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Abstract

Assume G is a graph and S is a set of permutations of positive integers. An
S-signature of G is a pair (D, o), where D is an orientation of G and o : E(D) - S
is a mapping which assigns to each arc e = (u,v) a permutation o(e) in S. We
say G is S-k-colourable if for any S-signature (D,o) of G, there is a mapping
f : V(G) - [k] such that for each arc e = (u,v) of G, o(e)(f(u)) # f(v). The
concept of S-k-colourable is a common generalization of many colouring concepts.
This paper studies the problem as to which subsets S of Sy, every planar graph
is S-4-colourable. We call such a subset S of S4 a good subset. The Four Colour
Theorem is equivalent to saying that S = {id} is good. It was proved by Jin, Wong
and Zhu (arXiv:1811.08584) that a subset S containing id is good if and only if
S = {id}. In this paper, we prove that, up to conjugation, every good subset of Sy
not containing id is a subset of {(12),(34),(12)(34)}.

Mathematics Subject Classifications: 05C10, 05C15

1 Introduction

A signed graph is a pair (G, 0), where G is a graph and o : E(G) - {1,-1} is a mapping
which assigns to each edge e of G a sign o(e) € {1,-1}. The mapping o is called a signature
of G and an edge e is called positive or negative if o(e) =1 or o(e) = -1, respectively.
Colouring of signed graphs was first studied by Zaslavsky [12] in 1980’s, and has attracted
a lot of recent attention. For a positive integer k, let [k] ={1,2,...,k} and let

L #2002, if k =2q is even,
"T1H0, 51,52, ..., xq), if k=2¢+1 is odd.

Let Z, ={0,1,...,k -1} denote the cyclic group of order k.
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Definition 1. Assume (G, 0) is a signed graph and k is a positive integer. A k-colouring
of (G,0) is amapping [ : V(G) - Nj such that for any edge e = xy of G, f(x) + o(e) f(y).
A Zy-colouring of (G, o) is a mapping f: V(G) - Z; such that for any edge e = xy of G,
f(@) = a(e)f(y).

Note that for ¢ € Zy, —i = k —1 is the inverse of ¢ in group Z.

It is easy to see that if &k is odd, then a signed graph (G,o) is k-colourable if and
only if it is Zg-colourable, however, if k is even, then k-colouring and Zj-colouring are
different. For example, if G is an even cycle, then (G, o) is Z;-colourable for any signature
o, however, if G has an odd number of negative edges, then (G, o) is not 2-colourable.

Both k-colouring and Zj-colouring of signed graphs are natural extensions of colour-
ing of graphs and lead to interesting open problems. It was conjectured by Mé&cajov4,
Raspaud, Skoviera [8] that every signed planar graph is 4-colourable; and conjectured by
Kang and Steffen [3] that every signed planar graph is Z4-colourable. Both conjectures
are stronger than the Four Colour Theorem. Recently, both conjectures are disproved.
It was shown by Kardos and Narboni [11] that there are signed planar graphs that are
not 4-colourable, and shown by Zhu [14] that there are signed planar graphs that are not
Z,-colourable.

We are interested in signed planar graphs and hence we concentrate on colourings
using 4 colours. There is another 4-colouring of signed planar graphs that is natural
and interesting. We choose the colour set to be {1,-1,i,-i}, and define the Complex
4-colouring of a signed graph (G, o) as follows.

Definition 2 (Complex 4-colouring of signed graphs). A Complez 4-colouring of a signed
graph (G,0) is a mapping f : V(G) — {1,-1,7,—i} such that for each edge e = xy,
f(@)f(y) # o(e).

A natural question is whether every signed planar graph is Complex-4-colourable. We
propose the following conjecture:

Conjecture 3. Every signed planar graph is Complex 4-colourable.

Unlike the conjecture of Mac¢ajové, Raspaud, Skoviera and the conjecture of Kang and
Steffen, Conjecture 3 is not stronger than the Four Colour Theorem. This feature makes
this conjecture more appealing.

We shall explain in the next section, in some sense, Conjecture 3 is the only interesting
Four Colouring Conjecture of signed planar graphs.

2 Generalized signed graph colouring

In colourings of a signed graph, the sign of an edge specify which colour pairs are forbidden
to be assigned to its end vertices. It is natural to consider graphs with more variety of
edges and hence with more types of restrictions on colour pairs that can be assigned to
the end vertices of edges. Indeed, various colourings of graphs corresponding to different
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restrictions have been studied in the literature. Below are three types of graph colourings
that are examples of such constraints.

In 1992, Jaeger, Linial, Payan and Tarsi [2] introduced the concept of group colouring.
Assume I is an Abelian group, D is an orientation of G and o : E(D) — I assigns to each
arc e = (u,v) an element o(e) € I'. A I'-colouring of (D, o) is a mapping f: V(G) - T'
such that for any arc e = (u,v) of D, f(v) - f(u) # o(e). We say G is I'-colourable if for
any orientation D of G and for any o : E(D) — I, there exists a I'-colouring of (D, o).
The group chromatic number of G is the minimum integer k such that for any Abelian
group I' of order k, G is T'-colourable ( see [6, 7, 10] for some study on this subject).

In 1995, as a generalization of colouring of signed graphs, Zaslavsky [13] defined the
colouring of gain graphs as follows: A gain graph consists of a graph G, a gain group
I, and a gain function ¢, which assigns each orientation e = (u,v) of an edge uv a group
element ¢(e) so that ¢(e7!) = (¢(e))!, where e! = (v,u) is the inverse of e. We denote
a gain graph as (G, ¢). A proper k-colouring of (G, ¢) assigns to each vertex v of G a
colour f(v) from the colour set {0} u {(i,7) : i € {1,2,...,k},m € '}, so that for each
orientation e = (u,v) of an edge uv of G, if f(u) =0 then f(v) # 0, and if f(u) = (4,7),
then f(v) # (i,mo¢(e)) (here o is the product in I'). Note that if I' is an Abelian group,
then a proper 1-colouring of (G, ¢) without using colour 0 is the same as the I'-colouring
of (G,¢) defined as above by Jaeger, Linial, Payan and Tarsi [2]. If I' = Z5, then a k-
colouirng of (G, ¢) is a (2k + 1)-colouring of the signed graph (G, o), where o(e) =1 if
o(e)=0and o(e) =-1if ¢p(e) = 1.

In 2018, Dvoiék and Postle [1] defined DP-colouring of a graph as follows: Assume G
is a graph. A k-cover of G is a graph H with vertex set V(G) x [k] such that for each
vertex v, {v} x [k] induces a clique, and for each edge uv of G, edges between {v} x [k]
and {u} x [k] is a matching, and there is no other edge. An independent set I of H with
|I] = |V (G)] is a DP-colouring of G with respect to H. We say G is DP-k-colourable if for
any k-cover H of GG, there exists a DP-colouring of G with respect to H. It was shown in
[1] that every DP-k-colourable graph is k-choosable, and the concept of DP-colouring is
used to show that every planar graph without cycles of lengths 4,5,6,7,8 is 3-choosable,
which is a problem that had remained open for 15 years.

In each of the colourings defined above, edges of GG are labeled, and certain pairs of
colours are forbidden to be assigned to the end vertices of edges with given label. In this
sense, the labels play the same role as the sign of the edges in a signed graph. However,
instead of + and — signs, we may have many different signs. Adopting this point of view,
we introduce the concept of colouring of S-signed graphs as follows.

A set S of permutations of integers is called inverse closed if for each me S, 71 € S.

Definition 4. Assume G is a graph and S is an inverse closed set of permutations of
positive integers. An S-signature of G is a pair (D,o0), where D is an orientation of
G and o : E(D) — S is a mapping which assigns to each arc e = (u,v) a permutation
o(e) e S. A proper k-colouring of (D, o) is a mapping f: V(D) — [k] such that for each
arc e = (u,v) of D, a(e)(f(u)) # f(v). We say G is S-k-colourable if every S-signature
(D, o) of G has a proper k-colouring.
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To define an S-signature of (G, we need an orientation D of G and define a mapping
o:E(D) - S. The orientation D is just for reference. Indeed, if £’ is a subset of E(G)
and D' is obtained from D by reversing the orientations of edges in E’, and

(o) = o(e), ife¢ E,
(e) {(0(6))_1, ifee B,

then a proper k-colouring of (D, o) is the same as a proper k-colouring of (D’,;¢’). In
particular, if all the permutations 7 € S are involutions, i.e., 77! = 7, then the orientation
of the edges are irrelevant, and we simply define a mapping o : E(G) - S.

The k-colouring and the Zj-colouring of signed graphs are all colourings of S-signed
graphs for some special sets S of permutations. The sets S consists of involutions only.
Thus we do not need orientations of G.

Assume we are considering S-k-colouring of a graph G. For w e S, if i ¢ [k] or w(4) ¢ [k]
and e = (z,y) is an arc with o(e) = 7, then colouring = with i (or 7(7)) puts no restriction
on the colour of y. So for i ¢ [k] or 7(i) ¢ [k], the image 7(7) is irrelevant. Sometimes
it is convenient to allow permutations 7 € S to have i € [k] and 7 (i) ¢ [k] or i ¢ [k] and
7(i) € [k]. However, in this paper, when we consider S-k-colourings of graphs, we are
interested in those permutations 7 with 7(7) € [k] for every i € [k]. In other words, the
restriction of 7 to [k] is a permutation of [k]. As the images (i) of i ¢ [k] are irrelevant,
we simply consider 7 as a permutation of [k], i.e., S is an inverse closed subset of the
symmetric group Sk.

We use id to denote the identity permutation. The other permutations of integers
are written as product of cycles. For example, (12) is the permutation 7 with 7(1) = 2,
m(2) =1 and 7(i) = for i + 1,2; (12)(34) is the permutation 7 with 7(1) =2, 7(2) =1,
m(3) =4, 7(4) =3 and 7(¢) =i for i # 1,2, 3, 4.

The concept of colouring of generalized signed graphs is a common generalization of
many colouring concepts:

Observation 5. Assume S is a set of permutations of positive integers. Then the follow-
ing hold:

o [f S ={id}, then S-k-colourable is equivalent to k-colourable.

o IfS=1{id,(12)(34)...((2¢-1)(29))} and q = | k/2], then S-k-colourable is equivalent

to signed k-colourable.

o If S = {id,(12)(34)...((2¢ - 1)(29))} and q = [k/2] - 1, then S-k-colourable is
equivalent to signed Zjy-colourable.

o If S={(12),(34)}, then S-4-colourable is equivalent to Complex 4-colourable.

e If S =05y, then S-k-colourable is equivalent to DP-k-colourable (also known as cor-
respondence k-colourable) [1].
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e [fT' is an Abelian subgroup of Sy, then there is a subset S of Sy which is isomorphic
to I' and S-colourable is equivalent to I'-colourable in the sense defined by Jaeger
et al [2]. For example, If S is the subgroup of Sy generated by (12...k), then S-
colourable is equivalent to Zy-colourable, i.e., for any mapping ¢ : E(G) — Zy,, there
is a mapping [ : V(GQ) - Zy such that for each arc e = (z,y), f(y)-f(z) + ¢p(e). We
observe that S-k-colourable not only depends on the group structure of S, but depends
on the permutations in S. It may happen that S s a subgroup of Sy isomorphic to
I', but S-k-colourable is different from I'-colourable.

e Assume T is a group with |T'| =n and k is a positive integer. Let 7: T — [n] be a
one-to-one correspondence from T to [n]. Let k' = kn+ 1 and for each 7w € T, let
7! be the permutation of [k'] defined as w'(nj +1) =nj+7(r771(r)omxw) for r € [n]
and j €{0,1,....,k =1}, and n'(kn+1) = kn+1. Let S ={n': me'}. Then a
k-colouring of a gain graph (G, ¢) with gain group T is equivalent to a k'-colouring
of an S-signature (D, o) of G, where o is defined as o(e) =" if p(e) =m.

e A signature o of a graph G is called k-consistent if for every directed cycle C =
(e1,62,...,er) of G, the composition m = o(e1)o(es)...o(ex) of permutations on the
edges of the cycle has the following property: for i€ [k], either w(i) =i or for some
1<j<k, oler)o(er)...o(e;)(@) ¢ [k]. A graph G is k-choosable if and only if
(G,0) is k-colourable for every k-consistent signature o of G. Here it is necessary
to consider permutations m whose restriction of k] is a partial permutation, i.e., it
is allowed that w(i) ¢ [k] forie[k].

Proof. All the statements above follow straightforward from the definition. We give a
brief explanation of the last one.

Assume (G, 0) is k-colourable for every k-consistent signature o of G, and L is a k-
list assignment of G. Without loss of generality, we may assume that colours in L(v)
for v € V(@) are positive integers. For each vertex v, let m, be any permutation of
positive integers such that m,([k]) = L(v). For each arc e = (z,y) of G, let a(e)(i) = j
if 7,(¢) = m,(j) and o(e)(3) ¢ [k] if m,(7) ¢ L(y). Assume i € [k], C = (e1,€2,...,€;) is a
cycle, and for 1 < j <k, o(er)o(ez)...0(e;) (i) ¢ [k]. Assume e; = 2241, where zy4q = 1.
If o(er)o(es)...o(ex)(i) =4, then it follows from the definition that m,, (i) = m,, (¢').
Since m,, is a permutation of integers, we conclude that i = <. So ¢ is a k-consistent
S-signature of G. Hence (G, o) has a k-colouring ¢. Let ¢ (v) = m,(¢(v)). Then it is easy
to verify that ¢ is an L-colouring of G.

Assume G is k-choosable and ¢ is k-consistent signature of G. We build a graph H with
vertex set V(G) x [k], in which (z,7)(y,7) is an edge of H if and only if e = (x,y) € E(G)
and o(e)(i) = j. Since o is k-consistent, for each vertex = of G, each connected component
C of H contains at most one vertex from {x} x [k]. Let Cy,Cs,...,C, be the connected
components of H. For each vertex = of G, let L(z) = {i : C; contains one vertex from
{z} x [k]}. Then L is a k-list assignment of G. By assumption, there is an L-colouring
¢ of G. For each vertex = of G, let ¢(x) =i if ¢p(x) = j and C; contains (z,7). It is
straightforward to verify that ¢ is a k-colouring of (G, o). O

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(3) (2020), #3.31 5



In the following, we concentrate on S that are subsets of Sk.

Observe that if S is a subset of Si and there is an integer a € [k] such that for any
meS, m(a) # a, then for any S-signed graph (G, o), the mapping f(v) = a for all v € V(G)
is a k-colouring of (G, o).

Definition 6. We call a subset S of Sy normal if for each a € [k], there is a permutation
7 €S such that m(a) = a.

By the observation above, we shall restrict to normal subsets of S,. One particular
type of normal subsets S of S) consists of those subsets S containing id.

In this paper, we concentrate on 4-colouring of generalized signed planar graphs. We
are interested in the following question.

Question 7. For which subsets S of Sy, every planar graph is S-4-colourable?

We call a subset S of Sy good if every planar graph is S-colourable. The Four Colour
Theorem says that S = {id} is good.

Definition 8. We say two subsets S and S’ of Sy are conjugates, if there is a permutation
7 €Sy such that S" = {mor~!:0€S}.

It is obvious that if S and S’ are conjugates and S is good, then S’ is good. The
following result was proved in [3].

Theorem 9. [3] If S is a good subset of Sy containing id, then S = {id}.
In this paper, we prove the following result.

Theorem 10. Up to conjugation, every good subset of Sy not containing id is a subset of

{(12),(34), (12)(34)}.

As a consequence of Theorem 10 and Theorem 9, the question whether S is a good sub-
set of Sy remains open only for S = {(12), (34),(12)(34)} and S = {(12), (34)}. Moreover,
{(12),(34)} is good if and only if every signed planar graph is Complex 4-colourable.

3 Proof of Theorem 10

To prove Theorem 10, we shall show that if S is a normal subset of S; not containing id
and S is not conjugate to a subset of {(12),(34),(12)(34)}, then there is a planar graph
G which is not S-4-colourable.

For convenience, the sets S listed in this section need not be inverse closed. If 7w # 71
and 7 € S, then 7! is implicitly assumed to be a member of S, but will not be listed
explicitly as a member of S.

Definition 11. Assume S is a normal subset of S4. A subset S’ of S is called a core of
S if S7 is a minimal normal subset of S.

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(3) (2020), #3.31 6



For example, the set {id, (12),(34),(12)(34)} has two cores: {id},{(12),(34)}.

Lemma 12. Assume S is a normal subset of Sy andid ¢ S. Then up to conjugation, S has
a core that is one of the following sets: {(12),(34)},{(12),(13),(23)},{(12),(13),(234)},
[(12), (134), (234)}, {(234), (134), (124), (123))}.

Proof. Assume S is a minimal normal subset of S; not containing ¢d. Then each permu-
tation in S fixes one or two colours in [4]. So 2 <|S| < 4.

If |S| = 2, then each permutation in S fixes exactly two colours in [4]. In this case, up
to conjugation, S = {(12),(34)}.

If |S| = 3, then one permutation in S fixes two colours in [4]. Without loss of
generality, we may assume that (12) € S. Since S is a minimal normal subset of Sy,
no permutation in S fixes both 1 and 2. So one of the remaining permutation m; ¢
S fixes 1, and the other permutation my € S fixes 2. Thus m; € {(23),(24),(234)}
and m € {(13),(14),(134)}. Thus up to conjugation, S is one of the following sets:
{(12), (13), (23)}, {(12), (13), (24)}, {(12), (134), (234) }.

If |S| = 4, then each permutation in S fixes exactly one colour in [4]. So S =
{(234), (134), (124), (123)}. O

Lemma 13. Let .¥ =

{{(12),(34), (123)}, {(12), (34), (1234) }, {(12), (34), (2314) }, {(12), (34), (23) }, {(12),
(34),(23)(14)}, {(12), (13),(23)}, {(12), (13), (234)},{(12), (134), (234) }, {(234), (134),

(124),(123)}}. If S is a normal subset of Sy not containing id and S is not conjugate to a
subset of {(12),(34),(12)(34)}, then S has a subset which is a conjugation of a member
of .

Proof. 1f {(12),(34)} is a core of S, then S contains another permutation 7 such that = #
id and 7 # (12)(34). So up to conjugation, S € {{(12), (34),(123)},{(12),(34),(1234)},
{(12), (34), (2310)}, {(12), (34), (23}, {(12), (34), (23) (14)}}.

If {(12),(34)} is not a core of S (up to conjugation), then by Lemma 12, the core of
S is already conjugate to a member of .. [

Thus to prove Theorem 10, it suffices to show that for each S € ., there is a planar
graph G and an S-signature (D, o) of G such that (D, o) is not 4-colourable.
In the remainder of this paper, let 7* = (12).

Lemma 14. For any S € .7, for any a,b € [4] for which n*(a) # b (it is possible that
a=0b), there is a planar graph H with u,u’ be two vertices on the boundary of H, such that
there is an S-signature (D, o) of H and there is no 4-colouring ¢ of (D,o) with ¢(u) = a
and ¢(u') = b.

We leave the proof of Lemma 14 to the next section. With this lemma, we can complete
the proof of Theorem 10.

Assume S € .. For each pair (a,b) of integers with a,b € [4] and 7*(a) # b, let Hyp
be a planar graph with w,u’ be two vertices on the boundary of H,;, such that there
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is an S-signature o of H,; and there is no 4-colouring ¢ of (H,,0) with ¢(u) = a and
¢(u’) = b.

Let G be obtained from the disjoint union of {H,p : a,b e [4],7*(a) # b} by identifying
all the copies of u into a single vertex u*, all the copies of v’ into a single vertex v* and
adding an edge u*v*.

If (12) € S, then let (D, o) be the S-signature of G whose restriction to each H, is
as defined above and o(u*v*) = 7* (note that as (7*)~! = 7*, the orientation of the edge
w*v* is irrelevant). It follows that there is no 4-colouring of (D, o). Indeed, if ¢ is a
4-colouring of G with ¢(u) = a and ¢(v) = b, then since o(u*v*) = 7%, we have 7*(a) # b.
Then by Lemma 14, the restriction of ¢ to H,y is not a proper 4-colouring of H, .

If (12) ¢ S, e, S = {(234),(134),(124),(123)}, then let G’ be obtained from the
disjoint union of three copies of G by identifying the three copies of u* into a single
vertex, which is still named u*. Let (D, o) be the S-signature of G whose restriction to
each H, is as defined above and in the first copy of G, the edge u*v* is oriented as (u*, v*)
and o(u*,v*) = (123). In the second copy of G*, the edge u*v* is oriented as (v*,u*)
and o(v*,u*) = (123). In the third copy of G*, the edge u*v* is oriented as (v*,u*) and
o(v*,u*) = (124). Now we show that there is no 4-colouring of (D,c). Assume to the
contrary that ¢ is a proper 4-colouring of (D, ). If ¢(u*) = 1, then ¢(v*) # 2 for v* in the
first copy of G. The same argument as above leads to a contradiction. If ¢(u*) =2, then
¢(v*) # 1 in the second copy of G. Similarly, we arrive at a contradiction. If ¢(u*) = 3,
then ¢(v*) # 3 in the third copy of G. Again a contradiction. If ¢(u*) =4, then ¢(v*) # 4
in the first copy of GG, which also leads to a contradiction. This completes the proof of
Theorem 10.

4 Proof of Lemma 14

For different sets S € ., the constructions of H and the S-signature (D, o) are different,
but some of them are very similar to each other. By grouping similar constructions
together, we divide the proof of Lemma 14 into four claims.

The construction will use five graphs Hy, Ho, H3, Hy, Hs as gadgets. These five graphs
are depicted in Figures 1 and 2, where in Figure 2, each 3-face of Hj5 containing a *
contains a copy of T" whose boundary triangle is identified with the 3-face.

Claim 15. If S € {{(12),(34),(1234)},{(12),(34), (2314) },{(12),(34), (23)(14) }, {(12),
(34),(23)},{(12),(13),(234)},{(12),(134),(234)}}, then for any a,b € [4] with 7*(a) + b,
there is an S-signature (Do) of Hy such that there is no 4-colouring ¢ of (Hy,o) with

¢(u) =a and ¢(u') = 0.

Proof. We consider three cases.

Case 1. S e {{(12),(34),(1234)},{(12), (34), (2314)}, {(12), (34), (23)(14)} }.

By symmetry, it suffices to consider the cases that a=b=1ora=1,b=3ora=1,b=4
ora=3,b=4.

First we assume S = {(12), (34), (1234)}.
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Figure 2: The graphs 7" and Hj5

If a=b=1, then let (D,0) be the S-signature of H; defined as in Figure 3(a).

If a=1,b=3, then let (D,o) be the S-signature of H; defined as in Figure 3(b)

)

(b).
e If a=1,b=4, then let (D,0) be the S-signature of H; defined as in Figure 3(c).

(d).

e If a=3,b=4, then let (D,0) be the S-signature of H; defined as in Figure 3(d)

Consider Figure 3(a). Assume to the contrary that ¢ is a 4-colouring of (H;,0) with
o(u) = ¢(u') = 1. The edge e = uv has o(e) = (12). This implies that ¢(v) # 2. The edge
e =u'v has o(e) = (34). This implies that ¢(v) # 1. So ¢(v) € {3,4}. For the same reason,
o(w) € {3,4}.

Since e = vw has o(e) = (12), we conclude that ¢(v) # ¢p(w).

Assume first that ¢(v) =3 and ¢(w) = 4.

Then none of x,y, z can be coloured by 3 or 4. So z,y, z are all coloured by 1 and 2.
However, the three edges e connecting x,y, z have o(e) = (34). Hence no two vertices of
x,y, 2 can be coloured by the same colour, a contradiction.

If p(v) =4 and ¢(w) = 3, then x',y’, 2" are all coloured by 1 and 2, and no two vertices
of 2/, y’, 2’ can be coloured by the same colour, a contradiction.

Figure 3(b) is checked similarly.

Assume (D, o) is defined by Figure 3(b) and ¢ is a 4-colouring of (Hy,0) with ¢(u) =1
and ¢(u’) = 3. Then by checking the permutations assigned to edges between {u, '} and
{v,w}, we conclude that (¢(v),d(w)) =(3,4) or (4,3). Depending on whether ¢(v) =3
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Figure 3: S = {(12),(34),(1234)}, a directed edge e has o(e) = (1234), a solid edge e
has o(e) = (12) and a dashed edge e has o(e) = (34). (a) a=b=1, (b) a=1,b=3, (c)
a=1,b=4,(d) a=3,b=4.
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or 4, either the triangle ryz cannot be properly coloured or the triangle z'y’z" cannot be
properly coloured.

For Figures 3(c), the permutations assigned to edges between {u, v’} and {v,w} and
edge vw force (¢(v),dp(w)) = (3,4) or (4,3). Depending on whether (¢(v), p(w)) = (3,4)
or (4,3), either the triangle xyz cannot be properly coloured or the triangle z'y’z’ cannot
be properly coloured.

The permutations assigned to edges in Figure 3(d) between {u,u'} and {v,w} and
edge vw force (¢(v),d(w)) = (1,1) or (2,2). Depending on whether (¢(v), p(w)) = (1,1)
or (2,2), either the triangle xyz cannot be properly coloured or the triangle x'y’z’ cannot
be properly coloured.

Next we consider the case that S = {(12), (34), (2314)}.

Fora=b=1ora=1b=3, 0ora=1b=4, or a =3,b=4, the corresponding
S-signatures of H; are given in Figure 4(a), 4(b), 4(c), 4(d), respectively.

For Figures 4(a), 4(b), 4(c), the permutations assigned to edges between {u,u'}
and {v,w} and edge vw force (¢p(v),Pp(w)) = (3,4) or (4,3). Depending on whether
(6(v), d(w)) = (3,4) or (4,3), either the triangle xyz cannot be properly coloured or the
triangle x'y’2’ cannot be properly coloured. For Figure 4(d), the permutations assigned
to edges between {u,u'} and {v,w} and edge vw force (¢(v),d(w)) = (1,1) or (2,2).
Depending on whether (¢(v),p(w)) = (1,1) or (2,2), either the triangle zyz cannot be
properly coloured or the triangle z'y’z’ cannot be properly coloured.

Finally we consider the case S = {(12),(34), (23)(14)}.

Fora=0=1 ora=10b=3 ora=1b=4 ora=30b=4, the corresponding
S-signatures of H; are given in Figure 5(a), 5(b), 5(c), 5(d), respectively.

In Figures 5(a), the permutations assigned to edges between {u,u'} and {v,w} and
edge vw force (¢(v),p(w)) = (3,4) or (4,3).

In Figures 5(b) and 5(c), the permutations assigned to edges between {u,u’} and
{v,w} and edge vw force (¢(v),p(w)) = (2,2) or (3,3).

In Figures 5(d), the permutations assigned to edges between {u,u'} and {v,w} and
edge vw force (¢(v),d(w)) =(1,1) or (2,2).

In all these cases, either the triangle xyz cannot be properly coloured or the triangle
x'y’z" cannot be properly coloured.

Case 2. S € {{(12),(34),(23)},{(12),(13),(234)}}.

In this case, by symmetry, it suffices to consider the cases that a=b=1ora=1,0=3
ora=1,b=4ora=b=2ora=2b=3or a=3,b=4. Note that if S = {(12),(34), (23)},
then a = 2,b =4 is symmetric to a = 1,b =3, and if S = {(12), (13),(234)}, then a =2,b =4
is symmetric to a = 3,b = 4.

For S = {(12),(34),(23)}, the corresponding S-signatures are given in Figures 6(a),
6(b), 6(c), 6(d), 6(e) and 6(f), respecitvely.

The vertices v, w are forced to be coloured (¢(v),p(w)) = (3,4) or (4,3) (in Figure
6(a) and 6(d)), or (¢(v),(w)) = (2,2) or (3,3) (in Figure 6(b) and 6(c) and 6(e)), or
(6(v),d(w)) =(1,2) or (2,1) (in Figure 6(f)). Each leads a contradiction as above.

For S = {(12),(13),(234)}, the corresponding S-signatures are given in Figures 7(a),
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(c) (d)

Figure 4: S = {(12),(34),(2314)}, a directed edge e has o(e) = (2314), a solid edge e
has o(e) = (12) and a dashed edge e has o(e) = (34). (a) a=b=1, (b) a=1,b=3, (c)
a=1,b=4,(d) a=3,b=4.
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Figure 5: S = {(12),(34),(23)(14)}, a dotted edge e has o(e) = (23)(14), a dashed edge
e has o(e) = (34) and a solid edge e has o(e) = (12). (a) a=b=1, (b) a=1,b=3, (c)
a=1,b=4,(d) a=3,b=4.
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Figure 6: S = {(12),(34),(23)}, a dotted edge e has 0. = (23), a dashed edge e has
0. = (34) and a solid edge e has 0. = (12). (a) a=b=1,(b) a=1,b=3, (c) a=1,b=4,
(d)a=b=2,(e) a=2,b=3, (f) a=3,b=4.
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7(b), 7(c), 7(d), 7(e) and 7(f), respecitvely.

u

(d) () (f)

Figure 7: S = {(12),(13),(234)}, a directed edge e has o. = (234), an undirected dashed
edge e has 0. = (13) and a undirected solid edge e has o, = (12). (a) a = b =1, (b)
a=1,b=3,(c)a=1,b=4,(d)a=b=2,(e) a=2,b=3, (f) a=3,b=4

The vertices v,w are forced to be coloured (¢(v),p(w)) = (2,4) or (4,2) (in Fig-
ures 7(a), 7(b), 7(d) and 7(e)), or (¢(v),p(w)) = (1,1) or (3,3) (in Figure 7(c)), or
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(6(v),d(w)) = (1,1) or (2,2) (in Figure 7(f)). Each leads a contradiction as above.

Case 3. S ={(12),(134),(234)}.

In this case, by symmetry, it suffices to consider the cases that a=b=1ora=1,b=3
ora=3,b=4.

For these cases, the corresponding S-signatures are given in Figures 8(a), 8(b) and
8(c), respecitvely.

The vertices v, w are forced to be coloured (¢(v),p(w)) = (1,1) or (2,2) (in Figure
8(a), 8(b), 8(c)). Each leads a contradiction as above. O

(a) (b) (c)

Figure 8: S = {(12),(134),(234)}, a black undirected edge e has o, = (12), a directed
blue edge e has o, = (134), and a directed green edge e has 0. = (234). (a) a=b=1, (b)
a=1,b=3,(c) a=3,b=4.

Claim 16. If S = {{(12),(34),(123)}, then for any a,b € [4] with 7*(a) # b, either there
is an S-signature (D, o) of Hy such that there is no 4-colouring f of (Hy, o) with f(u) =a
and f(u') =b or there is an S-signature (D, o) of Hy such that there is no 4-colouring f
of (Hy,0) with f(u) =a and f(u') =b.

Proof. By symmetry, it suffices to consider the cases that a =b =1 or a = 1,b =3 or
a=1,b=40ora=3,b=4.

e If a=b=1, then let (D,0) be the S-signature of H; defined as in Figure 9(a).
e If a=1,b=3, then let (D,0) be the S-signature of H; defined as in Figure 9(b).
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o If a=1,b=4, then let (D,0) be the S-signature of Hy defined as in Figure 9(c).
e If a=3,b=4, then let (D,0) be the S-signature of Hy defined as in Figure 9(d).

() ()

Figure 9: S ={(12),(34),(123)}, an undirected solid edge e has o, = (12), an undirected
dashed edge has o, = (34), and a directed edge e has o, = (123). (a) a = b =1, (b)
a=1,b=3,(c)a=1,b=4,(d) a=3,b=4.
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Assume ¢ is a colouring of (Hi, o) with ¢(u) = ¢(u’) =1 for the graph in Figure 9(a),
or ¢(u) =1 and ¢(u’) = 3 for the graph in Figure 9(b), or ¢(u) =1 and ¢(u’) = 4 for the
graph in Figure 9(c), or ¢(u) = 3 and ¢(u’) =4 for the graph in Figure 9(d).

The permutations on the edges uv, uw, u'v, u'w in both of Figure 9(a) and 9(b) lead to
o(v) =3,0(w) =4 or ¢p(v) =4,¢(w) =3. This implies that there are only two idenditical
colours, 1 and 2, left for either the triangle zyz or x’y’z’, which is a contradiction.

The permutations on the edges uv, uw, v, w'w in both of Figure 9(c) and 9(d) lead
to ¢(v) = p(w) =1 or ¢(v) = p(w) = 2. In the former case (resp. the later case, in which
the permutations on the edges u/v’, vv’, wv’ force ¢p(v') = 3), there are only two identical
colours left for the triangle zyz (resp. x'y’z’), which is impossible. O

Claim 17. If S = {{(12),(13),(23)}, then for any a,b € [4] with 7*(a) # b, either there is
an S-signature (D, o) of Hs such that there is no 4-colouring f of (Hs,o) with f(u) =a
and f(u') =b or there is an S-signature (D, o) of Hy such that there is no 4-colouring f
of (Hy,o) with f(u) =a and f(u') =b.

Proof. By symmetry, it suffices to consider the cases that a =b=1o0or a =1,b=3 or
a=1,b=4.

o If a=b=1, then let (D,o) be the S-signature of Hs defined as in Figure 10(a).
o If a=1,b=3, then let (D,0) be the S-signature of Hj defined as in Figure 10(b).

e If a=1,b=4, then let (D,0) be the S-signature of H, defined as in Figure 10(c).

Assume ¢ is a colouring of (H3,0) with ¢(u) = ¢(u') = 1 for the graph in Figure 10(a),
or ¢(u) =1 and ¢(u') = 3 for the graph in Figure 10(b), or ¢(u) =1 and ¢(u’) =4 for the
graph in Figure 10(c).

In both of Figures 10(a) and 10(b), the permutations on the edges uwv,uw,u'v, u'w
lead to ¢(v) =1,(w) =4 or ¢p(v) =4,¢(w) = 1. In the former case (resp. the later case),
the permutations on the edges uw’,vw’, ww’ (resp. u'v’',vv’ v'w) force ¢p(w’) = 1 (resp.
¢(v") = 1). Then there are only two identical colours, 1 and 4, left for the triangle zyz
(resp. x'y’z"), which is impossible.

In Figure 10(c), the permutations on the edges uv, uw, u'v,u'w lead to ¢p(v) = p(w) =1
or ¢(v) = ¢(w) = 3. In the former case (resp. the later case, in which the permutations
on the edges uu”, vu"”, wu" force ¢(u') = 3), there are only two identical colours left for
the triangle zyz (resp. x'y’z’), which is a contradiction. O]

Lemma 18. Let S = {(123),(124),(134),(234)}. Then for any three distinct integers
a, 8,7y € [4], there exists an S-signature (D,o) of T such that there is no 4-colouring ¢

of (T,0) with ¢(u) =a,d(v) =5 and ¢p(v') = 7.
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dashed edge e has

Figure 10: S = {(12),(13),(23)}, a solid edge e has 0. = (12), a
=1,b=3,(c)a=1b=4.

= (13), and a dotted edge e has 0. = (23). (a) a=b=1, (b) a

Figure 11: The S-signature of T', where a directed red edge e has o(e) = (123), a directed
blue edge e has o(e) = (124), a directed green edge e has o(e) = (134), and a directed
black edge e has o(e) = (234).
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Proof. By symmetry, it suffices to consider the cases that « = 1,5 =2, = 3. Let (D,0)
be the S-signature of T defined as in Figure 11.

Assume ¢ is a colouring of (7', 0) with ¢(u) =1,¢(v) =2, ¢(v’") = 3. The permutations
on the edges uz,uy,vr,vz,v'y,v'z lead to ¢(x) € {3,4}, ¢(y) € {2,4}, o(z) € {1,4}. If
¢(z) =1, then ¢(z) = ¢(y) = 4, which implies there is no colour for w. If ¢(z) =4, then
o(x) =3,6(y) =2, which implies there is no colour for w, a contradiction. O

Claim 19. If S = {(123),(124),(134),(234)}, then for any a,b € [4] with 7*(a) # b, there
is an S-signature (D, o) of Hs such that there is no 4-colouring f of (Hs, o) with f(u) =a
and f(u') =b.

Proof. By symmetry, it suffices to consider the cases that a=b=1o0r a=3,b=4.
o If a=0b=1, then let (D,0) be the S-signature of Hy defined as in Figure 12(a).

e If a=3,b=4, then let (D,0) be the S-signature of Hy defined as in Figure 12(b).

Moreover, for the graph in Figure 12(a),

e The signature (D, o) of the copy of T inside triangle uvv” is such that there is no
4-colouring ¢ of (T,0) with ¢(u) =1, ¢(v) =2, (v") = 3.

e The signature (D, o) of the copy of T inside triangle uv’v” is such that there is no
4-colouring ¢ of (T',0) with ¢(u) =1,¢(v") = 3,0(v") = 2.

e The signature (D, o) of the copy of T inside triangle u/vv’ is such that there is no
4-colouring ¢ of (T, 0) with ¢(u') = 1,¢(v) = 3,¢(v") = 2.

For the graph in Figure 12(b),

e The signature (D, o) of the copy of T inside triangle uvv” is such that there is no
4-colouring ¢ of (T,0) with ¢(u) =3,¢(v) =1,¢(v") = 2.

e The signature (D, o) of the copy of T inside triangle uv’v” is such that there is no

4-colouring ¢ of (T,0) with ¢(u) =3,0(v') =2, ¢(v") = 1.

e The signature (D, o) of the copy of T inside triangle u/vv’ is such that there is no
4-colouring ¢ of (T,0) with ¢(u') =4, d(v) =2,¢(v") = 1.

Consider the graph in Figure 12(a). Assume ¢ is a colouring of (Hs,0) with ¢(u) =
o) =1,

The permutations on the edges uv,uv’,u'v,u'v" lead to ¢(v) = @(v') = 2 or ¢p(v) =
p(v') = 3 or ¢(v) = 3,0(v') = 2. The copy of T inside triangle uw'vv’ implies that
(6(0), 6(11)) % (3,2).

If ¢p(v) = ¢(v") = 2, the permutations on the edges uv”, vv”,v'v" force ¢p(v") = 3. Thus
the triangle (u,v,v") is coloured by colours (1,2, 3), a contradiction.
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(a) (b)

Figure 12: S = {(123),(124), (134),(234)}, a directed red edge e has o, = (123), a directed
blue edge e has o, = (124), a directed green edge e has o, = (134), and a directed black
edge e has 0. =(234). (a) a=b=1(b) a=3,b=4.

If p(v) = ¢p(v") = 3, then the permutations on the edges uv”, vv” v'v" force ¢p(v'") = 2.
Thus the triangle (u,v’,v") is coloured by colours (1,3,2), a contradiction.

For the graph in Figure 12(b), assume ¢ is a colouring of (Hs,0) with ¢(u) = 3 and
o(u') =4,

The permutations on the edges uv,uv’,u'v,u'v" lead to ¢(v) = ¢(v') = 1 or ¢(v) =
P(v') =2 or p(v) =2,¢(v') = 1.

The copy of T inside triangle w/vv’ implies that (¢(v),p(v")) # (2,1).

If p(v) = ¢p(v") = 1, then the permutations on the edges uv”, vv” v'v" force ¢p(v") = 2,
a contradiction (as the copy of T inside triangle uvv” forbids such a colouring).

If p(v) = ¢(v") = 2, then the permutations on the edges uv”, vv” v'v" force ¢p(v") =1,
a contradiction (as the copy of T inside triangle uv’v" forbids such a colouring). O]

Combining Claims 15, 16, 17 and 19, we complete the proof of Lemma 14.
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