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Abstract

In this short note we study two questions about the existence of subgraphs of the
hypercube Qn with certain properties. The first question, due to Erdős–Hamburger–
Pippert–Weakley, asks whether there exists a bounded degree subgraph of Qn which
has diameter n. We answer this question by giving an explicit construction of such
a subgraph with maximum degree at most 120.

The second problem concerns properties of k-additive spanners of the hypercube,
that is, subgraphs of Qn in which the distance between any two vertices is at most
k larger than in Qn. Denoting by ∆k,∞(n) the minimum possible maximum degree
of a k-additive spanner of Qn, Arizumi–Hamburger–Kostochka showed that

n

lnn
e−4k ⩽ ∆2k,∞(n) ⩽ 20

n

lnn
ln lnn.

We improve their upper bound by showing that

∆2k,∞(n) ⩽ 104k
n

lnn
ln(k+1) n,

where the last term denotes a k + 1-fold iterated logarithm.
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1 Introduction

Let Qn denote the hypercube graph, with vertex set {0, 1}n with edges connecting two
vertices if they differ in precisely one coordinate. Sparse subgraphs of the hypercube
with strong distance-preserving properties have been studied extensively in the literature,
and have found many practical applications in distributed computing and communication
networks. We refer the reader to the recent survey [2].

Erdős–Hamburger–Pippert–Weakley [16] studied spanning subgraphs ofQn with diam-

eter n. They observed that there exists such a subgraph with average degree 2+O
(

1√
n

)
,

however in their construction there were vertices of degree n. They asked the following
natural question:

Question 1 (Erdős–Hamburger–Pippert–Weakley [16]). Does there exist a spanning sub-
graph of Qn with bounded degree and diameter n?

Our first result is an explicit construction giving a positive answer to Question 1.

Theorem 2. There exists a spanning subgraph G of Qn with maximum degree at most
120 such that the diameter of G is n.

One particular distance-preserving property that has received much attention in the
past is that of an additive spanner. We say a subgraph G ⊂ Qn is a k-additive spanner if
distG(x, y) ⩽ distQn(x, y) + k for any two vertices x, y ∈ {0, 1}n.

Constructions of additive spanners with few edges and/or low maximum degree have
attracted considerable attention in computer science in the past. A 2-additive spanner of
Qn with average degree n+1

2
can be found in [18]. The first 2-additive spanner constructions

for general graphs are given in [3]; 4- and 6-additive spanners are found in [13, 9]. A
barrier to any further general additive spanner constructions is discussed in [1]. Papers
specifically dealing with the low maximum degree case are e.g. [11, 15, 14, 17].

Arizumi–Hamburger–Kostochka [4] denoted by ∆k,∞(n) the minimum possible maxi-
mum degree of a k-additive spanner of Qn. Note that since Qn is bipartite, by deleting
edges the distance can only grow by an even amount. They showed that for k ⩾ 2 and
n ⩾ 21 we have

n

lnn
e−4k ⩽ ∆2k,∞(n) ⩽ 20

n

lnn
ln lnn.

Their lower bound is a short argument given by counting the vertices of a certain distance
from a fixed vertex, and their upper bound is an explicit construction. Our second result
is an improvement of their upper bound on this problem.

Theorem 3. For all n sufficiently large and k ∈ N, there exists a 2k-additive spanner of
the hypercube with maximum degree at most

104k
n ln(k+1) n

lnn
.
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Note here that ln(k+1) n is the k+1-times iterated logarithm, defined by ln(1) n = lnn

and lnj+1 n = ln
(
ln(j) n

)
.

We prove Theorem 2 in Section 2 and prove Theorem 3 in Section 3. Some open
questions and further directions of study are given in Section 4.

2 Bounded degree subgraph preserving diameter

In the present paper, a perfect code will always mean a perfect 1-error-correcting code
over the alphabet {0, 1} with codewords having length n. We say that C is a perfect
1-error-correcting code if any two codewords have Hamming distance at least three, and
moreover the radius one Hamming balls centered on the codewords partition the whole
space {0, 1}n. Note that the number of codewords in a perfect code C is |C| = 2n

n+1
. Perfect

codes exist whenever n = 2r − 1 for some r ∈ N, see e.g. [19]. We will use the fact that
for all n = 2r − 1, r ∈ N, it is possible to partition the space {0, 1}n into n + 1 perfect
codes (see e.g. [19], p. 15.).

In this section we prove Theorem 2. We first need the following technical lemma.

Lemma 4. For all n there is a subset S of vertices of Qn with the following two properties.

• Every vertex v is either in S or adjacent to a member of S.

• Every vertex v is adjacent to at most 2 vertices in S.

We refer to such a subset of vertices S of Qn as a nearly perfect code.

Proof. Note that for n = 2k − 1 the result follows from the existence of perfect codes. For
other values of n let k be such that n is between 2k − 1 and 2k+1 − 1 and divide the n
coordinates into 2k− 1 buckets of size at most 2. Now take a perfect code C of Q2k−1. We
define S as follows. Given an element v ∈ Qn, for all 1 ⩽ i ⩽ 2k − 1 define bi to be the
sum of the elements of v in the i-th bucket, where this sum is taken over F2. Then the
element v is in S if and only if the element b1b2 . . . b2k−1 is in C. It is now straightforward
to verify that S satisfies the necessary conditions. Indeed, given any w ∈ Qn, consider
the word u ∈ Q2k−1 obtained from by by taking the sum in F2 of each bucket. Then u
is either in C or adjacent to some u′ in C. In the first case w ∈ S and w is not adjacent
to any other element of S. In the second case w is adjacent to exactly all those w′ ∈ C
which agree with w everywhere except on the block which corresponds to the bit in which
u and u′ differ. Moreover on this block w′ has different parity from w. Since all blocks
have length at most 2, we conclude that w is adjacent to at most two members of S.

We now proceed first by proving a weaker version of Theorem 2 which only requires
preserving the distance between antipodes. We say two vertices are antipodal if they
differ on all n coordinates.

Lemma 5. There exists a subgraph H of Qn with max degree 10 such that all antipodes
are at distance n within H.
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Proof. Consider the set of vertices (0, . . . , 0), (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . ., (1, . . . , 1),
(0, 1, . . . , 1), (0, 0, 1, . . . , 1), . . ., and (0, . . . , 0, 1), i.e. all vertices with coordinates having
all 0’s and then followed by 1’s or having all 1’s and then followed by 0’s. Note that these
points form a cycle C of length 2n in Qn such that there are n pairs of antipodes along
this cycle. In particular, if a vertex is on C then there is a path of length n from this
vertex to its antipode using only edges of C.

The construction of H is to translate this 2n-cycle C by the appropriate nearly perfect
code so that every vertex is contained in one of these cycles. By the above discussion, if
some vertex is on a translation of C then so is its antipode and therefore their distance
in H is n.

Let (ei)
n
i=1 be the standard basis vectors in Fn

2 and for 1 ⩽ k ⩽ n define fk as

fk =
k∑

i=1

ei.

Note that the vectors fi form a basis of Fn
2 and that the vertices of the cycle C are exactly

0, f1, . . . , fn, fn − f1, fn − f2, . . . , fn − fn−1. Now consider a nearly perfect code S ′ in the
basis of the fi vectors and all the translations s + C where s ∈ S ′. First note that every
element is contained in at least one cycle as we have translated 0 by a nearly perfect code
in the fi basis and all basis vectors f1, . . . , fn are in the cycle. To see that no vertex
however is in more than five cycles consider the element s ∈ S ′ so that v ∈ s + C. Then
it follows that v = s, s + fj, or s + fn − fj for some j and therefore s = v, v − fj, or
v − fn + fj. Thus s is either v, a neighbor of v, or a neighbor of v − fn and by the
definition of nearly perfect codes we have that every vertex is either in the code or next
to at most two other code words we have that every vertex is in at most 5 cycles and
hence has degree at most 10.

We now use Lemma 5 to complete the proof of Theorem 2; note that the fact that
the construction comes from a union of these antipodal cycles plays a critical role in
Theorem 2.

Proof. For n ⩽ 100 note that taking Qn suffices. Otherwise let B1, B2, B3, B4 be an
equitable partition of the coordinates. That is, define ni such that n =

∑4
i=1 ni, ni = ⌊n

4
⌋

or ni = ⌈n
4
⌉, and ni ⩾ nj for i ⩽ j. Now associate Qn with its representation on {0, 1}n

and divide the coordinates in blocks B1, B2, B3, B4 with Bi having block size ni. Finally
for each vertex v define vi to be restriction of v to the block Bi.

Consider Hi that is a subgraph of Qni
coming from Lemma 5. Now consider an almost

equal partition, Mi, of [n] \Bi into ni parts. As n ⩾ 100, note that every part has size at
most four. For each antipodal cycle C of Hi do the following. First, we pick an arbitrary
order of the vertices of C, say they are x1, x2, . . . , x2n. Next, for each 1 ⩽ i ⩽ ni, assign to
vertex xi the i-th part of Mi. Note that at the end of this process, since vertices may be
in multiple cycles in Hi, some vertices may have multiple parts of Mi assigned to them.

We are now ready to define the neighbors of v, of which there will be two types. The
first set of neighbours will depend only on the Hi-s. For each 1 ⩽ i ⩽ 4, we let a vertex w
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be a neighbour of v if they are equal on every coordinate outside of Bi, and the restriction
of w to the coordinates in Bi is adjacent to vi in the graph Hi. That is, for each 1 ⩽ i ⩽ 4
we keep the neighbors in the directions which vi has in Hi.

The second set of neighbours of v will depend on the partitions Mi. For each 1 ⩽ i ⩽ 4
let Pi be the part of Mi to which vi was assigned, and keep all edges in direction Pi –
that is, let w be a neighbour of v if they are equal everywhere outside of the at most four
coordinates of Pi. This is the desired subgraph G of the hypercube.

We first verify that the max degree of G is at most 120. First note that since the Hi

have max degree at most 10 and we have four parts the contribution to each vertex v′s
degree from the Hi is bounded by 40. Furthermore since each part of Mi has size at most
four, there are at most four edges outgoing from v due to this part. Since every vertex
was on at most five cycles in Hi, the total number of edges outgoing from v due to the
partition of [n]\Bi into ni parts is at most 5 ·4 = 20. The only subtlety is now to account
for edges incoming to v from each of the partitions of [n]/Bi. But note that for such edges
v to w we have vi = wi and therefore this relationship is in fact symmetric unlike the
asymmetric description. That is, if in the above definition we have defined w to be in a
neighbour of v, then when considering the vertex w instead of v we have defined v to be a
neighbour of w (of the same type). Therefore the total degree count is 40 + 4(20) = 120.

Finally we demonstrate that G is diameter n. Consider two vertices v and w such
that vi and wi match on exactly ki coordinates. Suppose that k1 ⩽ k2 ⩽ k3 ⩽ k4; the
other cases are handled in an analogous manner. In order to “fix” v we first proceed along
the cycle in H1 to v1’s antipode in order to obtain x. Along the way we can adjust the
coordinates in B3 and B4 so that x3 = w3 and x4 = w4 while x2 is the antipode of w2.
Note that we take n1 steps along H1, k2 to change the coordinates in B2 appropriately,
and n3 − k3 + n4 − k4 steps to fix B3 and B4. We now walk from x2 to w2 along H2 and
along the way fix H1 so that it now matches x1. This takes k1 steps to fix B1 to w1 and
n2 to fix B2 to w2. Therefore the total number of steps is

n1 + k2 + n3 − k3 + n4 − k4 + k1 + n2

= (n1 + n2 + n3 + n4) + (k1 + k2 − k3 − k4)

⩽ (n1 + n2 + n3 + n4) = n

as desired.

3 k-additive Spanner of the Hypercube

The main goal of this section is to prove Theorem 3 by constructing a 2k-additive spanner
of the hypercube with small maximum degree. For the sake of clarity various floor and
ceiling symbols will be omitted. The key idea is to essentially iterate the construction
in [4] which achieves this result for the k = 1 case (with a slightly better constant).

Before we begin let us first give a high level overview of the construction. The desired
2k-additive spanner H will be the union of three subgraphs H1, H2, H3 that each play a
different role in preserving distances.
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The first subgraph, H1, will simply connect two vertices if they differ in the first ap-
proximately

√
n coordinates. This graph has negligible maximum degree, and its purpose

will be twofold. First, it enables us to prove the spanning property only for pairs of ver-
tices which agree on the first

√
n coordinates, thus simplifying the problem. Second, we

will partition the cube on the first
√
n coordinates into perfect codes, and H1 will let us

step into any of these codes with at most one move. Then in order to find a short path
between two vertices x, y, we first step from x into the appropriate code in the first

√
n

coordinates, then find a path of length dQn(x, y)+2(k−1) that changes x to y everywhere
outside of the first

√
n coordinates using H2 and H3, and then use H1 to step from the

code to y. This will then give an x− y path of length dQn(x, y) + 2k.
The subgraph H2 will be primarily used to find short paths between vertices that are

not too far apart. The way we do this is roughly as follows. As mentioned before, we will
partition the first

√
n coordinates into perfect codes. Each of these perfect codes will be

responsible for a different small subset of the remaining n −
√
n coordinates. So if the

vertices x, y differ in a small set S of the last n−
√
n coordinates then we can first move

from x to a point x′ using H1, where x
′ belongs to the perfect code that is responsible for

the set S. Then H2 will be defined so that we can fix the coordinates in S by losing at
most 2(k − 1) distance. This we can achieve by using a 2(k − 1)-additive spanner on the
set S, which is given by induction on k.

This leaves us with the task of finding short paths between vertices that are far apart.
It is not possible to have a bijection between perfect codes on the first

√
n coordinates

and all subsets of the remaining n −
√
n coordinates, as the number of possibilities of

these subsets is too large. Instead we do the following. Given two vertices x and y, we
first find a small set S that contains many of the differences between these two vertices.
We fix the differences in S using the graphs H1 and H2 as explained above. However,
while walking in H2, we will need to fix all the coordinates outside of S as well. This
is where H3 will come in. In order for this construction to work we will need to make
our induction hypothesis stronger, and additionally require that the additive spanners we
construct (and hence H2 too) have the property that between any two points there is
a short path that hits many different coordinate sums — that is, if we walk along this
path and at every vertex we note down the sum of its coordinates, we want to see a large
number of different values by the time we reach the end of the path.

The idea of H3 is then similar to how we constructed H2. Given two vertices x, y
we find a small set S which contains many of the coordinates where they differ. Then
we start walking along H1 and H2 to fix the set S. While doing so, we keep track of
the coordinate sum inside the set S. By induction hypothesis, we will see many different
sums. Each sum will correspond to a different small subset of [n] \ S. So while walking
in H2, whenever we encounter a coordinate sum that corresponds to a set of coordinates
which contains at least one difference between x and y, we use H3 to fix those coordinates.
In H3, we simply include all edges necessary to make these patches work. The fact that
we see many different coordinate sums throughout our walk in H2 ensures that we will
get a chance to fix all coordinates outside of S.

We are now ready to begin the proof and make the above sketch precise.
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Proof. We build the construction iteratively as k increases. We will maintain the following
invariant for the 2k-additive spanners: for any pair of points which are distance ℓ apart
there is a path connecting them of length at most ℓ+2k whose vertices have at least ℓ

32k+1

different coordinate sums. For k = 0 the construction is taking the entire hypercube graph
Qn. This satisfies the necessary maximum degree condition and will serve as the base case
for this induction on k. Note that in Qn between any two points at distance ℓ we may first
flip all necessary zero coordinates to ones and then all required ones to zeros, ensuring
the existence of a path of length ℓ whose vertices have at least ℓ/2 different coordinate
sums. For the remainder of the proof we divide the coordinates into two groups.

• Pick r ∈ N so that 2r−1 ∈ [
√
n/2,

√
n], and let B0 be the first q = 2r−1 coordinates.

• B1, . . . , Bt will be an almost equal partition of the remaining n− q coordinates into

t = lnn·ln(k) n
900(ln(k+1) n)

2 blocks.

We define an additional parameter s to be s = lnn

10 ln(k+1) n
. The construction now has three

distinct parts.

• Define H1 to be subgraph created by including all edges in directions in B0 for every
vertex in Qn. That is, two adjacent vertices x, y ∈ Qn are connected by an edge in
H1 precisely if they differ in only one of the first q coordinates and nowhere else.
Note that H1 is a vertex-disjoint union of 2n−q copies of Qq.

• We now define the subgraph H2. Since q = 2r − 1, as remarked at the beginning
of Section 2, we can partition each disjoint copy of Qq in H1 into perfect codes
D′

1, . . . , D
′
q+1 and let Di be the union of the D′

i over these disjoint components of

H1. Now fix a bijective map f from {D1, D2, . . . , D(ts)
} to

(
[t]
s

)
. Define the subgraph

H2 as follows. For every vertex x, first find the index i so that x belongs to Di.
If i ⩽

(
t
s

)
then let {Bi1 , Bi2 , . . . , Bis} be the set of s blocks of coordinates from

B1, . . . , Bt corresponding to Di. Next, let Bx := Bi1 ∪ . . .∪Bis , fix all coordinates of
x on [n] \Bx, and on the coordinates in Bx include the 2(k− 1)-additive spanner on
|Bx| many coordinates that is given by the induction hypothesis. For example, if x
belongs to D5 and f(D5) = {1, 2, . . . , s} then we fix the coordinates of x outside of
B1 ∪ . . . ∪Bs and include the 2(k − 1)-spanner construction given by the induction
hypothesis on the approximately (n− q)s/t coordinates in B1 ∪ . . . ∪Bs.

• We now define H3. First divide B1, . . . , Bt into groups of size j = 500kt
s

; label these
A1, . . . , As/500k . Now for each vertex x which belongs to a Di with i ⩽

(
t
s

)
, let

Bx := Bi1 ∪ . . .∪Bis where {i1, . . . , is} = f(Di) as above. Next, let sx :=
∑

i∈Bx
xi.

Take this coordinate sum sx mod s/500k, call this s′, and for the vertex x only
include edges in directions As′ \Bi1 ∪ . . . ∪Bis .

Note that in H2 and H3 the edges are (implicitly) “directed” from one vertex to another.
However one can verify that the definitions are symmetric in both cases. First consider
H2. Note that if a vertex y agrees with x on every coordinate outside of Bx then in
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particular they agree on the first q coordinates used to define the sets Di. Therefore we
have that x and y belong to the same Di and thus Bx = By. Hence in the construction of
H2 when we consider y we include the same 2(k − 1)-spanner construction on Bx as we
did when considering the vertex x.

Next consider H3. If x is connected to y in H3 this implies that the coordinate on
which y differ from x lies outside of Bx and also outside of the set of the first q coordinates.
Therefore, both x and y belong to the same set Di, Bx = By, and also sx = sy. So in
both cases the value of s′ is the same, hence in the construction of H3 we included edges
touching x and y in precisely the same directions.

The desired subgraph of Qn is simply H = H1 ∪ H2 ∪ H3. We first verify that the
subgraph H2 is well defined in that the desired bijection f indeed exists.

Lemma 6. For n sufficiently large, we have(
t

s

)
⩽

√
n/2.

Proof. Note that t
s
= ln(k)(n)

90 ln(k+1)(n)
, in particular et

s
⩽ ln(k)(n). Therefore(

t

s

)
⩽

(
te

s

)s

= exp

(
s

(
ln

(
te

s

))
⩽ exp

(
ln(n)

10 ln(k+1)(n)
ln(ln(k)(n))

)
⩽

√
n/2

for n sufficiently large as desired. Note that in the last inequality we used that ln(k+1)(n) =

ln
(
ln(k)(n)

)
.

We now prove the desired bound on the maximum degree of the graph H = H1∪H2∪
H3.

Lemma 7. The maximum degree of H is at most

104k
n ln(k+1)(n)

ln(n)

for all k and for n sufficiently large.

Proof. We proceed by induction on k. Note that for k = 0 this statement is trivial. For
larger k note that the maximum degree in H1 is at most

√
n, the maximum degree in H2

is upper bounded, using the induction hypothesis for the 2(k − 1)-spanner on (n− q) · s
t

coordinates, by
104(k−1)

(
n · s

t

)
ln(k)

(
n · s

t

)
ln
(
n · s

t

) .

The maximum degree in H3 is at most 500kn
s

for n sufficiently large. Now note that
s
t
= 90 ln(k+1) n

ln(k) n
and so

√
n+

104(k−1)
(
n · s

t

)
ln(k)

(
n · s

t

)
ln
(
n · s

t

) +
500kn

s
⩽ 104k

n ln(k+1)(n)

ln(n)

for n sufficiently large as desired.
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We first prove that it suffices to consider pairs of vertices whose coordinates match
along B0 due the presence of the subgraph H1.

Lemma 8. If for all pairs of vertices x, y that are equal on all coordinates in B0 we have

dH(x, y) ⩽ dQn(x, y) + 2k

then the same follows for all pairs of vertices x and y.

Proof. Consider an arbitrary pair of vertices x and y. Let x′ such that the first |B0|
coordinates of x′ match y and the rest match x. Note that dH(x, x

′) = dQn(x, x
′) and that

x′ and y satisfy the condition of the hypothesis. Therefore

dH(x, y) ⩽ dH(x, x
′) + dH(x

′, y) ⩽ dQn(x, x
′) + dQn(x

′, y) + 2k = dQn(x, y) + 2k

and the result follows.

We now finally prove that H is a 2k-additive spanner. Recall that we are maintaining
the invariant, that for any pair of points which are distance ℓ apart there is a path whose
length is at most ℓ+ 2k and whose points have at least ℓ

32k+1 different coordinate sums.
Furthermore note that the previous lemma does not interfere with this invariant; if

the initial points differed in more than ℓ
2
coordinates in B0 then by applying the above

mentioned procedure of first flipping 0 to 1 and then 1 to 0 we get a path with whose
vertices give at least ℓ

2
/2 = ℓ

4
different coordinate sums which is sufficient. Otherwise, the

points differ by at least ℓ/2 coordinates outside of B0. Therefore it is enough to maintain
the invariant that among points with coordinates that match in |B0| and are of distance
ℓ, there is path of whose vertices give ℓ

16·32k coordinate sums. We now consider two cases.

Case 1: Suppose that x and y differ on at most s coordinates. Then there exist
{i1, . . . , is} such that the set of differences is contained inside Bi1 , . . . , Bis . Let D :=
f−1({i1, . . . , is}). First we go from x and y to the closest points, call these points x′

and y′ respectively, in the perfect code D using edges in H1. Note that since x and y
agree in the coordinates in B0, so do x′ and y′. Now walk from x′ to y′ using edges of
the 2(k − 1)-spanner used to construct H2 and adjust the necessary bits in Bi1 , . . . , Bis .
This can be done because x′ and y′ only differ in coordinates in Bi1 , . . . , Bis and by the
definition of 2(k − 1) spanner the length of this path is by at most 2(k − 1) larger than
their distance in Qn. Therefore, the length of the path that we construct from x to y
is at most dQn(x, y) + 2(k − 1) + 2 = dQn(x, y) + 2k. Moreover we can maintain the
invariant regarding coordinate sums by invoking the inductive hypothesis and noticing
that dQn(x, y) = dQn(x

′, y′).

Case 2: Suppose that x and y differ on more than s, say ℓ, coordinates. Then find
sets Bi1 , . . . , Bis such that x and y differ by at least s coordinates in Bi1 ∪ . . . ∪ Bis . We
consider two separate situations.

• Suppose that Bi1 , . . . , Bis contain more than ℓ
5
of the coordinate differences. In this

case again we first move from x and y to the closest points x′ and y′ (respectively),
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in the perfect code D = f−1(i1, . . . , is) using edges in H1. Then we use the edges
in H2 and the path given by the inductive hypothesis to change coordinates of x′ so
that it agrees with y′ on Bi1 ∪ . . . ∪Bis .

However when we visit the vertices which give us the first ℓ
10·32k coordinate sums out

of the ℓ
5·32k which is guaranteed by the inductive hypothesis, we keep them to satisfy

the inductive hypothesis regarding coordinate sums, and we use the vertices with
the remaining ℓ

10·32k coordinate sums to access all the blocks outside of Bi1∪ . . .∪Bis

and use the subgraph H3 to fix the differences between x′ and y′. More precisely,
every time we take a step using H2 in a direction in Bi1 ∪ . . . ∪ Bis to reach the
point whose sum of the coordinates gives us a new residue modulo s/500k we check
if there are any coordinates we can fix using H3, and fix them. As ℓ

10·32k ⩾ s
500k

we
will see all the residues modulo s/500k and so eventually we will be able to fix all
the blocks using H3. Note here that we only lost distance 2 in moving to x′ and y′

and distance 2(k − 1) in making x′ equal to y′ on Bi1 ∪ . . . ∪ Bis . We did not lose
any distance anywhere else.

• Finally suppose that Bi1 , . . . , Bis contains less than
ℓ
5
of the differences. In this case

we have that x and y differ on at least 4ℓ/5 coordinates outside of Bi1 ∪ . . . ∪ Bis .
Again, we first move into the points x′ and y′ in the perfect code D = f−1(i1, . . . , is)
and start fixing the coordinates in Bi1 ∪ . . .∪Bis using H2 and the path given by the
inductive hypothesis. Since x and y differ on at least s coordinates in Bi1 ∪ . . .∪Bis ,
the vertices of this path have at least s/32k different coordinate sums. We fix the
coordinates outside of Bi1 ∪ . . . ∪Bis in a similar way as in the previous case: after
every step we take in H2 we try to fix as many coordinates as possible using edges in
H3. However the one difference in this case is, that during the stretch of s

32k
⩾ 2· s

500k

different coordinate sums we encounter while walking in H2, we use the first half of
them to fix all those coordinates where x is zero and y is one, and we use the second
half to map all 1 to 0. At least one of these halves has length greater than 2ℓ

5
, let us

assume without loss of generality that it is the half where we change the zeros in x
to ones. During these at least 2ℓ

5
steps, the sum of coordinates increases by +1 each

time. However, we have no control over the steps that we take in H2, they can both
increase and decrease the coordinate sum by 1. We have taken at most ℓ

5
+2(k− 1)

steps in H2, so this part of the path has to give at least 2ℓ
5
−

(
ℓ
5
+ 2(k − 1)

)
⩾ ℓ

10

different coordinate sums. This allows us to maintain the desired invariant and walk
between x and y in the required length.

4 Concluding remarks and open questions

The effect of the removal of a set of vertices or edges from computer networks, corre-
sponding to broken connections, processors or inaccessible agents, are of major interest in
the study of vulnerability of networks. Parameters that measure changes given by such
breakdowns lead to many interesting open problems [5, 6], from which we only mention
a few here.
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The integrity I(Qn) of the hypercube is defined as

I(Qn) = min{|S|+m(Qn \ S) : S ⊂ V (Qn)},

where m(H) denotes the number of vertices in the largest connected component of H. It
is known (see [8, 10]) that

c
2n√
n
⩽ I(Qn) ⩽ C

2n√
n

√
log n,

and determining the precise asymptotics would be of interest. Another important related
concept is that of “fault-tolerant spanners” (see e.g. [12, 20]) where the aim is to find
spanners that retain their metric properties even after a number of components fail. For
example one might want to find a subgraph H of Qn with the property that for any
collection F of constantly many failing edges F and any two vertices x, y ∈ Qn \ F we
have dH\F (x, y) ⩽ dQn\F (x, y) + 2k.

The second problem we have already hinted at in the introduction.

Question 9 (Erdős–Hamburger–Pippert–Weakley [16]). What is the least possible num-
ber of edges in a graph G ⊂ Qn that has diameter n?

They observed that there is such a graph G ⊂ Qn with 2n +
(

n
⌊n/2⌋

)
− 2 edges. The

construction is as follows: from the all zero vertex and the all one vertex take two BFS
trees until the middle layer; if n is odd then there are two middle layers, and we add a
perfect matching between them. We have the following lower bound on Question 9:

Proposition 10. If G ⊂ Qn has diameter n then e(G) ⩾ 2n +Θ
(
2n

n

)
.

Proof. Let G ⊂ Qn be a subgraph with diameter n. First we show that G has minimum
degree at least 2. Indeed assume v is a leaf, connected only to vertex u. Let u′ denote the
antipodal vertex to u. Then the distance of v and u′ in G is at least n+ 1, contradicting
the fact that G has diameter n.

Next, fix an arbitrary vertex v and consider a BFS tree T rooted at v. Since G has
diameter n, the tree T has at most n+ 1 layers (the first layer being the single vertex v)
and hence has a layer L of size at least 2n−1

n
. Note that below each vertex of L there is

a distinct leaf, so T has at least 2n−1
n

leaves. Since in G every vertex has degree at least
two, there must exist at least

⌈
2n−1
2n

⌉
edges that are in G but not in T . Hence

e(G) ⩾ e(T ) +
2n − 1

2n
= 2n +

2n − 1

2n
− 1.

A question in the same spirit as Question 9 concerns 2-additive spanners. Denote by
f2(n) the fewest possible edges in a graph G ⊂ Qn that is a 2-additive spanner, that is,
dG(x, y) ⩽ dQn(x, y) + 2 for all x, y. The best known bounds, given in [7, 16] are

c2n log n ⩽ f2(n) ⩽ C2n
√
n.
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[15] Eden Chlamtáč, Michael Dinitz, and Robert Krauthgamer. Everywhere-sparse span-
ners via dense subgraphs. In 2012 IEEE 53rd Annual Symposium on Foundations of
Computer Science, pages 758–767. IEEE, 2012.
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