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Abstract

The distinguishing index D′(G) of a graph G is the least number k such that
G has an edge colouring with k colours that is only preserved by the trivial auto-
morphism. Piĺsniak proved that a connected, claw-free graph has the distingushing
index at most three. In this paper, we show that the distingushing index of a con-
nected, claw-free graph with at least six vertices is bounded from above by two. We
also consider more general graphs in this sense. Namely, we prove that if G is a
connected, K1,s-free graph of order at least six, then D′(G) 6 s− 1.

Mathematics Subject Classifications: 05C25, 05C80, 03E10

1 Introduction

The notation follows the standard terminology as in [2]. We consider edge colourings, not
necessarily proper, of simple, connected graphs. We say that an edge colouring c breaks
an automorphism ϕ of the graph G if there exists an edge such that its colour is different
from the colour of its image under the automorphism’s action. Otherwise, we say that
the automorphism ϕ preserves the colouring c. The distinguishing index of a graph G,
denoted by D′(G), is the least number k such that G admits an edge colouring with k
colours breaking every nontrivial automorphism of the graph G.

The definition of the distinguishing index, introduced by Kalinowski and Piĺsniak
in [5], was inspired by the distinguishing number which was defined for general vertex
colourings by Albertson and Collins [1]. The distinguishing number of a graph G, denoted
byD(G), is the least number of colours used in a vertex colouring breaking every nontrivial
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automorphism of the graph G. Clearly, D(G) = D′(G) = 1 for all graphs with no
nontrivial automorphism and the distinguishing index is not defined for graphs with K2 as
a connected component. Moreover, the distinguishing number as well as the distinguishing
index of cycles C3, C4 and C5 equals three, while for cycles of order n > 6 we have
D(Cn) = D′(Cn) = 2.

Kalinowski and Piĺsniak in their paper proved a general upper bound on the distin-
guishing index of connected graphs. Namely, they proved that if G is a connected graph
with at least three vertices and maximal degree ∆(G), then D′(G) 6 ∆(G), with the
exception of three cycles C3, C4 and C5. Moreover, they proved that this bound is best
possible in a general case. They showed that there exist classes of trees, called symmetric
and bisymmetric trees, for which the equality in the upper bound is achieved. Therefore,
the research in this field is focused on finding better upper bounds on the distinguishing
index for a given class of graphs.

The main motivation for our research was a result of Piĺsniak for the class of claw-free
graphs. We consider graphs which do not contain a star K1,s as an induced subgraph. We
call such graphs K1,s-free graphs. The star K1,3 is usually called a claw, and the graph
without a claw as an induced subgraph is called a claw-free graph. Piĺsniak proved the
following.

Theorem 1. [6] Let G be a connected, claw-free graph. Then

D′(G) 6 3.

In the same paper she also conjectured that for graphs of sufficiently large order, this
bound could be improved.

Conjecture 2. [6] There exists a constant n0 ∈ N+ such that every connected, claw-free
graph G of order n > n0 satisfies

D′(G) 6 2.

Claw-free graphs have been extensively studied over the years, many of the obtained
results were compiled in a survey by Faudree, Flandrin and Ryjáček in [3]. The goal of
our research was to obtain a sharp bound for the distinguishing index of claw-free graphs,
thus proving the conjecture posed by Piĺsniak. We also consider more general case of
K1,s-free graphs. The main theorem of this paper is the following.

Theorem 3. Let G be a connected, K1,s-free graph with s > 3 and |G| > 6. Then

D′(G) 6 s− 1.

The case for claw-free graphs is proved in Section 3 while the case for s > 4 is proved
in Section 4.
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2 Preliminaries

2.1 Neighbourhood lemmas and definitions

By N(x) we denote the neighbourhood of a vertex x, and by N [x] we denote its closed
neighbourhood. We say that a vertex x ∈ V (G) is fixed by a colouring c if for each
automorphism ϕ ∈ Aut(G) preserving the colouring c, we have ϕ(x) = x. Whenever it
does not cause ambiguity, we say that x is fixed. Given a subset of vertices S ⊆ V (G),
we say that S is fixed setwise by a colouring c if for each automorphims ϕ ∈ Aut(G)
preserving the colouring c, we have for each vertex x ∈ S that ϕ(x) ∈ S. Observe that if
a vertex x is fixed, then the neighbourhood of x is fixed setwise. Clearly, if every vertex
in the graph G is fixed by a colouring c, then c breaks every nontrivial automorphism of
G.

We write aPb to indicate a path P joining vertices a and b in a graph G. Analogously,
for a cycle C in G such that a, b ∈ V (C) we write aCb to indicate one of the two paths
consisting of the edges of C joining the vertices a and b. We denote the distance on the
cycle C of the vertices a and b, that is the number of edges of the shortest path joining a
and b that consists only of the edges of the cycle C, by distC(a, b).

An important result for our studies is a theorem proved by Fouquet in [4]. Recall that
α(G) denotes the independence number of the graph G, i.e., the number of vertices in the
largest independent set.

Theorem 4. [4] Let G be a connected claw-free graph with α(G) > 3. Then every vertex
v of G satisfies one (and only one) of the following conditions:

1. N(v) is covered by two complete graphs,

2. N(v) contains an induced C5.

The first step in order to prove Theorem 3 can be seen as a generalization of this result
onto K1,s-free graphs.

Let G be a graph. A path cover of G is a set of paths P = {Pi : i ∈ I} such that every
vertex of G belongs to exactly one path from P . Clearly every graph G has a path cover
as it is enough to take |G| single-vertex paths. For each of those paths we select one of
its end-vertices and we call it a first vertex of this path. A minimal path cover of G is a
path cover of G with the least number of paths.

Lemma 5. Let G be a connected K1,s-free graph with s > 3, and let xy be an edge of G.
If A ⊆ N(x) and B ⊆ N(x) \N [y], then the following two conditions hold:

1. There exists a path cover of G[A] with at most s− 1 paths.

2. There exists a path cover of G[B] with at most s− 2 paths.

Proof. 1. Assume that a minimal path cover of G[A] consists of at least s paths. Notice
that any two first vertices of these paths cannot be connected by an edge. Otherwise
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we could construct a path cover with smaller number of paths, which is a contra-
diction. However, if no two of these vertices are connected, and all are connected
with x, then those vertices together with x induce a star K1,s in G. Which is a
contradiction.

2. Once again assume to the contrary that a minimal path cover of G[B] consists of at
least s − 1 paths. By identical reasoning as before, there are no edges connecting
the first vertices of these paths. Now, these vertices together with vertices x and y
induce in G a star with at least s+ 1 vertices, which is a contradiction.

2.2 Algorithm

In this section we introduce an algorithm that extends a given partial colouring of the
edges of a graph G into a complete edge colouring of G. The algorithm has properties
that will be useful for us in the proof of Theorem 3 and will simplify this proof. We
present those important properties in the form of some observations.

ALGORITHM.
IN: G - a connected K1,s-free graph

H ⊆ V (G) : G[H] is connected and |H| > 2, ∃v ∈ H : N(v) ⊆ H,
c : E(G[H])→ {1, . . . , s− 1},

OUT: c′ : E(G)→ {1, . . . , s− 1}

1. Label the vertices of G with natural numbers, beginning with the vertex v ∈ H such
that N(v) ⊆ H and continuing in such a way, that the graph induced by vertices
with labels {1, 2, . . . , i} is connected for every i ∈ {1, 2, . . . , |V (G)|}. Let S = H,
H ′ = H, c′|G[H] = c and c′(e) = 1 for each e /∈ E(G[H]).

2. Take a vertex from H ′ with the smallest label and call it a.

3. If N [a] \ S = ∅, then substitute H ′ = H ′ \ {a} and go to step 2.

4. Take a minimal path cover of G[N [a] \ S]. By Lemma 5, this path cover consists
of at most s − 2 paths. Order these paths with natural numbers starting with 1.
Colour every edge of the i-th path, as well as an edge between the first vertex of
that path and the vertex a, with colour i+ 1.

5. Substitute H ′ = H ′ ∪ (N(a) \ S) and S = S ∪N(a).

6. If S 6= V (G), go to step 2.

7. Return c′.

The colouring c′ returned by the ALGORITHM is such that every vertex outside of the
input set of vertices H has exactly one path to H which does not contain an edge coloured
with 1. Throughout the ALGORITHM, S is the set of all the vertices that the resulting
colouring has reached so far and H ′ is the set of the vertices whose neighbourhood we still
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have to potentially consider. The labeling of the vertices of G ensures that each time the
ALGORITHM takes a vertex a ∈ H ′ that has neighbours outside of S, the vertex a also
has at least one neighbour b such that N(b) ⊆ S. Therefore, by part 2 of Lemma 5 there
exists a path cover of G[N(a) \ S] consisting of at most s− 2 paths. The ALGORITHM
then recolours the edges G[N [a] \ S] so that no cycle without edges coloured with colour
1 is ever created. The vertices of N(a) have been reached and so we add them to the set
S as well as the set H ′. The ALGORITHM chooses another vertex from the modifed set
H ′ and finishes after all vertices of G are added to S.

The following observations about the colouring output by the ALGORITHM are par-
ticularly important for us in further considerations.

Observation 6. For each v ∈ V (G) \H, there exists u ∈ V (G) such that c′(vu) 6= 1.

Proof. All we need to observe is that every vertex v ∈ V (G) \ H is contained in a path
from some minimal path cover at some point of the ALGORITHM. The edges of such a
path are coloured with a colour different from 1.

Observation 7. Let C be a cycle in G. If C contains a vertex from the set V (G) \ H,
then at least one of the edges of C is coloured with 1.

Proof. Obviously, after step 1 of the ALGORITHM is executed, every vertex of the set
V (G) \H is incident only to edges coloured with colour 1. Therefore, it suffices to prove
that every time the ALGORITHM recolours the edges of the graph G, there will not
appear a cycle with no edge coloured with 1.

Assume that in some step of the ALGORITHM a cycle C with no edges coloured with
1 is created. Then some of the edges of C must have been recoloured in this step. Thus
the end-vertices of the recoloured edges belong to the closed neighbourhood of the vertex
a ∈ H ′ ⊆ S considered in this step.

Consider the longest path P of edges of the cycle C that were recoloured in the last
step. Let k be the length of this path and denote by xi for i ∈ {0, 1, . . . , k} the vertices
of P , such that xixi+1, i ∈ {0, 1, . . . , k − 1}, is an edge of C that was recoloured. Since
the other edge of C with end-vertex x0 was not recoloured and is coloured with a colour
different than 1, then x0 ∈ H ′. Analogously, xk ∈ H ′.

Notice that for all i ∈ {1, . . . , k − 1} the vertices xi and xi+1 belong to the same path
from the minimal path cover. Otherwise, the edge xixi+1 would be coloured with 1. Since
the edge x0x1 was recoloured, then x0 = a and x0 is the first vertex of some path of the
minimal path cover. Therefore, either the edge xk−1xk is coloured with 1 or xk−1 = x0.
In both cases we get a contradiction which ends the proof.

Now we can prove the following theorem.

Theorem 8. Assume that H ⊆ V (G) such that |H| > 2, G[H] is connected, there exists
a vertex v ∈ H such that : N(v) ⊆ H and c : E(G[H]) → {1, 2, . . . , k}. Let c′ be the
colouring returned by the ALGORITHM. If v is fixed by c′ for each v ∈ H, then every
vertex in the graph G is also fixed.
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Proof. We show that each time the ALGORITHM modifies set S, every vertex of the
new set S is fixed by the colouring c′. We use induction on the number of times the
ALGORITHM executes step 4.

Let a be the first vertex such that N(a) \ S 6= ∅ and let P = {Pi : i ∈ I} be the
minimal path cover of G[N(a) \ S]. Moreover, let xi be the first vertex of the path Pi.
Since a ∈ H, then it is fixed by the assumption. Furthermore, xi is the only vertex at
distance one from the set H connected to a by an edge coloured with i + 1. Therefore
xi is fixed for all i ∈ I. Take the successor of xi on the path Pi. It is also fixed, as it is
the only vertex of N(a) \ H joined to xi by an edge coloured with i + 1. By the same
argumentation the remaining vertices of each path Pi are fixed. Therefore, every vertex
of the set H ∪N(a) is fixed by c′.

Consider now the kth time the ALGORITHM executes step 4. By induction hypoth-
esis, all the vertices of S at this point are fixed. In particular, currently considered vertex
a is fixed. The identical reasoning as above shows that all vertices in the set N(a) are
fixed.

3 Claw-free graphs

In this section we prove Theorem 3 for the case whereG is a claw-free graph. Thus, proving
the conjecture posed by Piĺsniak in [6]. We cite one more result obtained by Piĺsniak,
which gives the bound on the distinguishing index of the class of traceable graphs.

Theorem 9. [6] Let G be a traceable graph of order n > 7. Then

D′(G) 6 2.

This result is very useful for us, as it allows us to shorten our proof in one of the cases.

Theorem 10. Let G be a connected, claw-free graph of order at least six. Then

D′(G) 6 2.

Proof. We divide the proof into two parts. We start by considering the case where G is
a 2-connected graph. Let C be the longest cycle in G.

Assume that C is Hamiltonian. If the graph G has at least seven vertices, then the
claim follows from Theorem 9. Otherwise, the graph has exactly six vertices. We examine
all possible maximal degrees of such a graph. If ∆(G) = 2, then G = C6 and it is known
that D′(C6) = 2. Otherwise, since ∆(G) ∈ {3; 4; 5}, then G has the only asymmetric
graph on six vertices as a spanning subgraph. We colour the edges of this spanning
subgraph with colour 1 and the remaining edges with colour 2. Such a colouring breaks
every nontrivial automorphism of G.

Now, if C is not a Hamiltonian cycle, then there exists a vertex v ∈ V (C) that has a
neighbour, call it w, outside of C. We consider one of the two orientations of the cycle
C and call the vertices before and after v on the cycle v− and v+, respectively. From
maximality of C, w cannot be adjacent to v− nor v+. Since G is a claw-free graph, then
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v−v+ is an edge of G. We denote by C ′ the cycle obtained from C by removing v and
adding the edge v−v+.

V (C ′) = V (C) \ {v}, E(C ′) = E(C) \ {v−v, vv+} ∪ {v−v+}

We will use the set V (C) as the set H input into the ALGORITHM. Before we present
the initial colouring of the graph G[V (C)], we present some important observations about
the considered vertex set which will be useful in the later part of the proof.

Claim 11. Vertex v is the only neighbour of both v− and v+ outside of C ′.

Proof. Otherwise, call the other such vertex v′. Since C is the longest cycle in G and the
graph G is claw-free, then v is adjacent to the other neighbour of v− on C, call it v−−.
The cycle vv−−Cv+v′v−v (cp. Figure 1) is a cycle longer than C, a contradiction.

Figure 1: The longer cycle in Claim 11.

Claim 12. The vertex v is not adjacent to all of the vertices of C.

Proof. Assume to the contrary that v is adjacent to all vertices of the cycle C. By 2-
connectivity of G there exists a path P connecting the vertex w to the cycle C that does
not include the vertex v. Denote by w′ the end-vertex of P which is a vertex of C. The
neighbours of w′ on C we denote with respect to the considered orientation of C by w

′−

and w
′+. Then the cycle vwPw′w′+C ′w′−v (cp. Figure 2) is clearly longer than the cycle

C, which contradicts our assumption.

Figure 2: The longer cycle in Claim 12.

We consider all vertices of C non-adjacent to v. We choose the vertex u such that the
distance on the cycle C of u to v− or v+ is the smallest over all considered vertices. By
Claim 12, such a vertex exists. Without loss of generality, we assume that distC(u, v−) <
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distC(u, v+). Notice that the vertex u′ ∈ V (C) such that distC(u′, v−) = distC(u, v−) has
to be connected by an edge to v, or else it would have been chosen as u.

Claim 13. There exists a vertex s ∈ V (C) such that N(s) ⊆ V (C).

Proof. Assume to the contrary that all vertices of the cycle C have a neighbour outside of
C. Thus, from maximality of C, every pair of vertices of the cycle at distance two on C is
connected by an edge. We denote by aP 2(C)b a path connecting vertices a, b ∈ V (C) that
consists only of the edges between vertices of C that are at distance two on the cycle C.
Since G is 2-connected, there exists a path Q from w to another vertex of the cycle C, say
vi. We will show that there exists a cycle longer than C in the graph G. If the distance
distC(v, vi) is odd, then the cycle vwQviP

2(C)v+Cv−i P
2(C)v (cp. Figure 3) is longer

than C. If distC(v, vi) is even, we consider two cases. Both these cases are represented
on Figure 4. If wv−− ∈ E(G), then vwv−−v−v−−−Cv is again a longer cycle than C. If
wv−− /∈ E(G), then v−−v+ ∈ E(G) and the cycle vwQviP

2(C)v−−v+Cv−i P
2(C)v−v is

longer than C. In all of the cases we get a contradiction with maximality of C.

Figure 3: The longer cycle in Claim 13 when distC(v, v−) is odd.

Figure 4: The longer cycles in Claim 12 when distC(v, v−) is even.

We are ready to present the colouring of the edges of the graph G[V (C)]. Colour the
edges of the cycle C ′ and the edge v−v with colour 2 and the remaining edges of G[V (C)]
colour with 1. All assumptions for the input set H = V (C) are fullfilled. In particular,
by Claim 13, there exists a vertex s ∈ V (C) such that N(s) ⊆ V (C). We therefore use
the ALGORITHM with input H = V (C) to colour the remaining edges of the graph G.
Let c′ be the resulting colouring of E(G).
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By Observation 7, the cycle C ′ is the only cycle that contains no edges coloured with
colour 1. Therefore, the set V (C) is fixed setwise. By Claim 11, the vertex v is the only
vertex of G which has two neighbours that are consecutive vertices on the cycle C ′. Thus
v is fixed and also v− is fixed as it is the only vertex of C joined to v by an edge coloured
with colour 2. This breaks all of the rotations of C and almost all of the symmetries. The
only automorphism that remains for consideration is a symmetry of C where v− is a fixed
point. To see that it is also broken, we use the fact that there exist vertices u ∈ V (C)
and u′ ∈ V (C) such that distC(u′, v−) = distC(u, v−) and uv /∈ E(G) while u′v ∈ E(G).
Hence, for each v ∈ V (C) we obtain that v is fixed by the colouring c′. By Theorem 8,
every vertex of the graph G is fixed. Which ends the proof in this case.

We now consider the case where G in not 2-connected. We consider the block and
cut-vertex tree of the graph G. Let B be a block that corresponds to a leaf in the block
and cut-vertex tree and v be the unique cut-vertex in this block. Denote by u a neighbour
of v in B. Since u is not a cut-vertex of the graph G, then the graph G− u is connected
and claw-free.

If the vertex v has no neighbours in the block B − u in the graph G − u, then the
set N(v) can be covered by a single path. We colour the edges of this path, as well as
the edge from v to the first vertex of this path, with colour 2. If there is at least one
neighbour of the vertex v in B − u in the graph G− u, then the neighbourhood of v can
be covered by two paths. We colour the edges of both of these paths, as well as the edges
between the first vertices of these paths and v, with colour 2. In both considered cases,
we colour the remaining edges of G[N(v)] with colour 1. We obtain the colouring of the
remaining edges of G by inputting the graph G − u with the set H = NG−u[v] into the
ALGORITHM. To obtain the final colouring of the graph G, we colour all of the edges
incident with u with colour 1.

The resulting colouring of the edges of the graph G breaks every nontrivial automor-
phism of G. Firstly, by Observation 6 vertex u is the only vertex only incident with edges
coloured 1, thus it is fixed. The vertex v is the only cut-vertex adjacent to u, thus it is
also fixed. Consider the first vertices of the paths in the minimal path cover of N(v), call
them x1 and x2 (possibly there is only one such vertex). They are the only not yet fixed
vertices of G joined to v by an edge coloured with 2. Let B′ be the other block of the
block and cut-vertex tree containing v. Any automorphism interchanging B with B′ is
broken because B′ does not contain a vertex incident with only edges coloured with 1.
Thus the vertices x1 and x2 are fixed. Moreover, all the other vertices of the paths in the
minimal path cover of N(v) are fixed. By a reasoning identical to the one presented in
the proof of Theorem 8, we conclude that all of the remaining vertices of the graph G are
fixed.

4 General Case

In this section we prove Theorem 3 for s > 4. We begin by stating the following result
due to Piĺsniak, which will greatly shorten our proof.
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Theorem 14. [6] Let G be a connected graph that is neither a symmetric nor a bisym-
metric tree. If the maximum degree of G is at least 3, then

D′(G) 6 ∆(G)− 1,

unless G is K4 or K3,3.

We now present our result together with the proof.

Theorem 15. Let s > 4 and let G be a connected K1,s-free graph with at least six vertices.
Then

D′(G) 6 s− 1.

Proof. If ∆(G) = 2, then G is either a path or a cycle and D′(G) = 2 < s − 1. If
3 6 ∆(G) 6 s, then the proof follows from Theorem 14. Assume then that ∆(G) > s.

Let x be a vertex such that dG(x) = ∆(G). We use Theorem 8 and the ALGORITHM
with N [x] as the set H. Consider a minimal path cover P of G[N(x)]. Our task is to find
a colouring c of G[N [x]], such that in the colouring c′ obtained after application of the
ALGORITHM every vertex of N [x] is fixed.
As ∆(G) > s, we need to consider only two cases.

Case 1. Assume that P contains a path with at least three vertices. Without loss of
generality, let it be P1. Colour the edges of this path, as well as the edge between the first
vertex of this path and x with 2. Colour the edges between x and the remaining vertices
of this path with 3. For each i 6= 1 colour the edges of Pi as well as the edge between the
first vertex of Pi and x with colour i. Colour with 1 every edge not yet coloured. This
colouring uses at most s− 1 colours (cp. Figure 5).

Figure 5: Case 1 of Theorem 15.

Now apply the ALGORITHM. If P1 contains at least four vertices, then x is the only
vertex in G contained in three triangles without edges coloured with 1, therefore x is
fixed. If P1 contains exactly three vertices, then x and the second vertex of P1, call it x12,
are the only vertices contained in two triangles without edges coloured with 1. Vertex x
is adjacent to at least two edges coloured with 3 and at most two edges coloured with
2. If x12 is adjacent to two edges coloured with 3, then it is also adjacent to three edges
coloured with 2. Thus both x and x12 are fixed.

The first vertex of P1 is fixed, because it is the only vertex joined to x by an edge
coloured with 2 and contained in the triangle without edges coloured with 1. The second
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vertex of P1 is fixed, because it is the only vertex joined to the first vertex of P1 by an
edge coloured with 2 and adjacent to x. Analogously, every vertex of the path P1 is fixed.

Now, consider each path Pi for i > 2. The first vertex of such a path is fixed, because
it is the only not yet fixed vertex connected to x by an egde coloured with i. Following
the same argument as above, all the vertices of the path are fixed. Thus every vertex of
N [x] is fixed. By Theorem 8, every vertex of G is fixed.

Case 2. Assume that P contains no path with three or more vertices. Therefore,
P contains at least two paths with two vertices each. Without loss of generality, let
|P1| = |P2| = 2. We call their vertices v1, u1 and v2, u2, respectively. We colour the edges
v1x, v2x, v1u1 with 2 and the edges u1x, u2x, v2u2 with 3. For each i /∈ {1, 2} consider
the path Pi and colour its edges and the edge joining the first vertex of this path and x
with i− 1. Colour with 1 every edge not yet coloured. This colouring uses at most s− 1
colours (cp. Figure 6).

Figure 6: Case 2 of Theorem 15.

Now apply the ALGORITHM. Observe that x is the only vertex in G contained in
two triangles without edges coloured with 1. Thus vertex x is fixed.

If x is fixed, then for each nontrivial automorphism, the image of the vertex from
P1 ∪P2 is contained in P1 ∪P2. The image of v1 cannot be anything else than itself, as it
is the only vertex in P1 ∪ P2 with two incident edges with colour 2 in G[N [x]]. Similarly,
the vertex u2 is fixed. Thus vertices u1 and v2 are fixed.

Now consider a path Pi for i /∈ {1, 2}. It consists of at most two vertices. These
vertices are fixed, because the first one is the only not yet fixed vertex joined to x by an
egde coloured with i − 1, and the second one (if it exists) is the only vertex adjacent to
x and adjacent to the first vertex by an egde coloured with i − 1. Thus every vertex of
N [x] is fixed. By Theorem 8, every vertex of G is fixed.
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