(n, r).

On the other hand, in the inward BFS of D(n, r) starting from v (or at least near the
start of the process) the number of in-edges arriving at a vertex are roughly distributed
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as a Binomial random variable with n trials and success probability r/n. Thus, a BFS of
G(n, r/n) looks similar to an inward BFS of D(n, r).

The preceding paragraphs suggest that shortest paths in D(n, r) are in some sense
hybrids of shortest paths in G(n, r+ 1) and in G(n, r/n). This, together with (3) and (4),
provides some intuition for the value of the diameter of D(n, r) from Theorem 1: it is the
average of the limit values in those formulae.

An undirected model which is closely related to D(n, r) is the random r-out graph,
obtained by selecting a directed graph according to D(n, r) and then forgetting about
the directions of the edges. This model was introduced by Fenner and Frieze [17] and its
diameter is whp (1 + op(1)) log2r n (see [18, Exercise 16.5.3]).

There is interesting related work on distances in randomly edge-weighted graphs. We
mention in particular the paper of Janson [21] on typical and extreme distances in ran-
domly edge-weighted complete graphs, and the subsequent work by Bhamidi and van der
Hofstad [9], which establishes distributional convergence for the diameter.

To conclude this section, we discuss the stationary distribution of a simple random
walk in these other models. While in undirected graphs the stationary distribution (if
it exists) is completely determined by the degrees of the vertices, this is not the case in
directed graphs. Cooper and Frieze [14] give a very precise description of the stationary
distribution of D(n, c/n) when c = c(n) > (1 + ε) log n, for any constant ε > 0, and use
their result to compute the cover time of D(n, c/n). It is worth noticing that for such
values of c, both the in-degrees and out-degrees are of logarithmic order and concentrated
around their expected values, which turns to be very useful for the analysis. It seems
harder to find an interesting question about the stationary distribution of D(n, c/n) when
c = c(n) < (1 − ε) log n since like in random r-in regular digraphs, typically there are
vertices with no out-edges.

3 Notation and preliminaries

We write [n] = {1, 2, . . . , n}, N = {1, 2, . . .}, and N0 = {0, 1, 2, . . .}. The notation A ⊂ B
allows that A = B; we write A ( B for strict containment. Unless we explicitly indicate
otherwise, asymptotic notations will always refer to the case n→∞. We omit floors and
ceilings when doing so improves readability. All logarithms are natural unless a subscript
specifies otherwise.

For any two random variables X and Y , we use the notation X
d
= Y to denote that

the corresponding probability distributions are equal. For random variables X, Y , we
write X � Y , and say X is stochastically dominated by Y , if P(X 6 t) > P(Y 6 t) for
all t ∈ R. We say X1, . . . , Xk are independently stochastically dominated by Y1, . . . , Yt if
P(Xi 6 ti, 1 6 i 6 k) >

∏k
i=1 P(Yi 6 ti), for all (t1, . . . , tk) ∈ Rk.

3.1 Digraphs

Let D = (V (D), E(D)) be a directed graph. For S, S ′ ⊆ V (D) let

E(S, S ′) = ED(S, S ′) = {(u, v) ∈ E|u ∈ S, v ∈ S ′} .
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Given S ⊂ [n], D[S] = (S,E(S, S)) is the subgraph of D induced by S.
Given u ∈ [n] and an integer k > 0, write N+

k (D, u) = {v ∈ [n] : dist(u, v) = k}
and N+

6k(D, u) = ∪j6kN+
j (u). Similarly, let N−k (D, u) = {v ∈ [n] : dist(v, u) = k} and

N−6k(D, u) = ∪j6kN−j (u). We write N+(D, u) = N+
1 (D, u) and N−(D, u) = N−1 (D, u).

We also let d+
k (D, u) = |N+

k (D, u)|, and define d+
6k(D, u), d−k (D, u), and d−6k(D, u) corre-

spondingly. We write N+
k (u) = N+

k (D, u), etcetera, when D is clear from context.

3.2 Concentration Inequalities

We write Bin(N, p) to denote a Binomial random variable with N trials and success
probability p. We write Po(r) to denote a Poisson random variables with parameter r.
We also write Ber(p) to denote a Bernoulli random variable with success probability p.

We will use the following version of Chernoff’s bound for large deviations that can be
found in [22].

Lemma 3 (Chernoff’s inequality). For any t > 0 we have

P(Bin(N, p) > Np+ t) 6 e−
t2

2(Np+t/3) , (5)

and

P(Bin(N, p) 6 Np− t) 6 e−
t2

2Np . (6)

We will also use Chebyshev’s inequality: for any random variable X and any t > 0,
P(|X − E(X)| > t) 6 σ2

t2
, where σ2 = E(X2)− E(X)2.

3.3 Trees and branching processes

In any rooted tree, we view edges as oriented from child to parent. Fix a rooted tree T
with root v = v(T ). Then for all u ∈ V (T ), N−(T, u) is the set of children of u. For
u 6= v, let p(u) = pT (u) be the parent of u in T , so N+(T, u) = {p(u)}. For k > 0, let T6k
be the subtree of T induced by N−6k(T, v) = {u ∈ V (T ) : distT (u, v) 6 k}; we view T6k as
rooted at v. Also, write Tk = N−k (T, v) = {u ∈ V (T ) : distT (u, v) = k}.

A plane tree is a rooted tree in which the children of each node have a left-to-right
order. Given a plane tree T , there is a canonical labelling of V (T ) by distinct elements
of {∅} ∪

⋃
i>1 Ni, as follows. The root v has label ∅; its children are labelled from left to

right as 1, . . . , |N−(T, v)|. Given u ∈ V (Tk) with label w1w2 . . . wk, the children of u are
labelled from left to right as (w1 . . . wki, 1 6 i 6 |N−(T, u)|).

Conversely, given a rooted tree T with t vertices and an ordering of V (T ) as v1, . . . , vt,
say w ∈ V (T ) has index j if w = vj, for 1 6 j 6 t. We view V (T ) as a plane tree using
the convention that the children of each vertex are listed from left to right in increasing
order of index. If V (T ) ⊂ N then we always use the ordering inherited from N. Thus, for
a rooted tree T with V (T ) ⊂ N, and a plane tree T ′, we say T and T ′ are isomorphic, and
write T ∼= T ′, if T and T ′ are identical when viewed as plane trees.
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Finally, fix a non-negative, integer-valued random variable ξ. A Galton-Watson tree
with branching mechanism ξ is the random, potentially infinite family tree T ξ of a branch-
ing process started from a single individual, in which each individual reproduces indepen-
dently according to ξ (i.e. the number of offspring of each individual has the distribution
of ξ). The random tree T ξ is naturally viewed as a plane tree; see [25] for details and
a careful construction. If ξ is Po(r) distributed we call T ξ a Poisson(r) Galton-Watson
tree.

4 Proof of Theorem 1

In this section we describe our proof technique for Theorem 1, and prove it assuming
some technical estimates. We prove such estimates in Sections 8 and 9.

4.1 Upper bound

This subsection sketches the proof of our upper bound on the diameter of D(n, r). For
the remainder of this subsection, let D = D(n, r) and write d−k (v) = d−k (D, v), N−k (v) =
N−k (D, v) etcetera.

In order to derive an upper bound on the diameter of D we first show in Lemma 4
that for any fixed vertex v, the in-neighbourhood N−k (v) is either empty or large, for some
k slightly larger than ηr logr n, whp. Then, in Proposition 5, we show that conditional
on N−k (v) being large (and a set of other technical conditions), the distance between any
vertex u and N−6k(v) is at most logr n, whp. Putting both things together, we are able to
prove the upper bound for diam(D).

Lemma 4. Fix v ∈ [n], let k0(v) = min{k : d−k (v) 6∈ (0, log4 n)}. Then for every
ε ∈ (0, 1/10), there exists δ > 0 such that

P
(
k0(v) > (ηr + ε) logr n or d−6k0(v)(v) > log7 n

)
= O(n−(1+δ)) .

Next, if v ∈ [n] has N+(v) = {v} (i.e., if all edges leaving v are self-loops) then call
v a loop vertex. Let ESL be the event that D contains some loop vertex. Each vertex is
independently a loop vertex with probability n−r, so

P(ESL) = 1− (1− n−r)n = Θ(n1−r) . (7)

Note that if r > 3, the probability of a given vertex being a loop vertex is O(n−3).
This bound is small enough that it would allow union bounds over pairs of vertices, which
would simplify some proofs. Since we aim to prove our result also in the case r = 2, we
need to be a bit more careful in our computations.

Proposition 5. Fix k, n ∈ N and u, v ∈ [n]. Let Ek = {d−k (v) > log4 n, d−6k(v) 6 log7 n}.
Fix a graph H with v ∈ V (H) ⊂ [n] such that P(D[N−6k(v)] = H,Ek, ESL) > 0. Then

P(dist(u,N−6k(v)) > logr n− logr logr n,ESL | D[N−6k(v)] = H) = O(n−3) ,

the electronic journal of combinatorics 27(3) (2020), #P3.28 10



the preceding bound holding uniformly over k and over all H satisfying the above condi-
tions.

We prove Lemma 4 and Proposition 5 in Section 8. In the remainder of the section, we
finish the proof of the upper bound from Theorem 1, assuming Lemma 4 and Proposition 5.

Proof of the upper bound in Theorem 1. Fix ε > 0. We show that P(diam(D) 6 (1 + ηr +
ε) logr n) = 1−o(1). Since diam(D0(n, r)) 6 diam(D(n, r)), the same bound immediately
holds for D0(n, r).

Let k∗ = (ηr + ε) logr n and let `∗ = logr n− logr logr n− 1. By (7) for every r > 2, we
have that P(ESL) = O(n−1). So

P(∃u, v ∈ [n], dist(u, v) ∈ (k∗ + `∗,∞))

6O(n−1) +
∑
v∈[n]

P(∃u ∈ [n], dist(u, v) ∈ (k∗ + `∗,∞), ESL) .

Define k0 = k0(v) as in Lemma 4, and let E = {k0 6 k∗, d−6k0(v) < log7 n}. Then by
Lemma 4,

P(∃u ∈ [n], dist(u, v) ∈ (k∗ + `∗,∞), ESL)

6P(E,ESL) + P(∃u ∈ [n], dist(u, v) ∈ (k∗ + `∗,∞), E, ESL)

=O(n−(1+δ)) + P(∃u ∈ [n], dist(u, v) ∈ (k∗ + `∗,∞), E, ESL) ,

Now let H be the set of graphs H with v ∈ V (H) such that P(D[N−6k0(v)] = H,E,ESL) >
0. Then

P(∃u ∈ [n], dist(u, v) ∈ (k∗ + `∗,∞), E, ESL)

6 sup
H∈H

P(∃u ∈ [n], dist(u, v) ∈ (k∗ + `∗,∞), ESL | D[N−6k0(v)] = H)

6 sup
H∈H

∑
u∈[n]

P(dist(u, v) ∈ (k∗ + `∗,∞), ESL | D[N−6k0(v)] = H) .

For eachH ∈ H there is a constant k = k(H) such that ifD[N−6k0(v)] = H then k0 = k(H),
so the events D[N−6k0(v)] = H and D[N−6k(v)] = H are identical. Furthermore, given

that D[N−6k(v)] = H we either have d−k (v) = 0 or d−k (v) > log4 n. In the latter, if

D[N−6k(v)] = H then Ek occurs, so P(D[N−6k(v)] = H,Ek, ESL) > 0, so we can apply
Proposition 5 (with k = k(H) = k0). In both cases we obtain

P(dist(u, v) ∈ (k∗ + `∗,∞), ESL | D[N−6k0(v)] = H)

=P(dist(u, v) ∈ (k∗ + `∗,∞), ESL | D[N−6k(v)] = H)

=O(n−3) ,

the electronic journal of combinatorics 27(3) (2020), #P3.28 11



and conclude that

P(∃u, v ∈ [n], dist(u, v) ∈ (k∗ + `∗,∞))

=O(n−1) +
∑
v∈[n]

O(n−(1+δ)) +
∑
u,v∈[n]

O(n−3) = O(n−δ) .

It follows that with high probability diam(D) 6 k∗ + `∗ 6 (1 + ηr + ε) logr n.

4.2 Lower bound

This subsection sketches the proof of our lower bound on the diameter ofD(n, r). Together
with the proof in Subsection 4.1, this concludes the proof of Theorem 1.

In order to derive a lower bound on the diameter of D we first introduce the concept
of flags; that is, vertices v which have atypically small but non-empty in-neighbourhoods
N−k (v) that induce a tree in D, for values of k slightly smaller than ηr logr n (see Defini-
tion 6). In Lemma 7 we show that the probability that a given vertex is a flag is relatively
large, and in Corollary 8 we show that whp there exists many flags. Moreover, there are
no flags outside of D0 (Lemma 9). Using the existence of flags in D0, we conclude the
lower bound for diam(D).

Let us now precisely define the notion of flag.

Definition 6. For v ∈ [n], let k1 = k1(v) = min{k : d−k (v) > log4 n}; this is ∞ if
d−k (v) < log4 n for all k. A vertex v is an ε-flag (or simply a flag, if ε is clear from context)
if k1 ∈ [(ηr − ε/2) logr n,∞), |N−6k1(v)| 6 log7 n, and D[N−6k1(v)] is a tree. We write
F = F (ε) ⊆ [n] for the set of ε-flags.

The condition thatD[N−6k1(v)] is a tree means that along any shortest path fromN−k1(v)
to v, at each node w there are (r − 1) possible “wrong turns” that lead to [n] \ N−k1(v).
We will use this when bounding πmin in Section 10.

In order to find a vertex v ∈ [n] such that there exists u ∈ [n] with dist(u, v) >
(1 + ηr − ε) logr n, we will look at F (ε). The following lemma shows that the probability
a given vertex is an ε-flag is relatively large. Its proof uses the same ideas on Poisson
branching processes also displayed in the proof of Lemma 4.

Lemma 7. For ε > 0 sufficiently small, there is a β > 0 such that P(v ∈ F (ε)) > nβ−1.

To ascertain that D(n, r) will contain ε-flags whp, we proceed as follows. In Lemma 7
we showed that the expected number of ε-flags goes to infinity as n → ∞. Then, we
obtain the following upper bound on the probability that two vertices are simultaneously
ε-flags (Corollary 28),

P(u, v ∈ F (ε)) 6 (1 + o(1))

(
P(u ∈ F (ε)) +

log15 n

n

)
P (v ∈ F (ε)) . (8)

The previous inequality allows us to use a second moment argument to prove the following:
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Corollary 8. For all ε > 0, P(F (ε) = ∅) = o(1).

Proof. By Lemma 7 and linearity of expectation there is β > 0 such that E(|F |) = nP(1 ∈
F ) > nβ. Next, by (8), for n large we have

E(|F |2) =
∑
u,v∈[n]

P(u, v ∈ F )

= n(n− 1)P(1, 2 ∈ F ) + nP(1 ∈ F )

6 (1 + o(1))n(n− 1)P(1 ∈ F )(P(2 ∈ F ) + log15 n/n) + nP(1 ∈ F )

6 (1 + o(1)(nP(1 ∈ F ))2 + (n log15 n)P(1 ∈ F )

= (1 + o(1))(nP(1 ∈ F ))2 .

The result follows by Chebyshev’s inequality.

Once we know that whp there are many ε-flags, we prove that they belong to the
unique attractive component.

Lemma 9. For every ε > 0, P(F (ε) \ V (D0) 6= ∅) = o(1).

We use the previous results to conclude the proof of the lower bound.

Proof of Theorem 1 (Lower Bound). Fix ε > 0 and write k∗ = (ηr − ε/2) logr n. Suppose
that D0 is attractive, that |D0| > n/2, and that F (ε) ⊂ D0. Suppose that for all v ∈ [n]
and j > 0, d−6j(v) 6 (r + ε/2)j log2

r n. Under these assumptions, if u ∈ F (ε), then u ∈ D0

and, as k∗ = (ηr − ε/2) logr n 6 k1, we also have d−6k∗(u) 6 log7 n. So for all j > 0,

d−6k∗+j(u) 6 (r + ε/2)j log9
r n.

Writing j0 = inf{j : V (D0) ⊂ N−6k∗+j(u)}, it follows that (r + ε/2)j0 log9
r n > n/2.

Provided ε is chosen small enough, for n large this implies that j0 > (1 − ε/2) logr n, so
there is some node v ∈ V (D0) with dist(v, u) > k∗ + (1− ε/2) logr n = (ηr + 1− ε) logr n.
Altogether, this yields

P(diam(D0) < (ηr + 1− ε) logr n)

6P(D0 is not attractive) + P(|V (D0)| < n/2) + P(F (ε) = ∅)
+ P(∃u ∈ F (ε) \D0) + P(∃v ∈ [n], j > 0 : d−j (v) > (r + ε/2)j log2

r n)

The first two probabilities were shown to tend to 0 in [19]. The third tends to 0 by
Corollary 8, and the fourth by Lemma 9. Proposition 16, which provides an estimate on
the growth of the in-neighbourhoods in D, shows that the last tends to 0. As ε > 0 was
arbitrarily small, the lower bound on diam(D0) follows; since diam(D) > diam(D0) so
does the lower bound on diam(D).
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5 Breadth-first search and conditioning

In this section we describe the breadth-first search (BFS) procedures, which are funda-
mental to our analysis, and use them to prove a handful of stochastic domination results
for neighbourhood sizes in D(n, r).

5.1 Outward and inward breadth-first search

Fix a digraph D together with an ordering of its vertices V (D) as (v1, . . . , vn). The
outward breadth-first search (oBFS) starting from node v ∈ V (D) is a deterministic process
((R+

i (D, v), S+
i (D, v)), i > 0), defined as follows. At time i, R+

i = R+
i (D, v) is the set of

explored vertices and S+
i = S+

i (D, v) is the sequence of discovered but not yet explored
vertices; S is treated as a first-in first-out queue. Node w ∈ V (D) has index j if w = vj.

Begin with R+
0 = ∅ and S+

0 = (v). Now fix i > 0 and suppose (R+
i , S

+
i ) are already

defined. Step i of the process is defined as follows. If S+
i = (si,1, . . . , si,j) has positive

length then write u+
i = u+

i (D, v) = si,1 and C+
i (D, v) = N+(D, u+

i ) \ (R+
i ∪ S+

i ). List
the elements of C+

i (D, v) in increasing order of index as wi,1, . . . , wi,k; it is possible that
k = 0. Then set

R+
i+1 = R+

i ∪ {si,1}, and S+
i+1 = (si,2, . . . , si,j, wi,1, . . . , wi,k).

In words, at step i, u+
i = si,1 is explored, and wi,1, . . . , wi,k are discovered and added to

the back of the queue for later exploration. If S+
i has zero length (i.e., S+

i = ()), then
S+
i+1 = S+

i and R+
i+1 = R+

i .
Writing i+ = i+(D, v) = min{i : S+

i+1 = S+
i }, then R+

i+(D, v) is precisely the set of ver-
tices w with distD(v, w) <∞. The oBFS tree T+(D, v) has root v and vertices Ri+(D, v);
the children of si,1 are precisely the vertices wi,1, . . . , wi,k newly discovered in step i. We
write T+(D, v,m) for the subtree of T+(D, v) with verticesR+

m(D, v)∪S+
m(D, v). Note that

if S+
m(D, v) has length ` then its elements are precisely (u+

m+i(D, v), 0 6 i < `), because
oBFS explores these vertices before any others. We therefore have R+

m(D, v)∪S+
m(D, v) =

{u+
i (D, v), 0 6 i < m+ `},
In the inward breadth-first search (iBFS) process ((R−i (D, v), S−i (D, v)), i > 0), the

sets C−i (D, v) and the terminal time i− = i−(D, v) are defined in just the same manner
but exploring in-neighbourhoods rather than out-neighbourhoods to discover vertices; in
particular R−i−(D, v) = {w : distD(w, v) <∞}. We also write T−(D, v,m) for the subtree
of T−(D, v) with vertices R−m(D, v) ∪ S−m(D, v).

Observe that using the notation from Section 3.3, we have T+
k (D, v) = N+

k (D, v) and
T−k (D, v) = N−k (D, v) for all k.

5.2 Conditioning on neighbourhoods and the BFS exploration in D(n, r)

We next describe the effect of iBFS on the law of D(n, r). For the remainder of the
section we write D = D(n, r) and fix v ∈ [n]. We write N−i = N−i (D, v), u−i = u−i (D, v),
T−(m) = T−(D, v,m), etcetera. Informally, the point of this section may be summarized
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as follows: if vertex u−i is discovered at step j then all we know about u−i is that it has
an edge to u−j and has no edges to uk for k < j.

We mostly focus on the iBFS process. First, in Lemma 10 we control the number
of edges from a vertex to the set of vertices already discovered by the process. We use
these results to bound the in-degree of an undiscovered vertex to an in-neighbhourhood
(Corollary 11), to control the one-step growth of in-neighbhourhoods (Corollary 12), and
to bound the out-degree of a discovered vertex to the undiscovered set (Corollary 13). In
Lemma 14, we show that the iBFS process is unlikely to hit the vertices of an already
small exposed part of the digraph. Finally we state Lemma 15 which is the analogue of
Lemma 10 for the oBFS process.

We now state and prove some useful stochastic identities and inequalities which result
from this.

Lemma 10. Fix m ∈ N0. Conditional on ((R−i , S
−
i ), 0 6 i 6 m), independently for all

w ∈ [n] we have

|E(w,R−m ∪ S−m)| d
= Bin

(
r,
|S−m|
n−m

)
if w 6∈ R−m ∪ S−m,

1 + Bin

(
r − 1,

|S−m|
n−m

)
� |E(w,R−m ∪ S−m)| � 1 + Bin

(
r − 1,

m+ |S−m|
n

)
if w ∈ R−m ∪ S−m \ {v}, and |E(v,R−m ∪ S−m)| d

= Bin
(
r, m+|S−m|

n

)
.

Proof. Recall the canonical construction of D = D(n, r) from the introduction, and for
each x, y ∈ [n] let ρ(x, y) = min{q : Lx,q = y}. Then ρ(x, y) 6 r precisely if there is a
copy of the oriented edge xy in D(n, r), and otherwise ρ(x, y) =∞.

Now fix w ∈ [n]. Suppose w 6∈ R−m ∪ S−m ; then there are no edges from w to R−m. In
other words, for each 1 6 j 6 r, we have Lw,j 6∈ R−m = {u−i , 0 6 i < m}. It follows that
the conditional law of |E(w,R−m ∪ S−m)| given (R−i , 0 6 i 6 m) and (S−i , 0 6 i 6 m) is
Bin(r, |S−m|/(n− |R−m|)). The result follows in this case since |R−m| = m.

Now suppose w ∈ R−m ∪ S−m \ {v}; then the parent pT−(m)(w) lies in R−m so satisfies
pT−(m)(w) = u−j for some 0 6 j < m. We have pT−(m)(w) = u−j precisely if w has no edges
to {u−i : 0 6 i < j} but has an edge to u−j ; equivalently, ρ(w, u−i ) =∞ for each 0 6 i < j,
and ρ(w, u−j ) = k for some 1 6 k 6 r. The heads of the first (k − 1) out-edges from w
are then uniformly distributed over [n] \ {u−i : 0 6 i < j}, and the heads of the r− k last
out-edges from w are uniformly distributed over [n] \ {u−i : 0 6 i 6 j}.

The index j is determined by ((R−i , S
−
i ), 0 6 i 6 m). Given that w ∈ R−m ∪ S−m \ {v},

we thus have

|E(w,R−m ∪ S−m)| � 1 + Bin

(
r − 1,

|R−m ∪ S−m| − (j + 1)

n− (j + 1)

)
|E(w,R−m ∪ S−m)| � 1 + Bin

(
r − 1,

|R−m ∪ S−m| − j
n− j

)
.
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Since 0 6 j < m, and |R−m| = m, the second claim follows. The argument when w = v
is similar but easier. Finally, the independence asserted by the lemma follows from the
independence of the random variables (Lw,p : (w, p) ∈ [n]× [r]).

For the next corollary, recall that d−6j = |N−6j| = |N−6j(D, v)|.

Corollary 11. Fix j ∈ N0. Conditional on (N−i , 0 6 i 6 j), independently for all w ∈ [n]

we have |E(w,N−6j)|
d
= Bin(r, d−6j/n) if w = v, |E(w,N−6j)|

d
= Bin(r, d−j /(n − d−6j−1)) if

w 6∈ N−6j, and

1 + Bin

(
r − 1,

d−j
n− d−6j−1

)
� |E(w,N−6j)| � 1 + Bin

(
r − 1,

d−6j
n

)

if w ∈ N−6j \ {v}.

Proof. Apply Lemma 10 at time m = d−6j−1.

Corollary 12. For all j, q, p ∈ N0, given that d−j = q and d−6j = p, d−j+1
d
= Bin(n− p, 1−

(1− q/(n− p))r) and d−j+1 � Bin
(
r(n− p), q

n−p+q

)
.

Proof. If w ∈ [n]\N−6j then E(w,N−6j) = E(w,N−j ). By Corollary 11, the number of edges
from w to N−j then has conditional law Bin(r, q/(n− p)), so is non-zero with probability
1− (1−q/(n−p))r. The distributional identity follows since |[n]\N−6j| = n−d−6j = n−p.

Next, note that Bin(m, 1 − (1 − x)r) is stochastically dominated by Bin(rm, x). To
see this, observe that the former is the number of columns containing at least one 1 in an
r ×m matrix whose entries are iid Ber(x) random variables, while the latter is the law
of the number of ones in such a matrix. The pigeonhole principle then yields the second
claim of the lemma.

Recall that C−i (D, v) = N−(D, u−i )\ (R−i ∪S−i ) is the set of vertices discovered at step
i of iBFS.

Corollary 13. Fix i, q ∈ {0, 1, . . . , n}. Conditioned on |S−i (D, v)| = q, we have

|C−i (D, v)| d
= Bin

(
n− i− q, 1−

(
1− 1

n− i

)r)
.

We omit the proof since it is very similar to those given above.
The next lemma formalizes the intuitively clear picture that it is unlikely for the early

stages of iBFS to encounter a fixed, small subgraph of D not containing the starting
vertex.

Lemma 14. Fix a digraph G with V (G) ⊂ [n] and v 6∈ V (G). Fix s ∈ N and let
i0 = inf{i : |R−i ∪ S−i | > s}. Then

P((R−i0−1 ∪ S−i0−1) ∩ V (G) 6= ∅ | D[V (G)] = G) 6
r(s+ 1)|V (G)|
n− |V (G)| − s

.
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Proof. Since |R−i | = i, we clearly have i0 6 s+1. Writing τ = inf{t : (R−i ∪S−i )∩V (G) 6=
∅}, the probability we aim to bound is thus at most

P(τ < i0 | D[V (G)] = G) =
s∑
i=0

P(τ = i, i0 > i | D[V (G)] = G)

6
s∑
i=0

P(τ = i | i0 > i, τ > i,D[V (G)] = G)

Given that D[V (G)] = G, there are r|V (G)| − |E(G)| edges from V (G) to [n] \ V (G);
the heads of such edges are uniformly distributed over [n] \ V (G). For i > 0, given
that (R−i−1 ∪ S−i−1) ∩ V (G) = ∅, the heads of these edges are uniformly distributed over
[n] \ (V (G) ∪R−i−1 ∪ S−i−1). Thus,

P((R−i ∪ S−i ) ∩ V (G) 6= ∅ | R−i−1, S
−
i−1, D[V (G)] = G, (R−i−1 ∪ S−i−1) ∩ V (G) = ∅)

6
r|V (G)|

n− |V (G)| − |R−i−1 ∪ S−i−1|
,

since, in this situation, the only way that (R−i ∪ S−i )∩ V (G) 6= ∅ is in the case that some
edge with tail in V (G) has as a head the vertex u−i−1.

Given that i0 > i and τ > i we indeed have (R−i−1 ∪ S−i−1) ∩ V (G) = ∅, and also have
|R−i ∪ S−i | 6 s, so P(τ = i | i0 > i, τ > i,D[V (G)] = G) 6 r|V (G)|/(n − |V (G)| − s).
Using this bound in the above sum, the result follows.

Finally, we require the following, rather simple result for oBFS.

Lemma 15. Fix m ∈ N0. Conditional on R+
m and S+

m, independently for all w ∈ [n] \R+
m

we have

|E(w,R+
m ∪ S+

m)| � Bin(r, (|R+
m|+ |S+

m|)/n) � Bin(r, (rm+ 1)/n) .

Proof. We omit the proof of the first inequality, which parallels that of Lemma 10. For
the second, note that |R+

m ∪ S+
m| 6 rm+ 1 since D is r-out regular.

6 In-neighbourhoods: technical lemmas

In this section we gather a few basic estimates that describe the size and structure of
in-neighbourhoods of vertices in D = D(n, r).

Proposition 16 shows that in-neighbourhoods of D(n, r) cannot be too large. Lemma 17
controls the probability that the sequence (d−k (v), k > 1) exhibits a large decrease in value
for relatively small values of k. In the last part of the section, we focus on the probability
that an in-neighbourhood neither exponentially expands nor dies out quickly. Lemma 18,
shows that local in- neighbourhoods of a vertex are well-approximated by Poisson Galton-
Watson trees. We use this lemma with a result of Riordan and Wormald (Lemma 19) to
control the probability that long and thin in-neighbourhoods exist in Proposition 20.
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Proposition 16. For all α > 0,

P
(
∃v ∈ [n], ∃j > 0 such that d−j (v) > (r + α)j log2

r n
)

= O(n−4) .

Proof. Fix v ∈ [n]. We prove that

P
(
∃j > 0 such that d−j (v) > (r + α)j log2

r n
)

= O(n−5) ; (9)

a union bound over v ∈ [n] then proves the proposition.
For j > 0, let Ej = {d−j (v) < (r + α)j log2

r n}. Then

P
(
∃j > 0 such that d−j (v) > (r + α)j log2

r n
)

= P
(
∪nj=1Ej

)
6

n∑
j=1

P(Ej | ∩j′<jEj′) . (10)

By Corollary 12, for every p > q and every a > 0,

P(d−j (v) > a | d−j−1(v) = q, d−6j−1(v) = p) 6 P
(

Bin

(
r(n− p), q

n− p+ q

)
> a

)
.

Note that r(n−p)· q
n−p+q 6 rq. Set a = (r+α)j log2

r n, and observe that if Ej−1 occurs then

d−j−1(v) = q 6 q0 := (r+α)j−1 log2
r n. Finally, for such q we have a = (r+α)q0 > (r+α)q,

so

P(Ej | ∩j′<jEj′) = P(d−j (v) > a | ∩j′<jEj′)
6 sup

q6q0,p
P(d−j (v) > a | d−j−1(v) = q, d−6j−1(v) = p)

6 sup
q6q0,p

P(d−j (v) > rq + αq | d−j−1(v) = q, d−6j−1(v) = p)

6 sup
q6q0

e−
α2q2

2(r+α/3)q = e−Ω(log2
r n) = O(n−6) ,

where we used the Chernoff bound (5). Using this bound in (10) proves (9).

Lemma 17. Fix v ∈ [n]. Uniformly in k 6 0.99 logr n and ω > log3
r n, we have

P(d−6k(v) > ω2, d−k (v) 6 ω) = O(n−3).

Proof. Fix k and ω as above, and v ∈ [n]. Let τ = min{j : d−j (v) > ω2/k}. If d−6k(v) > ω2

and d−k (v) 6 ω, then τ < k, so

P(d−6k(v) > ω2, d−k (v) 6 ω) = P(d−6k(v) > ω2, d−k (v) 6 ω, τ < k)

=
k−1∑
j=1

P(d−6k(v) > ω2, d−k (v) 6 ω, τ = j)

6
k−1∑
j=1

P(d−j (v) > ω2/k, d−k (v) 6 ω) . (11)
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Let σ = min{i > τ : d−i+1(v) 6 d−i (v)}. For any j < k, if d−j (v) > ω2/k and d−k (v) 6 ω,
then σ < k, so

P(d−j (v) > ω2/k, d−k (v) 6 ω) 6 P(d−j (v) > ω2/k, σ < k) . (12)

Now fix α > 0 small enough that (r + α)k log2
r n < n0.999 for n large; this is possible

by our choice of k. Also, for ` ∈ N let E` = {∀i 6 `, d−i (v) < (r + α)i log2
r n}, and let

E =
⋂
`>1E`. By Proposition 16, we have P(E) = O(n−4), so for all 1 6 j 6 k − 1,

P(d−j (v) > ω2/k, σ < k) 6 P(E) + P(d−j (v) > ω2/k, σ < k, E)

6 O(n−4) +
k−1∑
`=j

P(d−j (v) > ω2/k, σ = `, E)

6 O(n−4) +
k−1∑
`=j

P(d−` (v) > ω2/k, d−`+1(v) 6 d−` (v), E`)

6 O(n−4) +
k−1∑
`=j

P(d−`+1(v) 6 d−` (v) | d−` (v) > ω2/k, E`) . (13)

On E` we have d−6`(v) < (r + α)`+1 log2
r n 6 (r + α)k log2

r n < n0.999.
Now fix 0 < q 6 p 6 n0.999 and consider the random variable X distributed as

Bin
(
n− p, 1−

(
1− q

n−p+q

)r)
. Using that (1 − x)i 6 1 − ix +

(
i
2

)
x2 for x ∈ (0, 1) and

i ∈ N, for we have

E(X) > (n− p)

(
rq

n− p+ q
−

(
r
2

)
q2

(n− p+ q)2

)
= rq ·

(n− p)(n− p− r−3
2
q)

(n− p+ q)2

> rq ·
(

1− 3rp

n

)
>

2rq

3
,

the last inequality for n large since p 6 n0.999. Now write q0 = ω2/k and p0 = (r +
α)`+1 logr n < n0.999. By Corollary 12 and the Chernoff bound (6), we have

P(d−`+1(v) 6 d−` (v) | d−` (v) > ω2/k, E`)

6 sup
q06q6p6p0

P(d−`+1(v) 6 d−` (v) | d−` (v) = q, d−6`(v) = p)

6 sup
q06q6p6p0

P(d−`+1(v) 6 q | d−` (v) = q, d−6`(v) = p)

6 sup
q06q6p6p0

P (X 6 q)

6 sup
q06q6p6p0

P (X 6 E(X)− (2r/3− 1)q)

6 sup
q06q6p6p0

e−
(2r/3−1)2q2

2(rq+(2r/3−1)q/3) 6 e−
q0

18r+2 ,
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in the last line using that r > 2. Finally, q0 = ω2/k > log2
r n, so e−q0/(18r+2) = O(n−4).

Combining the preceding inequality with (11), (12) and (13) yields

P(d−6k(v) > ω2, d−k (v) 6 ω) 6
k−1∑
j=1

k−1∑
`=j

P(d−`+1(v) 6 d−` (v) | d−` (v) > ω2/k, E)

+O(kn−4)

6 O(k2n−4) = O(n−3) .

The next lemma compares the law of T−(v) to that of a Poisson(r) Galton-Watson
tree. A similar result, in the setting of undirected graphs, can be found in [33, Lemma
2.2].

Lemma 18. Let r > 2 and let T ′ be a v-rooted plane directed tree where all edges point
to the root. Suppose that |V (T ′)| 6 n/2. Then, for any k > 0 we have

P(T−6k(D, v) ∼= T ′) = eO(|V (T ′)|2/n)P(T6k ∼= T ′) .

where T is a Galton-Watson branching tree whose offspring is Poisson with parameter r.

Proof. Fix k ∈ N0 and a plane tree T ′ of height at most k, and write t = |V (T ′)|. Recall
the canonical labelling of V (T ′) with labels from ∅ ∪

⋃
i>1 Ni introduced in Section 3.3.

Consider the iBFS procedure on T ′ started at its root v. To make sense of this, we must
specify the order in which the children of a vertex u are added to the set of discovered
vertices. We use the left-to-right order: so if u is explored at step i (i.e. u−i (T ′, v) = u)
then the rightmost child of u is the last element of S−i (T ′, v).

We let ai = |C−i (T ′, v)| be the number of children of u−i (T ′, v), and we let s =
|V (T ′6k−1)| be the number of vertices of T ′ at distance at most k − 1 from the root.
In order to check if T6k(D, v) and T ′ are isomorphic, it suffices to perform s steps of the
iBFS exploration from v in D. We then have

P(T−6k(D, v) ∼= T ′) = P
(
|C−i (D, v)| = ai, 0 6 i < s

)
=

s−1∏
i=0

P
(
|C−i (D, v)| = ai | |C−j (D, v)| = aj, 0 6 j < i

)
=

s−1∏
i=0

P

(
|C−i (D, v)| = ai | |S−i (D, v)| = 1 +

i−1∑
j=0

(aj − 1)

)
,

where the last line is due to the symmetry of the model.
Writing qi = 1 +

∑i−1
j=0(aj − 1), by Corollary 13 we then have

P(|C−i (D, v)| = ai | |S−i (D, v)| = qi)

=

(
n− i− qi

ai

)(
1−

(
1− 1

n− i

)r)ai (
1− 1

n− i

)r(n−qi−ai−i)
=e

O
(
ai(ai+r)

n−i−qi

)
(n− i− qi)ai

ai!

(
r

n− i

)ai (
1− 1

n− i

)r(n−qi−ai−i)
.
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Now let T be a Poisson(r) Galton-Watson tree; write ρ for the root of T . Build T via
iBFS starting from ρ. In this manner, we may couple T with a sequence (ξi, i > 0) of iid
Po(r) random variables so that for 0 6 i < |V (T )| we have |C−i (T , ρ)| = ξi. It follows
that

P(T6k ∼= T ′) = P
(
∩s−1
i=0 ξi = ai

)
=

s−1∏
i=0

P(ξi = ai) =
s−1∏
i=0

e−r
rai

ai!
.

Using that 1 + x 6 ex, this gives

P(|C−i (D, v)| = ai | |S−i (D, v)| = qi)

P(ξi = ai)
= e

O
(
ai(ai+r)

n−i−qi

) (n− i− qi)ai
(
1− 1

n−i

)r(n−qi−ai−i)
(n− i)aie−r

= e
O

(
qi+a

2
i

n−i−qi

)
.

Since i+ qi 6 t 6 n/2,
∑s−1

i=0 a
2
i 6 t2, and s 6 t, we have

s−1∑
i=0

qi + a2
i

n− i− qi
6

s−1∑
i=0

t+ a2
i

n/2
= O

(
t2

n

)
.

It follows that

P(T−6k(D, v) ∼= T ′)

P(T6k ∼= T ′)
=

s−1∏
i=0

P(|C−i (D, v)| = ai | |S−i (D, v)| = qi)

P(ξi = ai)
= eO(t2/n) .

Lemma 19 ([33], Lemma 2.1). Let T be a Poisson(r) Galton-Watson tree. There exist
constants c, C > 0 such that for every ω > 2 and k > 1 we have

c ·min{(r(1− λr))k−k
′
, 1} 6 P(0 < |Tk| < ω) 6 C(r(1− λr))k−k

′
,

where k′ = blogr ωc.

Recall that the probability of survival in T is P
(∑

k>0 |Tk| =∞
)
∈ (0, 1). Essentially,

the preceding lemma states that given the branching process survives for the first k
generations, the probability that |Tk| < ω decays exponentially in k (provided that ω is
small enough with respect to k). The final and principal result of this section is to prove
a corresponding bound with d−k (v) in place of |Tk|.

Proposition 20. For every v ∈ [n], k 6 0.99 logr n and log3
r n 6 ω 6 n1/6

P(0 < d−k (v) < ω) = (1 + o(1))P(0 < |Tk| < ω) +O(n−3)

= Θ((r(1− λr))k−k
′
) +O(n−3) .

where k′ = blogr ωc.
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Proof. Write Zk = |Tk|. We first prove an upper bound on P(0 < d−k (v) < ω). By
Lemma 18,

P(0 < d−k (v) < ω) =
∑

{T ′:|T ′k|∈(0,ω)}

P (T6k(D, v) ∼= T ′)

6
∑

{T ′:|T ′
k
|∈(0,ω)

|T ′|6n1/3}

e
O

(
|V (T ′)|2

n

)
P(T6k ∼= T ′) + P(d−6k(v) > ω2, d−k (v) ∈ (0, ω))

6 (1 + o(1))P(0 < Zk < ω) +O(n−3) ,

where in the last inequality we used Lemma 17.
We now turn to the lower bound. A similar argument to that above gives

P(0 < d−k (v) < ω) > (1 + o(1))P(0 < Zk < ω)− P(
k∑
j=0

Zj > ω2, Zk < ω).

Bounding the second probability is straightforward. First, fix j < k and a, b ∈ N. Given
that Zj = a, by the branching property, each of the a subtrees of T rooted at a node
in Tj survives independently with probability p := P(|T | = ∞). Note that p > 0 is
independent of n. But Zk is at least the number of such subtrees which survive, so
P(Zk < b | Zj = a) 6 P(Bin(a, p) < b).

Finally, if
∑k

j=0 Zj > ω2 then max06j6k Zj > ω2/(k + 1). In other words, letting

j0 = inf{j : Zj > ω2/(k + 1)}, we must have j0 6 k. It follows from the preceding
paragraph (conditioning on the value of j0 6 k) that

P(
k∑
j=0

Zj > ω2, Zk < ω) 6 P(Bin(ω2/(k + 1), p) < ω) = O(n−3),

the final inequality by a Chernoff bound since ω2/(k + 1) > ω log2 n. The proposition
follows from Lemma 19.

7 Out-neighbourhoods: technical lemmas

Recall that ESL is the event that D contains no loop vertices. As in the statement of
Proposition 5 we now fix k ∈ [n], let Ek = {d−k (v) > log4 n, d−6k(v) 6 log7 n}, and fix a

graph H with v ∈ V (H) ⊂ [n] such that P(D[N−6k(v)] = H,Ek, ESL) > 0. It is useful to
write BH = N−k (H, v); note that this is a deterministic set since H is deterministic, and
on D[N−6k] = H we have N−k (v) = BH . Let n̂ = n− |V (H)|+ |BH |. By the assumptions

on H we have n̂ > n− log7 n+ log4 n.
For any event A, write PH(A) = P(A | D[N−6k] = H). The following fact describes the

distribution of D under PH . Its proof follows from straightforward considerations and is
omitted.
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Fact 21. Given that D[N−6k] = H, the conditional distribution of D(n, r) is that of the

graph D̂ defined as follows. First, D̂[V (H)] = H.
Next, independently for each w /∈ V (H), let L̂w = (L̂w,1, . . . , L̂w,r) be a vector chosen

uniformly at random from the n̂r vectors (s1, . . . , sr) ∈ (([n] \ V (H)) ∪ BH)r. Then for
each i ∈ [r] add a directed edge from w to L̂w,i.

Finally, for w ∈ V (H), let tw = r − |EH(w,H)|; this is the number of edges with tail
w and head not in H. Independently for each w ∈ V (H), let L̂w = (L̂w,1, . . . , L̂w,tw) be
a vector chosen uniformly at random from ([n] \ V (H))tw , and for each i ∈ [tw] add a
directed edge from w to L̂w,i.

For the remainder of the section, fix u ∈ [n] and write N∗j = N+
j (u)\V (H), d∗j = |N∗j |.

We continue with a simple lemma.

Lemma 22. We have PH(d∗5 < 5, N+
65(u) ∩ V (H) = ∅, ESL) = O(n−3)

Proof. If N+
65(u) ∩ V (H) = ∅ then d∗5 = d+

5 . In this case, since r > 2, it is a simple
combinatorial exercise to check that if also d∗5 < 5 then D[N∗65] has at least two more edges

than vertices. For any fixed digraph D̂ with at least two more edges than vertices and with
no self loops, it is easily seen that PH(D[N+

65] ∼= D̂,N+
65(u)∩V (H) = ∅) = O(n−3). (This

is not true for digraphs with self-loops if r = 2; the probability v itself is a loop vertex
is O(n−2) and in this case d∗5 = 0.) The number of isomorphism classes of digraphs with
diameter at most 5 and maximum out-degree r is bounded, and the result follows.

We next show that with high probability, each generation N∗j is approximately r times
larger than the last, until j is nearly (logr n)/2.

Lemma 23. Let σ = inf{i > 5 : d∗i < ri−5 + 5}. Then PH(5 < σ 6 (logr n)/8) = O(n−3).

Proof. Fix j > 5. If d∗5 > 5 and d∗i+1 > rd∗i − 4 for every 5 6 i < j, then by induction
d∗j > rj−5 + 5. We thus have

PH(5 < σ 6 j) 6 PH
(
d∗5 > 5,

j⋃
i=5

{|d∗i | < ri−5 + 5}

)
6

j−1∑
i=5

P(d∗i+1 6 rd∗i − 4).

Now fix 5 6 i < j. Condition on N∗6i, and recall that the random variables {Lw,m : w ∈
N∗i ,m ∈ [r]} are the heads of edges from vertices in N∗i . Reveal the values of these random
variables one-at-a-time; say a conflict occurs if Lw,m ∈ N∗6i ∪ V (H) or Lw,m = Lw′,m′ for
a previously revealed Lw′,m′ . If d∗i+1 6 rd∗i − 4 then at least 4 conflicts occur.

Under PH , the random variables Lw,m are independent and uniform over ([n]\V (H))∪
BH . When Lw,m is revealed there are less than ri+2 + |BH | locations that can cause a
conflict, since |N∗6i+1| < ri+2, so the probability of a conflict is less than (ri+2 + |BH |)/n̂.
The set {Lw,m : w ∈ N∗i ,m ∈ [r]} has size at most ri+1, and |BH | 6 log7 n; it follows that

PH(d∗i+1 6 rd∗i − 4) 6 P
(
Bin(ri+1, (ri+2 + |BH |)/n̂) > 4

)
6

(
ri+1

4

)
·
(
ri+2 + log7 n

n̂

)4

6
C(r8i + log28 n)

n4
,
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where in the last inequality we used that n̂ > n− log7 n. For j 6 (logr n)/8 we thus have

PH
(
d∗5 > 5,

j⋃
i=5

{|d∗i | < ri−5 + 5}

)
6

j−1∑
i=5

C(r8i + log28 n)

n4
= O(n−3) .

The third lemma of the section shows that out-neighbourhoods continue to grow
rapidly until they reach size close to n/ log n.

Lemma 24. There is C ′ > 0 such that for all i with ri 6 n/ logr n− 2 log7 n,

PH
(
d∗i > log3

r n, d
∗
i+1 6 rd∗i ·

(
1− 2r2

logr n

))
6 e−C

′ log2 n .

Proof. We have

PH
(
d∗i > log3

r n, d
∗
i+1 6 rd∗i ·

(
1− 2r2

logr n

))
6 sup

a∈[log3
r n,r

i+1]

PH
(
d∗i+1 6 rd∗i ·

(
1− 2r2

logr n

)
| d∗i = a

)
.

Condition on N∗6i, and reveal the random variables {Lw,m : w ∈ N∗i ,m ∈ [r]} one-at-
a-time as in the previous proof. When Lw,m is revealed there are less than ri+2 + |BH |
locations that can cause a conflict, so under PH the probability of a conflict is at most
(ri+2 + |BH |)/n̂. If d∗i+1 6 rd∗i − t then at least t conflicts occur, so we obtain

PH
(
d∗i+1 6 rd∗i ·

(
1− 2r2

logr n

)
| d∗i = a

)
6 P

(
Bin

(
ar,

ri+2 + |BH |
n̂

)
>

2r3a

logr n

)
.

Using that ri 6 n/ logr n − 2 log7 n and that |BH | 6 log7 n and n̂ > n − log7 n, it is
straightforward to verify that ar(ri+2 + |BH |)/n̂ 6 r3a/ logr n. A Chernoff bound then
gives

PH
(
d∗i+1 6 rd∗i ·

(
1− 2r2

logr n

)
| d∗i = a

)
6 e−3r3a/(8 logr n) 6 e−C

′ log2 n ,

for some constant C ′ = C ′(r). The latter inequality follows since a > log3
r n .

The following is an easy consequence of the preceding lemma, and concludes the
section.

Corollary 25. Let j∗ = 3 logr logr n+ 5 and let `∗ = logr n− logr logr n− 1. Then there
are c, C > 0 such that

PH
(
d∗j∗ > log3

r n, d
∗
`∗ 6

cn

logr n

)
6 e−C log2 n .
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Proof. If d∗i > log3
r n and d∗i+1 > rd∗i ·

(
1− 2r2

logr n

)
then d∗i+1 > log3

r n. Since `∗ − j∗ =

logr n− 4 logr logr n− 6 we also have(
1− 2r2

logr n

)`∗−j∗
r`
∗−j∗ log3 n >

(
1− 2r2

logr n

)logr n−1
n

r6 log4
r n
· log3

r n >
e−2r2

r6
· n

logr n
,

where we used that (1 − b/x)x−1 > e−bx. With c = e−2r2

2r6
, it follows from the preceding

inequalities that if d∗j∗ > log3
r n but d∗`∗ < cn/ logr n then there is i ∈ [j∗, `∗ − 1] such that

d∗i > log3
r n and d∗i+1 < rd∗i ·

(
1− 2r2

logr n

)
. By Lemma 24, there exists some C ′ such that

PH
(
d∗j∗ > log3

r n, d
∗
`∗ <

cn

logr n

)
6

`∗−1∑
i=j∗

PH
(
d∗i > log3

r n, d
∗
i+1 6 rd∗i ·

(
1− 2r2

logr n

))
6 (`∗ − j∗) · e−C′ log2 n

6 e−C log2 n ,

for some constant C < C ′.

8 Upper bound on the Diameter

In this section we prove Lemma 4 and Proposition 5 from Subsection 4.1. Throughout
the section, we fix u, v ∈ [n].

Recall that k∗ = (ηr + ε) logr n and that `∗ = logr n− logr logr n.

Proof of Lemma 4. It suffices to prove the lemma assuming ε < 1/10. Let k∗ = (ηr +
ε) logr n, and let δ = ε

2ηr
. An easy computation shows that ηr 6 4/5 for every r > 2,

so k∗ 6 0.9 logr n. Recall the definition k0 = k0(v) = min{k : d−k (v) 6∈ (0, log4 n)}. If
k0 > k∗ then 0 < d−k∗(v) < log4 n, so by Proposition 20 we have

P(k0 > k∗) = P(0 < d−k∗(v) < log4 n)

6 O
(
(r(1− λr))k

∗−4 logr logn
)

+O(n−3)

6 O
(
r(logr(r(1−λr)))(ηr+ε+o(1)) logr n

)
+O(n−3)

= O
(
r−(1+2δ+o(1)) logr n

)
+O(n−3)

= O
(
n−(1+δ)

)
,

where we used that 1 + logr (1− λr) = −η−1
r . For all i < k0 we have d−i (v) < log4 n,

so if k0 6 k∗ then d−6k0−1(v) < k∗ log4 n 6 log6 n. In this case, for n large, to have

d−6k0(v) > log7 n we must have d−k0 > (log7 n)/2. It follows by Corollary 12 and a Chernoff
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bound

P(k0 6 k∗, d−6k0(v) > (log7 n)/2)

6 sup
k6k∗−1

sup
q<log4 n

sup
p<log6 n

P(d−k+1(v) > (log7 n)/2 | d−k (v) = q, d−6k(v) = p)

6P(Bin(rn/2, 2 log4 n/n) > (log7 n)/2)

6e−(log7 n)/8.

Combining the two preceding bounds, the lemma follows.

The proof of Proposition 5 occupies the remainder of the section. Let τ = min{j >
1 : N+

j (u) ∩N−6k(v) 6= ∅}, so in particular dist(u, v) = τ + k.

Lemma 26. Fix ε > 0 and let τ ′ = min{j > 1 : |N+
j (u) \ V (H)| > εn/ log n}. Then for

n large,
PH(τ > τ ′ + 1) = e−εr log3 n

Proof. First,

P(D[N−6k(v)] = H, τ > τ ′ + 1)

=
∑
F

P(D[N−6k(v)] = H,D[N+
6τ ′(u) \ V (H)] = F, τ > τ ′ + 1)

=
∑
F

P(D[N−6k(v)] = H,D[N+
6τ ′(u) \ V (H)] = F )

· P(τ > τ ′ + 1 | D[N−6k] = H,D[N+
6τ ′(u) \ V (H)] = F ) .

where the sums are over graphs F with V (F ) ∩ V (H) = ∅, such that u ∈ V (F ) and such
that, for some ` > 0, V (F ) =

⋃`
j=0N

+
j (F, u) and ` = min{i : |N+

i (F, u)| > εn/ log n}.
We now bound the final probability. Under such conditioning, the out-edges from N+

τ ′

are uniformly distributed over ([n] \ V (H)) ∪BH . There are more than r(εn/ log n) such
out-edges; to have τ > τ ′ + 1 the heads of such edges must all avoid BH ; so

P(τ > τ ′ + 1 | D[N−6k(v)] = H,D[N+
6τ ′(u) \ V (H)] = F ) 6

(
1− |BH |

n̂

)r(εn/ logn)

6

(
1− log4 n

n

)εr(n/ logn)

,

the last inequality since |BH | > log4 n and n̂ < n. Using that 1− x 6 e−x this gives

P(D[N−6k] = H, τ >τ ′ + 1) 6 e−εr log3 n
∑
F

P(D[N−6k(v)]=H,D[N+
6τ ′(u) \ V (H)]=F )

6 e−εr log3 nP(D[N−6k(v)] = H).

The result follows.
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Proof of Proposition 5. Recall that we set `∗ = logr n− logr logr n− 1, and the notation
N∗j = N+

j (u) \ V (H), d∗j = |N∗j | from Section 7. Once n is large enough that `∗ + 1 > 5
we have

PH(dist(u,N−6k(v)) > `∗ + 1, ESL)

= PH(dist(u,N−6k(v)) > `∗ + 1, N+
65(u) ∩ V (H) = ∅, ESL),

and we focus on the latter probability. It is convenient to use the shorthand E = {N+
65(u)∩

V (H) = ∅} ∩ ESL.
Now take ε ∈ (0, c), where c is the constant from Corollary 25. and let τ ′ be as in

Lemma 26. Then by that lemma,

PH(dist(u,N−6k(v)) > `∗ + 1, E) 6 PH(τ ′ > `∗, E) + e−εr log3 n .

We bound the second probability by

PH(τ ′ > `∗, E) 6 PH(τ ′ > `∗, d∗j∗ > log3
r n) + PH(d∗j∗ < log3

r n,E) .

The first term on the right is at most e−C log2 n by Corollary 25. We further divide the
second as

PH(d∗j∗ < log3
r n,E) 6 PH(d∗j∗ < log3

r n, d
∗
5 > 5) + PH(d∗5 < 5, E).

Recall that σ = inf{i > 5 : d∗i < ri−5 + 5}. If d∗j∗ < log3
r n then d∗j∗ < rj

∗−5; if also
d∗5 > 5 then 5 < σ 6 j∗. Lemma 23 then implies that the first probability on the right is
O(n−3). By the definition of E and by Lemma 22, the second probability is also O(n−3).
Combining all these bounds we obtain PH(dist(u,N−6k(v)) > `∗ + 1, ESL) = O(n−3), as
required.

9 Lower Bound on the Diameter

In this section we prove Lemma 7, Equation (8) and Lemma 9 from Subsection 4.2. Recall
that k∗ = k∗(n, ε) = (ηr − ε/2) logr n.

Proof of Lemma 7. We assume n large throughout. Given a tree T , let k1(T ) = inf{k :
|Tk| > log4 n}, let A(T ) be the event that |Tk∗ | ∈ [ε log3 n, log3 n], let B(T ) be the event
that maxi6k∗ |Ti| 6 log6 n, and C(T ) be the event that k1 6 k∗ + 5 logr log n and |Tk1 | 6
log5 n. (We may view a deterministic tree as a random tree in the same way as we may
view a constant as a random variable, so it is reasonable to call A(T ), B(T ) and C(T )
events even if T is deterministic.)

We first bound the probability that A,B and C occur for a Poisson(r) Galton-Watson
tree T .

Let ω = log3 n and k0 = logr ω. By the Kesten-Stigum theorem (see e.g. [4, pp.
24–29]) r−k|Tk| converges almost surely to an absolutely continuous random variable on
(0,∞). As it also converges in probability, for every fixed 0 < c1 < c2,

inf
k
P(c1r

k 6 |Tk| 6 c2r
k) > 0,
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where the infimum is taken over all k such that [c1r
k, c2r

k] ∩ N is non-empty. Taking
c1 = ε and c2 = 1, there exists c0 > 0 such that

P(|Tk0| ∈ [εω, ω]) > c0 .

By Lemma 19 with ω = 2 and k = k∗ − k0, there is a > 0 such that

P(|Tk∗−k0| = 1) > a (r(1− λr))k
∗−k0

> arlogr(r(1−λr))(ηr−ε/2−o(1)) logr n

> ar−(1−ε/2ηr−o(1)) logr n

> ar−(1−ε/2) logr n

= anε/2−1 ,

where we used that logr (r(1− λr)) = −η−1
r and that ηr < 1. We conclude that

P(A(T )) > P(|Tk∗−k0| = 1)P(|Tk0| ∈ [εω, ω]) > ac0n
ε/2−1 .

Next, if B(T ) occurs then let i 6 k∗ be minimal such that |Ti| > log6 n. In order for A(T )
to additionally occur the number of descendants of Ti alive at time k∗ must be less than
log3 n. Writing p for the survival probability of a Poisson(r) branching process, it follows
as in the proof of Proposition 20 that

P(A(T ), B(T )) 6 P(Bin(log6 n, p) 6 log3 n) 6 n−3 ,

the last inequality by a Chernoff bound.
To bound the probability of C(T ), let N = N(T ) be the number of vertices in Tk∗

with at least one descendant in Tk∗+5 logr logn; if Tk∗ = ∅ then N = 0. If C(T ) does not
occur then one of the following must occur.

(a) N < log2 n.

(b) N > log2 n but k1 > k∗ + 5 logr log n.

(c) |Tk1| > log5 n.

If A(T ) occurs then |Tk∗| > ε log3 n, so by the branching property (i.e. the independence
of subtrees rooted at elements of Tk∗), we have

P(A(T ), N < log2 n) 6 P(Bin(ε log3 n, p) 6 log2 n) < n−3

for large n, by a Chernoff bound. Next, to have k1 > k∗ + 5 logr log n, every vertex in
T ∗k must have fewer than log4 n descendants in Tk∗+5 logr logn, so by Lemma 19 and the
branching property we have

P(N > log2 n, k1 > k∗ + 5 logr log n) 6 (P(|T5 logr logn| ∈ (0, log4 n)))log2 n

6
(
C(r(1− λr))5 logr logn−logr log4 n

)log2 n

6
(
C(r(1− λr))log logn

)log2 n

6n−3
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for large n, the last inequality because r(1 − λr) < 1. Finally, by the Markov property
and the definition of k1, writing Po(t) for a Poisson(t) random variable, we have

P(|Tk1| > log5 n) 6 sup
m<log4 n

P(Po(rm) > log5 n | Po(rm) > log4 n)

6 P(Po(r log4 n) > log5 n− log4 n) .

Standard estimates for the Poisson upper tail (see, e.g., [31], Lemma 1.2) then yield
P(|Tk1| > log5 n) 6 n−3. Combining these bounds, we obtain that, for n large,

P(A(T ), B(T ), C(T )) 6 P(C(T ) | A(T ), B(T )) 6 3n−3 .

Combining inequalities, and choosing β > 0 appropriately, yields

P(A(T ), B(T ), C(T )) > anε/2−1 − 4n−3 > 3nβ−1.

Now, if A(T ), B(T ) and C(T ) all occur then |T6k1| 6 k∗ log6 n < log7 n, so we may use
Lemma 18 to transfer our bound from the Poisson(r) Galton-Watson tree to the tree
T−6k1(v). We obtain

P(A(T−6k1(v)), B(T−6k1(v)), C(T−6k1(v))) =

(
1 +O

( log14 n

n

))
P(A(T ), B(T ), C(T ))

> 2nβ−1 .

Given that A(T−6k1(v)), B(T−6k1(v)) and C(T−6k1(v) all occur, in order to have v ∈ F (ε) it
is sufficient that D[N−6k1(v)] is a tree, i.e. that D[N−6k1(v)] = T−6k1(v).

Finally, if A(T−6k1(v)), B(T−6k1(v)) and C(T−6k1(v)) occur we have |V (T−6k1(v))| < log7 n.
By Corollary 11, in this case for each element u ∈ V (T−6k1(v)), the probability that there

is a non-tree edge u to V (T−6k1(v)) is at most (r log7 n)/n. It follows that

P(A(T−6k1(v)), B(T−6k1(v)), C(T−6k1(v)), D[N−6k1(v)] 6= T−6k1(v)) 6
r log14 n

n
< nβ−1.

The result follows.

The next lemma will be our key tool for controlling the joint probabilities of in-
neighbourhoods of distinct vertices. Results of this type are standard in sparse random
undirected graphs.

Lemma 27. Fix u, v ∈ [n] and trees T, T ′, with roots u and v, respectively, and with
V (T ) ∪ V (T ′) ⊂ [n] and V (T ) ∩ V (T ′) = ∅. Then

P(D[N−6h(u)] = T,D[N−6h′(v)] = T ′) =

(
1 +O

(
|V (T )|2

n− |V (T ′)|
+
|V (T ′)|2

n− |V (T )|

))
· P(D[N−6h(u)] = T ) · P(D[N−6h′(v)] = T ′) .
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Proof. Recall that Ti is the i-th generation of tree T . Write h and h′ for the respective
heights of T and T ′, and t and t′ for their respective sizes. In order that D[N−6h(u)] = T ,
it is necessary and sufficient that the following events occur.

• For each x ∈ V (T ) \ {u}, there is an edge from x to pT (x) in D; call this event
A1(u, T ).

• There are no other edges within D[V (T )]; call this event A2(u, T ).

• There are no edges from [n] \D[V (T )] to V (T ) \ Th; call this event A3(u, T ).

Note that A3 is independent of A1 and A2, so we have

P(D[N−6h(u)] = T ) = P(A1(u, T ), A2(u, T )) ·
(
n− t+ |Th|

n

)r(n−t)
. (14)

We now consider two such events simultaneously. Observe that if T ′ has root v and height
h′, and V (T ′)∩V (T ) = ∅, then A1(u, T )∩A2(u, T ) is independent of A1(v, T ′)∩A2(v, T ′).
We thus have

P(D[N−6h(u)] = T,D[N−6h′(v)] = T ′)

=P(A1(u, T ), A2(u, T )) · P(A1(v, T ′), A2(v, T ′))

· P(A3(u, T ), A3(v, T ′) | A1(u, T ), A2(u, T ), A1(v, T ′), A2(v, T ′)) . (15)

Given that A1(u, T ) and A2(u, T ) occur, there are precisely 1+(r−1)t edges leaving V (T ),
and the heads of these edges are uniformly distributed over [n] \ V (T ). The conditional
probability no such edges have head in V (T ′) \ T ′h′ is(

n− t− t′ + |T ′h′ |
n− t

)1+(r−1)t

.

Similar considerations for edges leaving V (T ′) and edges with tail in [n] \ (V (T )∪ V (T ′))
yield the identity

P(A3(u, T ), A3(v, T ′) | A1(u, T ), A2(u, T ), A1(v, T ′), A2(v, T ′))

=

(
1− t′ − |T ′h′ |

n− t

)1+(r−1)t(
1− t− |Th|

n− t′

)1+(r−1)t′(
1− t+ t′ − |Th| − |T ′h′|

n

)r(n−t−t′)
.

Combined with (14) and (15), straightforward arguments give

P(D[N−6h(u)] = T,D[N−6h′(v)] = T ′)

=

(
1 +O

(
t2

n− t′
+

(t′)2

n− t

))
P(D[N−6h(u)] = T ) · P(D[N−6h′(v)] = T ′) .

The following corollary provides a proof for Equation (8).
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Corollary 28. For distinct u, v ∈ [n] we have P(u, v ∈ F ) 6 (1 + o(1))(P(u ∈ F ) +
log15 n/n)P(v ∈ F ).

Proof. We first divide according to whether or not N−6k1(u)(u) ∩N−6k1(v)(v) is empty:

P(u, v ∈ F )

=P(u, v ∈ F,N−6k1(u)(u) ∩N−6k1(v)(v) 6= ∅)+ P(u, v ∈ F,N−6k1(u)(u) ∩N−6k1(v)(v) = ∅).

We start with the first term on the right. If v ∈ F then |N−6k1(v)(v))| 6 log7 n, so by
symmetry

P(v ∈ F, u ∈ N−6k1(v)(v)) 6
log7 n

n
· P(v ∈ F ).

Next, by conditioning on N−6k1(v)(v) we have

P(u, v ∈ F, u 6∈ N−6k1(v)(v), N−6k1(u)(u) ∩N−6k1(v)(v) 6= ∅)

6
∑
{T∈T (v):
u6∈V (T )}

P(D[N−6k1(v)(v)] = T )P(u ∈ F,N−6k1(u)(u) ∩ V (T ) 6= ∅ | D[N−6k1(v)(v)] = T ) .

In order to bound the final probability, first fix T as in the supremum and suppose
that D[N−6k1(v)(v)] = T . Consider the iBFS procedure starting from u. Recall that at

step i, R−i is the set of explored vertices and S−i is the set of discovered vertices. Let
i0 = min{i : |R−i ∪ S−i | > log7 n}. If u ∈ F then |N−6k1(u)(u)| 6 log7 n, so to have

N−6k1(u)(u) ∩ V (T ) = ∅ it suffices that (R−i0−1 ∪ S−i0−1) ∩ V (T ) = ∅. Since |V (T )| 6 log7 n,
by Lemma 14 we thus have

P(u ∈ F,N−6k1(u)(u) ∩ V (T ) 6= ∅ | D[N−6k1(v)(v)] = T ) 6
r(log7 n+ 1) log7 n

n− 2 log7 n
.

Together with the two preceding displayed equations, for n large this gives

P(u, v ∈ F,N−6k1(u)(u) ∩N−6k1(v)(v) 6= ∅)

6
log7 n

n
· P(v ∈ F ) +

∑
{T∈T (v):u6∈V (T )}

P(D[N−6k1(v)(v)] = T ) · r(log7 n+ 1) log7 n

n− 2 log7 n

6
log15 n

n
· P(v ∈ F ), (16)

the last inequality since∑
{T∈T (v):u6∈V (T )}

P(D[N−6k1(v)(v)] = T ) = P(v ∈ F, u 6∈ N−6k1(v)(v)]) .
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We now turn to the case that N−6k1(u)(u) and N−6k1(v)(v) are disjoint. We have

P(u, v ∈ F,N−6k1(u)(u) ∩N−6k1(v)(v) = ∅)

=
∑

{(T,T ′)∈T (u)×T (v):

V (T )∩V (T ′)=∅}

P(D[N−6k1(u)(u)] = T,D[N−6k1(v)(v)] = T ′) .

=

(
1 +O

(
log14 n

n

)) ∑
{(T,T ′)∈T (u)×T (v):

V (T )∩V (T ′)=∅}

P(D[N−6k1(u)(u)] = T ) · P(D[N−6k1(v)(v)] = T ′) ,

the last line by Lemma 27. (Although k1(u) and k1(v) are random, by the same argument
as in Lemma 9 we may replace them by the deterministic values h(T ) and h(T ′) without
affecting the probability, so Lemma 27 indeed applies.) Summing over all pairs (T, T ′) ∈
T (u)× T (v) gives an upper bound, so we obtain

P(u, v ∈ F,N−6k1(u)(u) ∩N−6k1(v)(v) = ∅) 6 (1 + o(1))P(u ∈ F )P(v ∈ F ) .

Together with (16) this completes the proof.

We finally prove Lemma 9.

Proof of Lemma 9. Fix ε > 0 and write F = F (ε). If D0 is attractive then with high
probability every vertex v with maxu∈[n] dist(u, v) < ∞ satisfies v ∈ V (D0). Since D0 is
attractive whp [19], in order to show P(F ⊂ V (D0)) = 1 − o(1), it suffices to show that
whp, for all v ∈ F and u ∈ [n] we have dist(u, v) <∞.

Let T (v) be the set of digraphs T with v ∈ V (T ) and V (T ) ⊂ [n] such that if
D[N−6k1(v)] = T then v is a flag. By the definition of a flag, all the elements of T (v) are
rooted at v. If D[N−6k1(v)] = T then N−6k1(v) contains no loop vertices. It follows that

T (v) is precisely the set of graphs T such that P(D[N−6k1(v)] = T, v ∈ F,ESL) > 0.
For T ∈ T (v) we thus have

P(D[N−6k1(v)] = T, v ∈ F,ESL) = P(D[N−6k1(v)] = T,ESL).

It follows that

P(∃u, v ∈ [n] : v ∈ F, dist(u, v) =∞)

6P(ESL) +
∑
u,v∈[n]

P(v ∈ F, dist(u, v) =∞, ESL)

=P(ESL) +
∑
u,v∈[n]

∑
T∈T

P(dist(u, v) =∞, ESL, D[N−6k1(v)] = T )
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We bound the inner sum by writing∑
T∈T

P(dist(u, v) =∞, ESL, D[N−6k1(v)] = T )

=
∑
T∈T

P(D[N−6k1(v)] = T ) · P(dist(u, v) =∞, ESL | D[N−6k1(v)] = T )

6 sup
T∈T

P(dist(u, v) =∞, ESL | D[N−6k1(v)] = T ) ·
∑
T∈T

P(D[N−6k1(v)] = T )

6 sup
T∈T

P(dist(u, v) =∞, ESL | D[N−6k1(v)] = T ) ,

the final bound because a sum of probabilities of disjoint events is at most one.
Now fix T ∈ T and write h = h(T ) for the height of T (i.e., the greatest number of

edges on a path ending at the root v). Observe that if D[N−6k1(v)] = T then k1 = h(T ).
We thus have the equality of events

{D[N−6k1(v)] = T} ∩ {v ∈ F} = {D[N−6k1(v)] = T} = {D[N−6h(v)] = T}.

If D[N−6h(v)] = T then the event Eh = {d−h (v) > log4 n, d−6h(v) 6 log7 n} from Proposi-
tion 5 occurs (since in this case v is a flag), so

{D[N−6h(v)] = T} = {D[N−6h(v)] = T} ∩ Eh ,

so P(D[N−6h(v)] = T}, Eh, ESL) > 0. It follows by Proposition 5 that P(dist(u, v) =

∞, ESL | D[N−6k1(v)] = T ) = O(n−3). Using this bound, the result follows from the two
preceding inequalities and the fact that P(ESL) = Θ(n1−r) = O(n−1).

10 The Stationary Distribution

In this section we prove Theorem 2. Recall that D0 = D0(n, r) is the largest strongly
connected component of D and that with high probability D0 is attractive [19] and er-
godic [5]. Write πmax = πmax(D) and πmin = πmin(D). Also, write X = (Xk, k > 0) for
simple random walk on D = D(n, r).

It is important to distinguish the randomness of the graph D from that of the walk
X. For v ∈ V (D) = [n], write Pv for the (random) probability measure under which
X has the law of simple random walk on D with X0 = v, and Ev for the corresponding
expectation operator. It is handy to have a concrete description of X under Pv, as follows.
Recall that D has edges {(i, Li,j), (i, j) ∈ [n] × [r]} (this is the “canonical construction”
from the introduction). Let (Uk, k > 0) be independent and uniformly distributed over
{1, . . . , r}. Then set X0 = v and for k > 0 let Xk+1 = LXk,Uk .

10.1 Bounding πmax

Fix k > 1 and view D[N−6k(v)] as a maze, which a random walk attempting to reach v
must navigate. The maze entrances are the elements of N−k (v), and the treasure lies at v.
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Suppose that the random walk follows an edge e from N−6k(v) to its complement. After
following the edge, the random walk’s position has distance greater than k from v. Since
the distance to v decreases by at most one in a single random walk step, this means that
in order to reach v after leaving N−6k(v), the random walk must pass through N−k (v): it
must restart at one of the maze entrances.

With the preceding paragraph in mind, for any positive integer h we say thatD[N−6k(v)]
is h-hard if for every directed path P from N−k (v) to v within D[N−6k(v)], we have

#{u ∈ V (P ), |E(u,N−6k(v))| = 1} > h.

Perhaps more picturesque: the maze is h-hard if no matter what entrance is chosen,
along any potential path to the treasure there are at least h locations where only a single
direction stays within the maze; the other (r−1) possibilities deposit the searcher outside
of the maze walls.

For S ⊂ [n] let τS = inf{k > 0 : Xk ∈ S} and let τ+
S = inf{k > 0 : Xk ∈ S}.

Lemma 29. For k > 1, if D[N−6k(v)] is h-hard then

π(v) 6
1

rh ·Pv

(
τ[n]\N−6k(v) 6 τ+

v

) .
Proof. If the maze is h-hard then from any u ∈ N−k (v),

Pu

(
τv < τ[n]\N−6k(v)

)
6 r−h. (17)

To see this, simply note that in order to have τv < τ[n]\N−6k(v) the walk must visit at

least h vertices w ∈ N−6k(v) with |E(w,N−6k(v))| = 1. But for such a vertex w we have

Pw

(
X1 ∈ N−6k(v)

)
= 1/r and the inequality follows by the Markov property.

We now use that

1

π(v)
= Ev

(
τ+
v

)
> Ev

(
τ+
v | τ[n]\N−6k(v) 6 τ+

v

)
·Pv

(
τ[n]\N−6k(v) 6 τ+

v

)
.

Let K be the number of visits to N−k (v) before the walk visits v. Since the inequality (17)
holds for all u ∈ N−k (v), it follows that for all w ∈ [n]\N−6k(v) we have Ew (τv) > Ew (K) >
rh. Therefore

Ev

(
τ+
v | τ[n]\N−6k(v) 6 τ+

v

)
> inf

w∈[n]\N−6k(v)
Ew (τv) > rh ,

and the result follows.

Lemma 30. Fix δ > 0 and let `∗ = (1− δ) logr n. Then

P
(
|N−6`∗(v)| > n1−δ/2) = O(n−4) .
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Proof. Choose α > 0 small, and let A be the event that for all k > 0 and all v ∈ [n] we
have d−k (v) 6 (r+ α)k log2 n. By Proposition 16, we have P(A) = O(n−4). Assuming α is
small enough with respect to δ, we also have

|N−6`∗(v)| = d−6`∗(v) =
`∗∑
k=0

d−k (v) 6 (r + α)`
∗+1 log2 n < n1−δ/2 ,

so
P(|N−6`∗(v)| > n1−δ/2) 6 P(|N−6`∗(v)| > n1−δ/2 | A) + P(A) = O(n−4) .

Proposition 31. Fix δ > 0 and let `∗ = (1− δ) logr n and h = (1− 2δ) logr n. Then

P

⋂
v∈[n]

D[N−6`∗(v)] is h-hard

 = 1−O(n−3) .

Proof. Recall from the introduction that D = D(n, r) has edges {(i, Li,j) : (i, j) ∈ [n] ×
[r]}. Fix v ∈ [n]. For each k > 1 let T−6k = T−6k(D, v) be the iBFS tree of D[N−6k(v)]
described in Section 3. For w ∈ [n], w 6= v let Y (w) = |E(w,N−6`∗(v))| − 1, and let
Y (v) = |E(v,N−6`∗(v))|. Observe that there may be multiple edges from w to a vertex
u ∈ N+(w), so Y (w) may not equal |N+(w) ∩N−6`∗(v)| − 1.

For w ∈ N−6`∗(v) with w 6= v, the parent of w in T−6`∗ lies in N+(w) ∩ N−6`∗−1(v) ⊂
N−6`∗(v), so Y (w) > 0. The key insight of the proof is that if D[N−6`∗(v)] is not h-hard
then there is some simple path P in D[N−6`∗(v)] from N−`∗(v) to v along which at least
|P | − h vertices w have Y (w) > 0. To show that P(D[N−6`∗(v)] is not h-hard) is small it
thus suffices to show that with high probability no such path exists.

The sets {Y (w) : w ∈ N−6`∗(v)} are conditionally independent given T−6`∗ . Furthermore,
given T−6`∗ , by Corollary 11 we also have Y (w) � Bin(r − 1, |N−6`∗(v)|/n) for all w ∈
N−6`∗(v).

Let A be the event that |N−6`∗(v)| 6 n1−δ/2. For S ⊂ [n], it follows that on A
the random variable B(S) = |{w ∈ S : Y (w) > 0}| is stochastically dominated by
Bin(|S|, (r − 1)n−δ/2). Furthermore, by Lemma 30 we have P(A) = 1−O(n−4).

We would like to conclude as follows. Let S be any path from T−`∗ (the last generation
of T−6`∗) to v. The arguments of the preceding paragraphs suggest the bound

P(B(S) > |S| − h | A) 6 P(Bin(|S|, rn−δ/2) > |S| − h) 6 2|S|(rn−δ/2)|S|−h.

On A we have |T−`∗ | < |T
−
6`∗| 6 n1−δ/2, so there are less than m · rt paths of length t from

T−`∗ to v. Now use the preceding inequality and a union bound over paths of length t and
over t > `∗.

To make the preceding argument rigorous, we need to deal with the fact that the set of
paths from T−`∗ to v are random (even conditional on T−`∗ , as such paths may follow edges of
D[N−6`∗(v)] which are not edges of T−`∗ ). To do so, condition on T−6`∗ , fix w ∈ T−`∗ = N−`∗(v)
and a string s = s1s2 . . . st ∈ [r]t of length |s| = t. This string uniquely specifies a path
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P = P (w, s) = (pi(w, s), 0 6 i 6 t) in D: at step i follow the si-th edge leaving the
current vertex. Formally, we let p0 = w and, for 1 6 i 6 t, let pi = Lpi−1,si .

We reveal the path P edge-by-edge, starting from w. By the independence of the
sets Y (u), for each 0 6 i < t, given that the sub-path p0, . . . , pi is simple (in partic-
ular pi 6∈ {p0, . . . , pi−1}) then Y (pi) is conditionally independent of p0, . . . , pi−1 and of
Y (p0), . . . , Y (pi−1). It follows that

P(Y (pi) > 0 | T6`∗ , A, (p0, . . . , pi) simple path inD[N−6`∗(v)],(Y (pj), j <i)) 6 rn−δ/2 .

By repeated conditioning, we obtain

P(P (w, s) is a simple path in D[N−6`∗(v)], B(P (w, s)) > t− h | T6`∗ , A)

6P(Bin(t, rn−δ/2) > t− h)

62t(rn−δ/2)t−h .

Now let Aw(t) be the event that there is a simple path P of length t starting from
w and staying within D[N−6`∗(v)], for which B(P ) > t − h. All possible such paths are
described by a string s ∈ [r]t, so by the preceding inequality and a union bound,

P(Aw(t) | T6`∗ , A) 6 (2r)t(rn−δ/2)t−h 6
(2r2)t

nδ(t−h)/2
.

Since `∗ − h > δ log n, this yields that

P

 ⋃
w∈N−

`∗ (v)

⋃
t>`∗

Aw(t) | T6`∗ , A

 6 n
(2r2)`

∗

nδ(`∗−h)/2

∑
j>0

(
2r2

nδ/2

)j
= O(n−4) .

Since P(A) = 1−O(n−4) this bound also holds unconditionally. But, as described in the
first two paragraphs of the proof,

{D[N−6`∗(v)] is not h-hard} ⊂
⋃

w∈N−
`∗ (v)

⋃
t>`∗

Aw(t) ,

so P(D[N−6`∗(v)] is not h-hard) = O(n−4). A union bound over v ∈ [n] completes the
proof.

Before proving our bounds on πmax we require one final result, which states that with
high probability there is at least one escape route along each path from N−log logn(v) to v,
for all v.

Lemma 32. For v ∈ [n] let Ev be the event that each path from N−log logn(v) to v contains

at least one vertex w with |N+(w) ∩N−6`∗(v)| = 1. Then

P

⋂
v∈[n]

Ev

 = 1−O(n−3) .
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Note that the event Ev is not the event that D[N−6log logn(v)] is 1-hard: in Ev we

require the vertex w to send the searcher not outside of D[N−6log logn(v)] but rather out

of the larger maze D[N−6`∗(v)]. The proof of Lemma 32 follows the same lines as that of
Proposition 31 but is simpler, and is omitted.

Theorem 33. For every ε > 0, with high probability we have

1

n
6 πmax 6

1

n1−ε ,

Proof. The lower bound holds deterministically since
∑

v∈[n] π(v) = 1.

To prove the upper bound, fix v ∈ [n] and δ ∈ (0, ε/2). Write `∗ = (1− δ) logr n, and
T6`∗ = T6`∗(D, v).

First, note that if N+(v) \ N−6log logn(v) 6= ∅ then Pv

(
X1 6∈ N−6log logn(v)

)
> 1/r. We

have

P(N+(v) \N−6log logn(v) = ∅)
6P(|N−6log logn(v)| > n1/3) + P(N+(v) \N−6log logn(v) = ∅ | |N−6log logn(v)| < n1/3)

=O(n−3) +O(n−4/3) ,

the first by Proposition 16 and the second by Corollary 11.
Next, if the event Ev from Lemma 32 occurs then for all w 6∈ N−6log logn(v) we have

Pw

(
τ[n]\N−6`∗ (v) 6 τv

)
> 1/r. By the Markov property, it follows that if

N+(v) \N−6log logn(v) 6= ∅

and Ev, then

Pv

(
τ[n]\N−6`∗ (v) 6 τ+

v

)
>

1

r
Pv

(
X1 6∈ N−6log logn(v)

)
>

1

r2
.

By the preceding paragraph and Lemma 32, we thus have Pv

(
τ[n]\N−6`∗

6 τ+
v

)
> r−2 with

P-probability 1−O(n−4/3).
Finally, if in addition D[N−6`∗(v)] is h-hard then by Lemma 29 we obtain that π(v) 6

rh−2 6 (1 + o(1))n−(1−2δ). By Proposition 31 we thus have π(v) 6 (1 + o(1))n−(1−2δ) with
probability 1−O(n−4/3). A union bound over v ∈ [n] then completes the proof.

10.2 Bounding πmin

We bound πmin from below using the following lemma.

Lemma 34. Let D be any r-out regular digraph. If D is ergodic and has diameter
diam(D) 6 d, then

πmin >
1

1 + drd
.
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Proof. Fix v ∈ V (D). For any k ∈ [d] and u ∈ N−k (D, v), let K(u, k) > 1 be the number
of directed paths of length k from u to v. Observe that the probability of following each
such path is precisely r−k, since D is r-out regular. Furthermore, since π is stationary, it
satisfies

π(v) >
∑

u∈N−k (v)

π(u) · K(u, k)

rk
>

∑
u∈N−k (v)

π(u)

rk
.

By averaging over k ∈ [d] we have

π(v) >
1

d

d∑
k=1

∑
u∈N−k (v)

π(u)

rk
>

1− π(v)

drd
,

the last inequality since diam(D) 6 d so
⋃d
k=1 N

−
k (v) = V (D) \ {v}. The lemma follows.

Theorem 35. For every ε > 0 we have

1

n1+ηr+ε
6 πmin 6

1

n1+ηr−ε
,

with high probability.

Proof. Fix ε > 0 small. It is a straightforward consequence of Theorem 1 and Lemma 34
that πmin > n−(1+ηr+ε) with high probability. It remains to show that πmin is small with
high probability.

Let k∗ = (ηr − ε/2) logr n, and recall from Section 9 the definition of the set F = F (ε)
of ε-flags. In particular, if v ∈ F (ε) then D[N−6k∗(v)] is a tree. It follows that if v ∈ F (ε)
then D[N−6k∗(v)] is k∗-hard.

Let A be the event that πmax > n−(1−ε/6). By Corollary 8, P(F = ∅) = o(1), and by
Theorem 33, P(A) = o(1). Therefore

P(πmin > n−(1+ηr−ε)) = P(πmin > n−(1+ηr−ε), F 6= ∅, A) + o(1) . (18)

Fix v ∈ [n], and for u ∈ [n] let K(u) be the number of paths of length k∗ from u to v.
Using the stationarity of π we have

π(v) =
∑
u∈[n]

K(u)

rk∗
· π(u) .

If v is a flag then D[N−6k∗(v)] is a tree, K(u) = 0 for u 6∈ N−k∗(v) and K(u) = 1 for

u ∈ N−k∗(v). In this case we also have |N−k∗(v)| 6 log7 n. Finally, on A we have π(u) 6
n−(1−ε/6). On the event {v ∈ F} ∩ A, we thus obtain the bound

π(v) 6 |N−k∗(v)| · 1

rk∗
· n−(1−ε/6) 6

log7 n

n1+ηr−2ε/3
6

1

n1+ηr−ε
.

In other words, on A, every vertex v ∈ F deterministically satisfies π(v) 6 n−(1+ηr−ε), so
in this case if F is non-empty then πmin 6 n−(1+ηr−ε). It follows that the probability on
the right of (18) is zero, so P(πmin > n−(1+ηr−ε)) = o(1), as required.
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Proof of Theorem 2. The theorem is now an immediate consequence of Theorems 33
and 35.

Acknowledgements

All three authors thank the referee for helpful comments. LAB was supported in part by
an NSERC Discovery Grant. The first author also thanks the Newton Institute for their
hospitality during the final stages of the research. The third author wants to thank Xing
Shi Cai, Remco van der Hofstad and Bruce Reed for useful discussions. We also thank
Dana Angluin and Dongqu Chen for useful discussions regarding their work [1].

References

[1] D. Angluin and D. Chen. Learning a random dfa from uniform strings and state
information. In International Conference on Algorithmic Learning Theory (ALT),
2015.

[2] D. Angluin, L. Becerra-Bonache, A. H. Dediu, and L. Reyzin. Learning finite au-
tomata using label queries. International Conference on Algorithmic Learning Theory
(ALT), 2009.

[3] D. Angluin, D. Eisenstat, L. A. Kontorovich, and L. Reyzin. Lower bounds on
learning random structures with statistical queries. International Conference on
Algorithmic Learning Theory (ALT), 2010.

[4] K. B. Athreya and P. E. Ney. Branching Processes. Grundlehren Der Mathematischen
Wissenschaften. Springer-Verlag, Berlin Heidelberg, 1972.

[5] B. Balle. Ergodicity of random walks on random DFA. arXiv:1311.6830, 2013.

[6] F. Bassino, J. David, and C. Nicaud. Average case analysis of Moore’s state mini-
mization algorithm. Algorithmica, 2012.

[7] D. Berend and A. Kontorovich. The state complexity of random dfas. Theoretical
Computer Science, 652:102–108, 2016.

[8] M. V. Berlinkov. On the probability of being synchronizable. In Conference on
Algorithms and Discrete Applied Mathematics, pages 73–84. Springer, 2016.

[9] S. Bhamidi and R. Van der Hofstad. Diameter of the stochastic mean-field model of
distance. Combinatorics, Probability and Computing, 26(6):797–825, 2017.

[10] B. Bollobás and W. Fernandez de la Vega. The diameter of random regular graphs.
Combinatorica, 2(2):125–134, 1982.

[11] X. S. Cai and L. Devroye. The graph structure of a deterministic automaton chosen
at random. Random Structures & Algorithms, 51(3):428–458, 2017.

[12] A. Carayol and C. Nicaud. Distribution of the number of accessible states in a random
deterministic automaton. Symposium on Theoretical Aspects of Computer Science
(STACS), 2012.

[13] P. Chalermsook, B. Laekhanukit, and D. Nanongkai. Pre-reduction graph products:

the electronic journal of combinatorics 27(3) (2020), #P3.28 39

https://arxiv.org/abs/1311.6830


Hardnesses of properly learning dfas and approximating edp on dags. In Foundations
of Computer Science (FOCS), 2014.

[14] C. Cooper and A. Frieze. Stationary distribution and cover time of random walks on
random digraphs. Journal of Combinatorial Theory, Series B, 102(2):329–362, 2012.

[15] S. De Felice and C. Nicaud. Brzozowski algorithm is generically super-polynomial
for deterministic automata. International Conference on Developments in Language
Theory (DLT), 2013.

[16] C. De la Higuera. Grammatical inference: learning automata and grammars. Cam-
bridge University Press, 2010.

[17] T. I. Fenner and A. M. Frieze. On the connectivity of random m-orientable graphs
and digraphs. Combinatorica, 2(4):347–359, 1982.
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