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Abstract

In this paper, we start by considering generating function identities for linked
partition ideals in the setting of basic graph theory. Then our attention is turned
to q-difference systems, which eventually lead to a factorization problem of a spe-
cial type of column functional vectors involving q-multi-summations. Using a re-
currence relation satisfied by certain q-multi-summations, we are able to provide
non-computer-assisted proofs of some Andrews–Gordon type generating function
identities. These proofs also have an interesting connection with binary trees. Fur-
ther, we give illustrations of constructing a linked partition ideal, or more loosely,
a set of integer partitions whose generating function corresponds to a given set of
special q-multi-summations.

Mathematics Subject Classifications: 11P84, 05A17, 05C05, 05C20, 33D70

1 Introduction

1.1 Rogers–Ramanujan type identities

The two Rogers–Ramanujan identities [22, 24], which read as follows, have attracted a
great deal of research interest in the theory of partitions.

Theorem 1 (Rogers–Ramanujan identities).

(i) The number of partitions of a nonnegative integer n into parts congruent to ±1
modulo 5 is the same as the number of partitions of n such that the adjacent parts
differ by at least 2.
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(ii) The number of partitions of a nonnegative integer n into parts congruent to ±2
modulo 5 is the same as the number of partitions of n such that the adjacent parts
differ by at least 2 and such that the smallest part is at least 2.

There are many identities of the same flavor, including the Andrews–Gordon identity
[2, 12], the Göllnitz–Gordon identities [11, 13], the Capparelli identities [8] and so forth.
In 2014, Kanade and Russell [16] further proposed six challenging conjectures on Rogers–
Ramanujan type identities, the latter two of which were proved in 2018 by Bringmann,
Jennings-Shaffer and Mahlburg [7].

Among these Rogers–Ramanujan type identities, two types of partition sets are con-
sidered. One partition set consists of partitions under certain congruence condition. For
example, in the first Rogers–Ramanujan identity, we enumerate partitions into parts
congruent to ±1 modulo 5. The other partition set contains partitions under certain
difference-at-a-distance theme. Let us first adopt a definition in [16].

Definition 2. We say that a partition λ = λ1 + λ2 + · · · + λ` satisfies the difference at
least d at distance k condition if, for all j, λj − λj+k > d.

In this setting, we may paraphrase the corresponding partition set in the first Rogers–
Ramanujan identity as the set of partitions with difference at least 2 at distance 1.

Although it is straightforward to find the generating function for partitions under a
given congruence condition, it is generally not easy to obtain an analytic form of gener-
ating function for partitions under a difference-at-a-distance theme — this is why the six
conjectures of Kanade and Russell remained mysterious for years. But this problem was
recently settled by Kanade and Russell themselves [17] and independently by Kurşungöz
[19] using combinatorial approaches. Also, Kurşungöz carried out similar treatments for
Capparelli’s and Göllnitz–Gordon identities in [20]. Later Li and the author [9] proposed
an algebraic method to reprove six Andrews–Gordon type generating function identities
related to the Kanade–Russell conjectures and also to discover a number of new identities.

For example, in the Kanade–Russell conjecture I1, we would like to count

“partitions with difference at least 3 at distance 2 such that if two consecutive
parts differ by at most 1, then their sum is divisible by 3.”

It was shown in [19] that its generating function is a double summation as follows:

∑
λ

x](λ)q|λ| =
∑

n1,n2>0

qn
2
1+3n2

2+3n1n2xn1+2n2

(q; q)n1(q
3; q3)n2

, (1)

where λ runs through all such partitions, ](λ) denotes the number of parts in λ and |λ|
is the size of λ (that is, the sum of all parts in λ).

1.2 Span one linked partition ideals

In the 1970s, George Andrews [3, 4, 5] has already started a systematic study of Rogers–
Ramanujan type identities and developed a general theory in which the concept of linked
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partition ideals was introduced. The interested readers may refer to Chapter 8 of Andrews’
monograph: The theory of partitions [6].

What we are interested in this paper is a special case of linked partition ideals — the
span one linked partition ideals. In fact, this special case is enough to cover most partition
sets under difference-at-a-distance themes.

Let us first fix some notations.
Let P be the set of all integer partitions with the empty partition ∅ included. We

adopt the convention that |∅| = 0 and ](∅) = 0. We define a map φ : P →P by sending
a partition λ to another partition which is obtained by adding 1 to each part of λ. Also,
we stipulate that φ(∅) = ∅. For example, φ(5 + 3 + 3 + 2 + 1) = 6 + 4 + 4 + 3 + 2. For
k > 1, we iteratively write φk(λ) = φ(φk−1(λ)) with φ0(λ) = λ. Also, for two partitions
λ and π, their sum λ ⊕ π is constructed by collecting all parts in λ and π in weakly
decreasing order. For example, if λ = 3 + 2 + 1 + 1 and π = 4 + 2 + 2 + 1 + 1, then
λ⊕ π = 4 + 3 + 2 + 2 + 2 + 1 + 1 + 1 + 1.

Let Π be a finite set of partitions containing the empty partition ∅. For each partition
π ∈ Π, we define its linking set L(π) by a subset of Π containing the empty partition ∅.
Also, we require that the linking set of the empty partition, L(∅), equals Π. It is possible
to construct finite chains

λ0 → λ1 → λ2 → · · · → λK (2)

such that λ0 ∈ Π, λK 6= ∅ and for all 1 6 k 6 K, λk ∈ L(λk−1). We may further extend
such a finite chain to an infinite chain ending with a series of empty partitions

C : λ0 → λ1 → λ2 → · · · → λK → ∅→ ∅→ · · · . (3)

Let S be a positive integer no smaller than the largest part among all partitions in Π.
The above infinite chain C uniquely determines a partition by

λ0 ⊕ φS(λ1)⊕ φ2S(λ2)⊕ · · · ⊕ φKS(λK)⊕ φ(K+1)S(∅)⊕ φ(K+2)S(∅)⊕ · · · , (4)

which is equivalent to

λ0 ⊕ φS(λ1)⊕ φ2S(λ2)⊕ · · · ⊕ φKS(λK). (5)

Let us collect such partitions along with the empty partition λ = ∅ (which corresponds
to the infinite chain ∅→ ∅→ · · · ) and obtain a partition set I := I (〈Π,L〉, S). Then
I is called a span one linked partition ideal.

Example 3. In the first Rogers–Ramanujan identity, we consider partitions with differ-
ence at least 2 at distance 1. It is not hard to verify that this partition set is a span one
linked partition ideal I (〈Π,L〉, S) where Π = {∅, 1, 2} in which 1 denotes an integer par-
tition containing one part of size 1 and likewise 2 denotes an integer partition containing
one part of size 2, the linking sets are

L(∅) = {∅, 1, 2}, L(1) = {∅, 1, 2}, L(2) = {∅, 2},

and S = 2.

the electronic journal of combinatorics 27(3) (2020), #3.33 3



1.3 Generating function for span one linked partition ideals

Given a span one linked partition ideal I = I (〈Π,L〉, S), one crucial problem is to
determine its generating function

G (x) = G (x, q) :=
∑
λ∈I

x](λ)q|λ|.

Assume that Π = {π1, π2, . . . , πK} where π1 = ∅, the empty partition. We define a
(0, 1)-matrix A = A (〈Π,L〉) by

Ai,j =

{
1 if πj ∈ L(πi),

0 if πj 6∈ L(πi),
(6)

and a diagonal matrix W (x) = W (〈Π,L〉 |x, q) by

W (x) =


x](π1)q|π1|

x](π2)q|π2|

. . .

x](πK)q|πK |

 . (7)

Let the S-tail of a partition λ be the collection of parts in λ that are at most S.

Theorem 4. For each 1 6 k 6 K, we denote by Ik the subset of partitions λ in
I (〈Π,L〉, S) whose S-tail is πk ∈ Π. We further write

Gk(x) = Gk(x, q) :=
∑
λ∈Ik

x](λ)q|λ|.

Let A and W (x) be defined as in (6) and (7), respectively. Then, for |q| < 1 and
|x| < |q|−1, 

G1(x)
G2(x)

...
GK(x)

 = W (x).

(
lim
M→∞

M∏
m=1

(A .W (xqmS))

)
.


1
0
...
0

 . (8)

Remark 5. Recall that π1 = ∅ (so that π1 ∈ L(π) for all π ∈ Π) and L(∅) = Π. It follows
that all entries in the first row and column of A are 1. Further, the first entry in W (x)
is also x0q0 = 1. When |q| < 1 and |x| < |q|−1, we have

lim
M→∞

A .W (xqMS) =


1 0 0 · · · 0
1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0

 .

Throughout,
∏M

m=1(A .W (xqmS)) means

A .W (xqS).A .W (xq2S). · · · .A .W (xqMS). (9)
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Remark 6. We have

G (x) =
K∑
k=1

Gk(x),

but since L(∅) = Π, it is not hard to see that

G1(x) =
K∑
k=1

Gk(xq
S).

Hence,
G (x) = G1(xq

−S). (10)

In September 2018, George Andrews communicated to Zhitai Li and the author a
conjecture on the generating function for linked partition ideals, which was recorded in
[9].

Conjecture 7 (Andrews). Every linked partition ideal has a bivariate generating function
of the form ∑

n1,...,nr>0

(−1)L1(n1,...,nr)qQ(n1,...,nr)+L2(n1,...,nr)xL3(n1,...,nr)

(qB1 ; qA1)n1 · · · (qBr ; qAr)nr

, (11)

in which L1, L2 and L3 are linear forms in n1, . . . , nr and Q is a quadratic form in
n1, . . . , nr. Here the coefficient of the xmqn term is the number of partitions of n in this
linked partition ideal with exactly m parts.

By examining a number of examples in [9, 17, 19, 20], it seems that in some cases
the Gk(x)’s in Theorem 4 are of a unified form of q-multi-summations. It motivates us to
consider a matrix factorization problem involving column functional vectors of certain q-
multi-summations. This, in turn, provides some crude ideas for the conjecture of Andrews.

Further, the algebraic method in [9] of proving generating function identities such
as (1) relies heavily on computer algebra (Mathematica packages qMultiSum [23] and
qGeneratingFunctions [18]). Now we are able to present a new approach that may
simplify the considerations related to computer assistance.

It should be admitted that when a span one linked partition ideal is given, to derive
an Andrews–Gordon type generating function identity, one still has to obtain first a
conjectural (x, q) sum-side. This then requires an extensive search using the general
shape given by Andrews’ Conjecture 7; see Section 5 in the work of Li and the author [9]
for some discussions.

However, we could also start in the opposite direction. That is, if we are given a
family of nice q-multi-summations, then we may try to use the approach in Section 4
to construct identities like (50) and (58), from which we may further construct some
combinatorial objects, or even more luckily, a span one linked partition ideal and its
subsets, such that the q-multi-summations correspond to their generating functions. One
such instance is given in Theorem 23 and Corollary 25. This is indeed what we hope the
framework in this paper could provide.
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1.4 Outline of this paper

This paper is organized as follows.
In Section 2, we first define the generating function for walks in a directed graph G.

Then, by assigning an empty vertex to G, we obtain a modified directed graph G!. The
generating function attached to G! can be defined naturally. Now we merely need to
define the associated directed graph of a span one linked partition ideal I (〈Π,L〉, S) and
then deduce Theorem 4 from the generating function attached to this associated directed
graph.

In Section 3, we will study a q-difference system arising from Theorem 4. Two examples
will then be discussed: one example comes from the Rogers–Ramanujan identities and
the other is about the Kanade–Russell conjectures I1–I3. Then, a matrix factorization
problem will be identified from the two examples.

In Section 4, we turn to non-computer-assisted proofs of two identities obtained in
Section 3. The two identities, in turn, can be used to prove Andrews–Gordon type
generating function identities for span one linked partition ideals. Our approach relies
on a key recurrence relation obtained in Section 4.1. Also, we are able to elucidate the
proofs by binary trees. Further, as an illustration of the framework in this paper, we will
construct a set of integer partitions whose generating function corresponds to a set of
q-multi-summations in Theorem 23 and Corollary 25.

Finally, we are going to raise some open problems in Section 5.

2 Directed graphs

Let G = (V,E) be a directed graph where V is the set of vertices and E is the set of
directed edges. Throughout, we allow loops (that is, directed edges connecting vertices
with themselves) in G but for any two vertices u and v, not necessarily distinct, we allow
at most one directed edge connecting u with v. Let V = {v1, v2, . . . , vK}. Let A = A (G)
be the adjacency matrix of G, that is,

Ai,j =

{
1 if there is a directed edge from vi with vj,

0 if there are no directed edges from vi with vj.
(12)

We say that w is a walk of step M in G if w is a chain of M + 1 vertices

$0 → $1 → · · · → $M

such that for each 1 6 m 6 M , there is an edge from $m−1 to $m. Let WM be the set
of walks of step M in G.

2.1 Generating function for walks in a directed graph

To define the generating function for step M walks in a directed graph G = (V,E), we
assign two weights to each vertex v: one is called length, denoted by ](v) ∈ N, and the
other is called size, denoted by |v| ∈ N.
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Let the shift S be a nonnegative integer.
For any walk w ∈ WM ,

w = $0 → $1 → · · · → $M , (13)

we define its generating function by

G (w |x, q) := x]($0)q|$0| × (xqS)]($1)q|$1| × · · · × (xqMS)]($M )q|$M |. (14)

Now we are able to define the generating function for step M walks from vi to vj for any
1 6 i, j 6 K:

Gi,j(WM |x) = Gi,j(WM |x, q) :=
∑

w∈WM
$0=vi
$M=vj

G (w |x, q). (15)

Let us define a diagonal matrix W (x) = W (x, q) by

W (x) =


x](v1)q|v1|

x](v2)q|v2|

. . .

x](vK)q|vK |

 . (16)

Theorem 8. Let A be the adjacency matrix of G and let W (x) be as in (16). Then
Gi,j(WM |x) is the (i, j)-th entry of

W (x).A .W (xqS).A .W (xq2S). · · · .A .W (xqMS). (17)

Remark 9. Let us set x = q = 1. Then W (1, 1) is a K×K identity matrix and hence (17)
becomes A M . Since Gi,j(WM | 1, 1) equals the number of walks of step M from vertex vi
to vertex vj, Theorem 8 immediately leads to a well-known result in graph theory:

Corollary 10. The number of walks of step M from vertex vi to vertex vj is the (i, j)-th
entry of A M .

Proof of Theorem 8. We induct on M . When M = 0, that is, the chain w of vertices in
(13) contains only one vertex $0, it follows that

Gi,j(W0 |x) =

{
x](vi)q|vi| if i = j,

0 if i 6= j,

which is identical to the (i, j)-th entry of W (x).
Now let us assume that the theorem is true for some M > 0. We also write for

convenience

M (M) = W (x).A .W (xqS).A .W (xq2S). · · · .A .W (xqMS).
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Then Gi,j(WM |x) = M (M)i,j. Further,

M (M + 1)i,j =
K∑
k=1

M (M)i,kAk,j(xq
(M+1)S)](vj)q|vj |

=
K∑
k=1

Gi,k(WM |x)Ak,j(xq
(M+1)S)](vj)q|vj |.

On the other hand,

Gi,j(WM+1 |x) =
∑

w∈WM+1
$0=vi
$M=vj

G (w |x, q)

=
K∑
k=1

 ∑
w∈WM
$0=vi
$M=vk

G (w |x, q)

Ak,j(xq
(M+1)S)](vj)q|vj |

=
K∑
k=1

Gi,k(WM |x)Ak,j(xq
(M+1)S)](vj)q|vj |.

Hence, Gi,j(WM+1 |x) = M (M + 1)i,j, which is our desired result.

2.2 Assigning an empty vertex

Let us assume that v1 ∈ V is an empty vertex, that is, its length and size are both 0:

](v1) = 0 and |v1| = 0. (18)

We also assume that, for 2 6 k 6 K, ](vk) and |vk| are both positive integers.
Now we stipulate that, for each 1 6 k 6 K, there is an edge from vertex vk to the

empty vertex v1. Hence, the entries in the first column of the adjacency matrix A are all
1.

We call such modified directed graph G! = (V !, E!).
For any finite walk in G!,

w = $0 → $1 → · · · → $M ,

with $M 6= v1, we may extend it to an infinite walk

w? = $0 → $1 → · · · → $M → v1 → v1 → · · · .

Conversely, for any infinite walk w? in G! ending with v1 → v1 → · · · , a series of empty
vertex, we may find the last vertex, say $M , which is not empty, and reduce w? to a finite
walk w = $0 → $1 → · · · → $M . If there is no such $M , that is, if the infinite walk is
v1 → v1 → · · · , we reduce it to v1.
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It follows from the assumptions ](v1) = 0 and |v1| = 0 that

G (w? |x, q) = G (w |x, q). (19)

Also, for the infinite walk v1 → v1 → · · · , we have

G (v1 → v1 → · · · | x, q) = G (v1 |x, q) = x0q0 = 1.

Let W? denote the set of infinite walks in G! ending with v1 → v1 → · · · , a series of
empty vertex.

We are now in the position to define the generating function attached to G!, by

G (G! |x, q) :=
∑

w?∈W?

G (w? |x, q). (20)

Theorem 11. For each 1 6 k 6 K, let Gk(G! |x) = Gk(G! |x, q) denote the generating
function for infinite walks in W? starting at vk. Let the shift S be a positive integer.
Let A and W (x) be defined as in (12) and (16), respectively. Then, for |q| < 1 and
|x| < |q|−1, 

G1(G
! |x)

G2(G
! |x)

...
GK(G! |x)

 = W (x).

(
lim
M→∞

M∏
m=1

(A .W (xqmS))

)
.


1
0
...
0

 . (21)

Proof. We simply observe that, for each 1 6 k 6 K,

Gk(G
! |x) = lim

M→∞

∑
w∈WM
$0=vk
$M=v1

G (w |x, q).

By Theorem 8, this is the (k, 1)-th entry of

W (x).A .W (xqS).A .W (xq2S). · · · = W (x).

(
lim
M→∞

M∏
m=1

(A .W (xqmS))

)
.

The desired result therefore follows.

Remark 12. Results of the same flavor as Theorem 11 are available in literature for some
other concrete identities; see [14, Section 3] for Gordon’s identities, [10, Section 5] for
the Andrews–Göllnitz–Gordon identities, and [15, Section 6] for the Andrews–Bressoud
identities.
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2.3 Proof of Theorem 4

To prove Theorem 4, let us define the associated directed graph of a span one linked
partition ideal I = I (〈Π,L〉, S).

We first define the set of vertices. Since Π = {π1, π2, . . . , πK} is a finite set of partitions,
we may treat each πk as a vertex. We also define the length of πk as the number of parts
in πk and the size of πk as the sum of all parts in πk. In particular, since π1 is an empty
partition so that ](π1) = 0 and |π1| = 0, we may treat π1 as an empty vertex.

We next define the directed edges in a natural way. For 1 6 i, j 6 K, if πj ∈ L(πi),
then we say that there is an edge from vertex πi to vertex πj. Recall that for any π ∈ Π,
its linking set L(π) is defined to contain the empty partition π1 = ∅. Hence, for each
1 6 k 6 K, there is an edge from vertex πk to vertex π1.

We call this graph the associated directed graph of I , denoted by G!(I ) = (V !(I ),
E!(I )). In fact, G!(I ) is a modified directed graph described in Section 2.2.

Recall from (4) that each partition λ in I can be uniquely decomposed as

λ = λ0 ⊕ φS(λ1)⊕ φ2S(λ2)⊕ · · · ⊕ φKS(λK)⊕ φ(K+1)S(∅)⊕ φ(K+2)S(∅)⊕ · · ·

so that λK 6= ∅ as long as λ 6= ∅. Hence, we have a natural bijection to infinite walks in
G!(I ) ending with π1 → π1 → · · · :

w?(λ) = λ0 → λ1 → λ2 → · · · → λK → π1 → π1 → · · · .

Further, if λ is an empty partition, then the resulted infinite walk is simply π1 → π1 → · · · .
Now let us define S to be the shift. Then

x](λ)q|λ| = G (w?(λ) |x, q). (22)

Hence,

G (x) =
∑
λ∈I

x](λ)q|λ| =
∑

w?∈W?

G (w? |x, q).

The rest follows directly from Theorem 11.

Example 13. It is shown in Example 3 that partitions with difference at least 2 at
distance 1 form a span one linked partition ideal I (〈Π,L〉, S) where Π = {∅, 1, 2}, the
linking sets are

L(∅) = {∅, 1, 2}, L(1) = {∅, 1, 2}, L(2) = {∅, 2},

and S = 2. We represent its associated directed graph in Fig. 1.
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Figure 1: The associated directed graph in Example 13

π1

π2 π3

](π1) = 0

|π1| = 0

](π2) = 1

|π2| = 1

](π3) = 1

|π3| = 2

π1 = ∅
π2 = 1

π3 = 2

3 q-Multi-summations

3.1 A q-difference system and the uniqueness of solutions

Recall that in Theorem 4 we have shown that
G1(x)
G2(x)

...
GK(x)

 = W (x).

(
lim
M→∞

M∏
m=1

(A .W (xqmS))

)
.


1
0
...
0

 . (23)

Let us focus on 
F ?
1 (x)
F ?
2 (x)
...

F ?
K(x)

 :=

(
lim
M→∞

M∏
m=1

(A .W (xqmS))

)
.


1
0
...
0

 . (24)

Notice that 
F ?
1 (x)
F ?
2 (x)
...

F ?
K(x)

 =

(
lim
M→∞

M∏
m=1

(A .W (xqmS))

)
.


1
0
...
0



= A .W (xqS).

(
lim
M→∞

M∏
m=1

(A .W (xqSqmS))

)
.


1
0
...
0


the electronic journal of combinatorics 27(3) (2020), #3.33 11



= A .W (xqS).


F ?
1 (xqS)
F ?
2 (xqS)

...
F ?
K(xqS)

 .

If we further write Fk(x) := F ?
k (xq−S) for each k, then the column vector

F(x) :=


F1(x)
F2(x)

...
FK(x)


satisfies the q-difference system

F(x) = A .W (x).F(xqS). (25)

Remark 14. It follows from (23), (24) and (25) that

F(x) = A .W (x).


F ?
1 (x)
F ?
2 (x)
...

F ?
K(x)

 = A .


G1(x)
G2(x)

...
GK(x)

 . (26)

Recall that, we have defined in Theorem 4 that, for each 1 6 k 6 K, Ik denotes the
subset of partitions in I (〈Π,L〉, S) whose S-tail is πk. Further, Gk(x) is the generating
function for Ik. Since A is a (0, 1)-matrix, it follows that Fk(x) ∈ Z[[q]][[x]] for each
1 6 k 6 K. More importantly, since the empty partition ∅ is contained in I1 but not in
Ik for 2 6 k 6 K, we have G1(0) = 1 and Gk(0) = 0 for 2 6 k 6 K. Since the entries in
the first column of A are all 1, it follows that

F1(0) = F2(0) = · · · = FK(0) = 1. (27)

We next show the uniqueness of solutions of (25).

Proposition 15. In the q-difference system (25), we assume that, for each 1 6 k 6 K,
Fk(x) ∈ C[[q]][[x]]. If F1(0) = F2(0) = · · · = FK(0), then there exists a solution to (25).
Further, the solution is uniquely determined by F(0).

Proof. For each 1 6 k 6 K, let us write

Fk(x) =
∑
n>0

fk(n)xn,

where fk(n) ∈ C[[q]] for n > 0. We also write for notational convenience that fk(n) = 0
for n < 0. Then,∑

n>0

fk(n)xn =
K∑
j=1

Ak,jx
](πj)q|πj |

∑
n>0

fj(n)qnSxn
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=
∑
n>0

(
K∑
j=1

Ak,jq
|πj |+(n−](πj))Sfj(n− ](πj))

)
xn.

Recall that ](π1) = |π1| = 0 and Ak,1 = 1 for all k. We have that, for n > 0,

fk(n) = qnSf1(n) +
K∑
j=2

Ak,jq
|πj |+(n−](πj))Sfj(n− ](πj)). (28)

Setting n = 0 gives the requirement F1(0) = F2(0) = · · · = FK(0). Also, F(0) =
(f1(0), f2(0), . . . , fK(0))T uniquely determines fk(n) for all 1 6 k 6 K and n > 1 by
(28).

3.2 Two examples

Recall that, for each 1 6 k 6 K, Ik denotes the subset of partitions in I (〈Π,L〉, S)
whose S-tail is πk. Further,

Gk(x) =
∑
λ∈Ik

x](λ)q|λ|.

3.2.1 Example 1

In the first example, we consider

“partitions with difference at least 2 at distance 1.”

This partition set obviously corresponds to the Rogers–Ramanujan identities. In Example
3, we have shown that it is a span one linked partition ideal I (〈Π,L〉, S) where Π =
{π1, π2, π3} with π1 = ∅, π2 = 1 and π3 = 2, the linking sets are

L(π1) = {π1, π2, π3}, L(π2) = {π1, π2, π3}, L(π3) = {π1, π3},

and S = 2.
Notice that the generating function for partitions with difference at least 2 at distance

1 is

G1(x) + G2(x) + G3(x) =
∑
n>0

qn
2
xn

(q; q)n
(29)

and that the generating function for partitions with difference at least 2 at distance 1 and
the smallest part at least 2 is

G1(x) + G3(x) =
∑
n>0

qn
2+nxn

(q; q)n
. (30)

We know from (26) thatF1(x)
F2(x)
F3(x)

 = A .

G1(x)
G2(x)
G3(x)

 =

1 1 1
1 1 1
1 0 1

 .

G1(x)
G2(x)
G3(x)

 .
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Hence, by (29) and (30), if we put

F1(x) = F2(x) =
∑
n>0

qn
2
xn

(q; q)n
(31)

and

F3(x) =
∑
n>0

qn
2+nxn

(q; q)n
, (32)

then we have the following relation from (25):F1(x)
F2(x)
F3(x)

 =

1 1 1
1 1 1
1 0 1

 .

1
xq

xq2

 .

F1(xq
2)

F2(xq
2)

F3(xq
2)

 . (33)

Conversely, if we are able to prove (33) directly (notice that F1(0) = F2(0) = F3(0) =
1), then by Remark 14 and Proposition 15, we can compute thatG1(x)

G2(x)
G3(x)

 =

1
xq

xq2

 .

F ?
1 (x)
F ?
2 (x)
F ?
3 (x)


=

1
xq

xq2

 .

F1(xq
2)

F2(xq
2)

F3(xq
2)

 .

Also, (29) and (30) can be deduced with no difficulty.

3.2.2 Example 2

In the second example, we consider

“partitions with difference at least 3 at distance 2 such that if two consecutive
parts differ by at most 1, then their sum is divisible by 3.”

This partition set corresponds to the Kanade–Russell conjectures I1–I3. It was shown in
[9] that this partition set is a span one linked partition ideal I (〈Π,L〉, S) where S = 3,
and Π = {π1, π2, . . . , π7} along with the linking sets given as follows.

Π linking set
π1 = ∅ {π1, π2, π3, π4, π5, π6, π7}
π2 = 1 {π1, π2, π3, π4, π5, π6, π7}

π3 = 2 + 1 {π1, π2, π3, π4, π5, π6, π7}
π4 = 3 + 1 {π1, π5, π6, π7}
π5 = 2 {π1, π2, π3, π4, π5, π6, π7}
π6 = 3 {π1, π5, π6, π7}

π7 = 3 + 3 {π1, π6, π7}
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It was also shown in [9] that the generating function for such partitions is{
G1(x) + G2(x) + G3(x) + G4(x)

+G5(x) + G6(x) + G7(x)

}
=

∑
n1,n2>0

qn
2
1+3n2

2+3n1n2xn1+2n2

(q; q)n1(q
3; q3)n2

, (34)

that the generating function for such partitions with the smallest part at least 2 is

G1(x) + G5(x) + G6(x) + G7(x) =
∑

n1,n2>0

qn
2
1+3n2

2+3n1n2+n1+3n2xn1+2n2

(q; q)n1(q
3; q3)n2

, (35)

and that the generating function for such partitions with the smallest part at least 3 is

G1(x) + G6(x) + G7(x) =
∑

n1,n2>0

qn
2
1+3n2

2+3n1n2+2n1+3n2xn1+2n2

(q; q)n1(q
3; q3)n2

. (36)

We know from (26) that

F1(x)
F2(x)
F3(x)
F4(x)
F5(x)
F6(x)
F7(x)


=



1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 0 0 0 1 1 1
1 1 1 1 1 1 1
1 0 0 0 1 1 1
1 0 0 0 0 1 1


.



G1(x)
G2(x)
G3(x)
G4(x)
G5(x)
G6(x)
G7(x)


.

Hence, by (34), (35) and (36), if we put

F1(x) = F2(x) = F3(x) = F5(x) =
∑

n1,n2>0

qn
2
1+3n2

2+3n1n2xn1+2n2

(q; q)n1(q
3; q3)n2

, (37)

F4(x) = F6(x) =
∑

n1,n2>0

qn
2
1+3n2

2+3n1n2+n1+3n2xn1+2n2

(q; q)n1(q
3; q3)n2

(38)

and

F7(x) =
∑

n1,n2>0

qn
2
1+3n2

2+3n1n2+2n1+3n2xn1+2n2

(q; q)n1(q
3; q3)n2

, (39)

then we have the following relation from (25):

F1(x)
F2(x)
F3(x)
F4(x)
F5(x)
F6(x)
F7(x)


=



1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 0 0 0 1 1 1
1 1 1 1 1 1 1
1 0 0 0 1 1 1
1 0 0 0 0 1 1


.



1
xq

x2q3

x2q4

xq2

xq3

x2q6


.



F1(xq
3)

F2(xq
3)

F3(xq
3)

F4(xq
3)

F5(xq
3)

F6(xq
3)

F7(xq
3)


. (40)
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Conversely, we are also able to recover

(G1(x),G2(x),G3(x),G4(x),G5(x),G6(x),G7(x))T

as well as (34), (35) and (36) provided that we have proved (40) directly since F1(0) =
F2(0) = · · · = F7(0) = 1.

3.3 A matrix factorization problem

Motivated by (33) and (40), we turn our interest to a matrix factorization problem as
follows.

Let R be a positive integer. Let α = (αi,j) ∈ MatR×R(N) be a fixed symmetric matrix.
Let A = (Ar) ∈ NR

>0 and γ = (γr) ∈ NR
>0 be fixed.

Let F be a set of q-multi-summations defined by

F :=
{
H(β) : β ∈ ZR and condition (43) is satisfied

}
, (41)

where H(β) = H(β1, . . . , βR) is of the form

H(β) :=
∑

n1,...,nR>0

q
∑R

r=1 αr,rnr(nr−1)/2q
∑

16i<j6R αi,jninjq
∑R

r=1 βrnrx
∑R

r=1 γrnr

(qA1 ; qA1)n1 · · · (qAR ; qAR)nR

(42)

and the additional condition reads: for all (n1, . . . , nR) ∈ NR\{(0, 0, . . . , 0)},

R∑
r=1

αr,rnr(nr − 1)

2
+

∑
16i<j6R

αi,jninj +
R∑
r=1

βrnr > 0. (43)

Now we consider a column functional vector

Fβ(x) =


F1(x)
F2(x)

...
FK(x)

 :=


H(β

1
)

H(β
2
)

...
H(β

K
)

 , (44)

where H(β
k
) ∈ F for all 1 6 k 6 K.

We expect Fβ(x) to satisfy the following factorization property.

Factorization Property. Let U be a (0, 1)-matrix such that all entries in the first
row and column are 1. Let V be a diagonal matrix such that all (diagonal) entries are
monic monomials in x and q with V1,1 = 1. We say that Fβ(x) satisfies the Factorization

Property if
Fβ(x) = U .V .Fβ(xqS) (45)

for some positive integer S.
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Example 16. In the example in Section 3.2.1, we have α =
(
2
)
, γ = (1), A = (1) and

Fβ(x) =

H(1)
H(1)
H(2)

 .

Also, S = 2.

Example 17. In the example in Section 3.2.2, we have α =

(
2 3
3 6

)
, γ = (1, 2), A =

(1, 3) and

Fβ(x) =



H(1, 3)
H(1, 3)
H(1, 3)
H(2, 6)
H(1, 3)
H(2, 6)
H(3, 6)


.

Also, S = 3.

4 Non-computer-assisted proofs

In [9], Li and the author provided an algebraic method to prove Andrews–Gordon type
generating function identities such as (34), (35) and (36). However, we note that the
proofs in that work rely heavily on computer assistance. Our aim here is to illuminate
and simplify such proofs using an alternate approach.

As we have seen in Section 3.2.2, to prove (34), (35) and (36), it suffices to show (40).
Our starting point is a recurrence relation enjoyed by H(β1, . . . , βR) defined in (42).

4.1 A key recurrence relation

Recall that

H(β1, . . . , βR)

=
∑

n1,...,nR>0

q
∑R

r=1 αr,rnr(nr−1)/2q
∑

16i<j6R αi,jninjq
∑R

r=1 βrnrx
∑R

r=1 γrnr

(qA1 ; qA1)n1 · · · (qAR ; qAR)nR

.

Theorem 18. For 1 6 r 6 R, we have

H(β1, . . . , βr, . . . , βR) = H(β1, . . . , βr + Ar, . . . , βR)

+ xγrqβrH(β1 + αr,1, . . . , βr + αr,r, . . . , βR + αr,R). (46)

the electronic journal of combinatorics 27(3) (2020), #3.33 17



Proof. We have (recall that α is a symmetric matrix so that αi,j = αj,i for 1 6 i, j 6 R)

H(β1, . . . , βr, . . . , βR)−H(β1, . . . , βr + Ar, . . . , βR)

=
∑

n1,...,nR>0

q
∑

i αi,ini(ni−1)/2q
∑

i<j αi,jninjq
∑

i βini(1− qnrAr)x
∑

i γini

(qA1 ; qA1)n1 · · · (qAr ; qAr)nr · · · (qAR ; qAR)nR

=
∑

n1,...,nR>0
nr>1

q
∑

i αi,ini(ni−1)/2q
∑

i<j αi,jninjq
∑

i βinix
∑

i γini

(qA1 ; qA1)n1 · · · (qAr ; qAr)nr−1 · · · (qAR ; qAR)nR

= xγrqβr
∑

n1,...,nR>0

q
∑

i αi,ini(ni−1)/2q
∑

i<j αi,jninjq
∑

i(βi+αr,i)nix
∑

i γini

(qA1 ; qA1)n1 · · · (qAr ; qAr)nr · · · (qAR ; qAR)nR

= xγrqβrH(β1 + αr,1, . . . , βr + αr,r, . . . , βR + αr,R).

The desired identity therefore follows.

Remark 19. It is worth pointing out that the recurrence (46) and its relations to sum-
like generating functions have connections with the theory of vertex operator algebras,
especially in the context of principal subspaces of modules. For one recent example, see
(4.71)–(4.81) in [21].

Remark 20. A recent paper of Ablinger and Uncu [1] also seems to outline some function-
ality regarding recurrences for q-multi-summations.

Recall that the Factorization Property says that

Fβ(x) = U .V .Fβ(xqS).

Further, if F (x) = H(β1, . . . , βR), then

F (xqS) = H(β1 + γ1S, . . . , βR + γRS). (47)

Probably, if we expect to apply Theorem 18 to deduce Andrews–Gordon type generat-
ing function identities, we need to attach some additional conditions to the Factorization
Property.

Additional Conditions. For all 1 6 s 6 R:

(i). γsS ∈ AsZ;

(ii). for all 1 6 r 6 R, αr,s ∈ AsZ.

4.2 Proof of (33)

We first prove (33), which is relatively easy.
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Theorem 21. Let

F1(x) = F2(x) =
∑
n>0

qn
2
xn

(q; q)n
(48)

and

F3(x) =
∑
n>0

qn
2+nxn

(q; q)n
. (49)

Then, F1(x)
F2(x)
F3(x)

 =

1 1 1
1 1 1
1 0 1

 .

1
xq

xq2

 .

F1(xq
2)

F2(xq
2)

F3(xq
2)

 (50)

We have shown in Example 16 that in this case S = 2, α =
(
2
)
, γ = (1), A = (1) andF1(x)

F2(x)
F3(x)

 =

H(1)
H(1)
H(2)

 .

Further, it follows from (47) that

F1(xq
2) = F2(xq

2) = H(3) (51)

and

F3(xq
2) = H(4). (52)

To prove (50), it suffices to show that

F1(x) = F1(xq
2) + xqF2(xq

2) + xq2F3(xq
2) (53)

and

F3(x) = F1(xq
2) + xq2F3(xq

2). (54)

It follows from Theorem 18 that

F1(x) = H(1)

=
{
H(1 + 1) + xqH(1 + 2)

}
= H(2) + xqH(3)

=
{
H(2 + 1) + xq2H(2 + 2)

}
+ xqH(3)

= H(3) + xq2H(4) + xqH(3)
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= F1(xq
2) + xq2F3(xq

2) + xqF2(xq
2).

Also,

F3(x) = H(2)

=
{
H(2 + 1) + xq2H(2 + 2)

}
= H(3) + xq2H(4)

= F1(xq
2) + xq2F3(xq

2).

Identities (53) and (54) are therefore proved.

4.3 Proof of (40)

We next prove (40).

Theorem 22. Let

F1(x) = F2(x) = F3(x) = F5(x) =
∑

n1,n2>0

qn
2
1+3n2

2+3n1n2xn1+2n2

(q; q)n1(q
3; q3)n2

, (55)

F4(x) = F6(x) =
∑

n1,n2>0

qn
2
1+3n2

2+3n1n2+n1+3n2xn1+2n2

(q; q)n1(q
3; q3)n2

(56)

and

F7(x) =
∑

n1,n2>0

qn
2
1+3n2

2+3n1n2+2n1+3n2xn1+2n2

(q; q)n1(q
3; q3)n2

. (57)

Then,

F1(x)
F2(x)
F3(x)
F4(x)
F5(x)
F6(x)
F7(x)


=



1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 0 0 0 1 1 1
1 1 1 1 1 1 1
1 0 0 0 1 1 1
1 0 0 0 0 1 1


.



1
xq

x2q3

x2q4

xq2

xq3

x2q6


.



F1(xq
3)

F2(xq
3)

F3(xq
3)

F4(xq
3)

F5(xq
3)

F6(xq
3)

F7(xq
3)


. (58)

We have shown in Example 17 that in this case S = 3, α =

(
2 3
3 6

)
, γ = (1, 2),

A = (1, 3) and 

F1(x)
F2(x)
F3(x)
F4(x)
F5(x)
F6(x)
F7(x)


=



H(1, 3)
H(1, 3)
H(1, 3)
H(2, 6)
H(1, 3)
H(2, 6)
H(3, 6)


.
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Again, it follows from (47) that

F1(xq
3) = F2(xq

3) = F3(xq
3) = F5(xq

3) = H(4, 9), (59)

F4(xq
3) = F6(xq

3) = H(5, 12) (60)

and

F7(xq
3) = H(6, 12). (61)

To prove (58), it suffices to show that

F1(x) =

{
F1(xq

3) + xqF2(xq
3) + x2q3F3(xq

3) + x2q4F4(xq
3)

+xq2F5(xq
3) + xq3F6(xq

3) + x2q6F7(xq
3)

}
, (62)

F4(x) = F1(xq
3) + xq2F5(xq

3) + xq3F6(xq
3) + x2q6F7(xq

3) (63)

and

F7(x) = F1(xq
2) + xq3F6(xq

3) + x2q6F7(xq
3). (64)

We will adopt the following notation to make our argument more transparent. First, we
underline a term to indicate that Theorem 18 is applied to this term. Also, if Theorem 18
is applied with respect to one coordinate, then that coordinate will be shown in boldface.
Finally, two terms inside the braces are deduced by Theorem 18 from the overlined term
in the previous line.

It follows from Theorem 18 that

F1(x) = H(1,3)

=
{
H(1, 6) + x2q3H(4, 9)

}
=
{
H(2, 6) + xqH(3, 9)

}
+ x2q3H(4, 9)

=
{
H(3, 6) + xq2H(4, 9)

}
+ xqH(3, 9) + x2q3H(4, 9)

= H(3,6) + xq2H(4, 9) +
{
xqH(4, 9) + x2q4H(5, 12)

}
+ x2q3H(4, 9)

=
{
H(3, 9) + x2q6H(6, 12)

}
+ xq2H(4, 9) + xqH(4, 9) + x2q4H(5, 12)

+ x2q3H(4, 9)

=
{
H(4, 9) + xq3H(5, 12)

}
+ x2q6H(6, 12) + xq2H(4, 9) + xqH(4, 9)

+ x2q4H(5, 12) + x2q3H(4, 9)

= F1(xq
3) + xq3F6(xq

3) + x2q6F7(xq
3) + xq2F5(xq

3) + xqF2(xq
3)

+ x2q4F4(xq
3) + x2q3F3(xq

3).

Also,

F4(x) = H(2, 6)
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=
{
H(3,6) + xq2H(4, 9)

}
=
{
H(3, 9) + x2q6H(6, 12)

}
+ xq2H(4, 9)

=
{
H(4, 9) + xq3H(5, 12)

}
+ x2q6H(6, 12) + xq2H(4, 9)

= F1(xq
3) + xq3F6(xq

3) + x2q6F7(xq
3) + xq2F5(xq

3).

Finally,

F7(x) = H(3,6)

=
{
H(3, 9) + x2q6H(6, 12)

}
=
{
H(4, 9) + xq3H(5, 12)

}
+ x2q6H(6, 12)

= F1(xq
3) + xq3F6(xq

3) + x2q6F7(xq
3).

Identities (62), (63) and (64) are therefore proved.

4.4 Binary trees

Interestingly, the previous two proofs can be represented nicely by binary trees. More
precisely, all nodes are of the form H(β1, . . . , βr, . . . , βR). Then Theorem 18 gives two
children of H(β1, . . . , βr, . . . , βR): the left child is H(β1, . . . , βr +Ar, . . . , βR), weighted by
1, and the right child is H(β1 +αr,1, . . . , βr +αr,r, . . . , βR +αr,R), weighted by xγrqβr . See
Fig. 2; here, again, βr is shown in boldface since Theorem 18 is applied with respect to it.

Figure 2: Node H(β1, . . . , βr, . . . , βR) and its children

H(β1, . . . ,βr, . . . , βR)

H(β1, . . . , βr + Ar, . . . , βR) H(β1 + αr,1, . . . , βr + αr,r, . . . , βR + αr,R)

1 xγrqβr

Now the proofs of (33) and (40) can be illustrated by Figs. 3 and 4, respectively.

Figure 3: The binary tree for (33)

H(1)

H(2)

H(3) H(4)

H(3)

1

1 xq2

xq

In fact, it is relatively easy to deduce other much more complicated identities of the
same flavor as (33) and (40). For example, the next result, which appears to be new in
literature, follows from the binary tree in Fig. 5.
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Figure 4: The binary tree for (40)

H(1,3)

H(1, 6)

H(2, 6)

H(3,6)

H(3, 9)

H(4, 9) H(5, 12)

H(6, 12)

H(4, 9)

H(3, 9)

H(4, 9) H(5, 12)

H(4, 9)

1

1

1

1

1 xq3

x2q6

xq2

xq

1 xq3

x2q3

Theorem 23. Let

F1(x) = · · · = F6(x)

=
∑

n1,n2,n3>0

q
n2
1
2
+3n2

2+
9n2

3
2

+2n1n2+6n2n3+3n3n1+
n1
2
−n2−n3

2 xn1+2n2+3n3

(q; q)n1(q
2; q2)n2(q

3; q3)n3

, (65)

F7(x) = · · · = F13(x)

=
∑

n1,n2,n3>0

q
n2
1
2
+3n2

2+
9n2

3
2

+2n1n2+6n2n3+3n3n1+
3n1
2

+n2+
5n3
2 xn1+2n2+3n3

(q; q)n1(q
2; q2)n2(q

3; q3)n3

, (66)

F14(x) = · · · = F21(x)

=
∑

n1,n2,n3>0

q
n2
1
2
+3n2

2+
9n2

3
2

+2n1n2+6n2n3+3n3n1+
3n1
2

+3n2+
11n3

2 xn1+2n2+3n3

(q; q)n1(q
2; q2)n2(q

3; q3)n3

(67)

and

F22(x) = F23(x)

=
∑

n1,n2,n3>0

q
n2
1
2
+3n2

2+
9n2

3
2

+2n1n2+6n2n3+3n3n1+
5n1
2

+3n2+
11n3

2 xn1+2n2+3n3

(q; q)n1(q
2; q2)n2(q

3; q3)n3

. (68)
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Let

A =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0



(69)

and

W (x) = diag(1, xq2, xq, x2q3, x2q2, x3q4,

xq3, x2q5, x2q4, x3q7, x2q4, x3q6, x3q5,

x2q7, x2q6, x3q9, x3q8, x3q8, x3q7, x4q10, x4q9,

x3q10, x4q11). (70)

Then, 
F1(x)
F2(x)

...
F23(x)

 = A .W (x).


F1(xq

3)
F2(xq

3)
...

F23(xq
3)

 . (71)

Remark 24. It is worth pointing out that the q-multi-summations in this theorem are
similar to those appear in [17, (47) and (51)].

Proof of Theorem 23. Let α =

1 2 3
2 6 6
3 6 9

, γ = (1, 2, 3), A = (1, 2, 3) and S = 3. We

have

F1(x) = · · · = F6(x) = H(1, 2, 4)
x 7→xq3−−−−→ H(4, 8, 13),
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F7(x) = · · · = F13(x) = H(2, 4, 7)
x 7→xq3−−−−→ H(5, 10, 16),

F14(x) = · · · = F21(x) = H(2, 6, 10)
x 7→xq3−−−−→ H(5, 12, 19)

and

F22(x) = F23(x) = H(3, 6, 10)
x 7→xq3−−−−→ H(6, 12, 19).

The rest follows from the binary tree in Fig. 5.

It looks like one cannot deduce a span one linked partition ideal I (〈Π,L〉, S) from
Theorem 23. This is because by (71), we need S = 3. But in the diagonal matrix W (x),
there is a term x2q7, which induces a partition of size 7 that has two parts. This means
that one of the parts is larger than 3. However, for a span one linked partition ideal, we
require that all parts in partitions among Π must not exceed S.

On the other hand, we will show in the next corollary that Theorem 23 still corresponds
to a partition set.

Corollary 25. Let Π = {π1, π2, . . . , π23} be a set of integer partitions where

π1 = ∅ π2 = 2 π3 = 1 π4 = 2 + 1
π5 = 1 + 1 π6 = 2 + 1 + 1

π7 = 3 π8 = 3 + 2 π9 = 2 + 2 π10 = 3 + 2 + 2
π11 = 3 + 1 π12 = 2 + 2 + 2 π13 = 3 + 1 + 1

π14 = 4 + 3 π15 = 3 + 3 π16 = 3 + 3 + 3 π17 = 3 + 3 + 2
π18 = 4 + 2 + 2 π19 = 3 + 2 + 2 π20 = 3 + 3 + 2 + 2 π21 = 3 + 2 + 2 + 2

π22 = 4 + 3 + 3 π23 = 3 + 3 + 3 + 2


.

Let L : Π→ P (Π) where P (Π) is the power set of Π be defined by

L(πi) =


{π1, π2, . . . , π23} for 1 6 i 6 6,

{π1, π2, π7, π8, π9, π10, π14, π15, π16, π17, π22} for 7 6 i 6 13,

{π1, π2, π7, π8, π14, π15, π16, π22} for 14 6 i 6 21,

{π1, π7, π14, π15, π22} for 22 6 i 6 23.

Let

Cλ : λ0 → λ1 → λ2 → · · · → λK → ∅→ ∅→ · · ·

be a chain such that for all i > 0, λi ∈ Π and λi+1 ∈ L(λi). Let Φλ be an integer partition
induced from Cλ defined as in (4) with S = 3:

Φλ = λ0 ⊕ φ3(λ1)⊕ φ6(λ2)⊕ · · · ⊕ φ3K(λK)⊕ φ3(K+1)(∅)⊕ φ3(K+2)(∅)⊕ · · · .

Let S be the set of such partitions Φλ. Then,

∑
υ∈S

x](υ)q|υ| =
∑

n1,n2,n3>0

q
n2
1
2
+3n2

2+
9n2

3
2

+2n1n2+6n2n3+3n3n1+
n1
2
−n2−n3

2 xn1+2n2+3n3

(q; q)n1(q
2; q2)n2(q

3; q3)n3

. (72)
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Proof. First, it is easy to see that given a chain Cλ, the induced Φλ is indeed an integer
partition. Now we claim that for any two chains Cµ and Cν , we have Φµ = Φν if and only
if Cµ = Cν . Notice that the “if” part is trivial.

We show the “only if” part by contradiction. Namely, we assume that there are two
chains Cµ 6= Cν such that Φµ = Φν . Let ` be the index such that µ` 6= ν` and µi = νi
for 0 6 i 6 ` − 1. If neither µ` nor ν` contains a part of size 4, then the parts in Φµ of
size up to 3(` + 1) are given by ⊕`i=0φ

3i(µi) and similarly the parts in Φν of size up to
3(`+1) are given by ⊕`i=0φ

3i(νi). Since Φµ = Φν and µi = νi for 0 6 i 6 `−1 as assumed,
it follows that φ3`(µ`) = φ3`(ν`) so that µ` = ν`. This contradicts the assumption that
µ` 6= ν`. If 4 is a part in one of µ` and ν`, then without loss of generality, we assume that
4 is a part in µ`. Then µ` ∈ {π14, π18, π22}. Apparently, if 4 is also a part in ν`, we must
have ν` = µ`, which violates the assumption. Now let us assume that 4 is not a part in
ν`. Since Φµ = Φν , we know that 1 must be a part in ν`+1; otherwise, Φν contains no
parts of size 3` + 4. Thus, ν`+1 ∈ {π3, π4, π5, π6, π11, π13}. Since ν`+1 ∈ L(ν`), we find
that ν` ∈ {π1, π2, π3, π4, π5, π6} and also the parts in Φν of size up to 3(` + 1) are given
by (⊕`−1i=0φ

3i(νi))⊕ φ3`(ν`). On the other hand, since µ` ∈ {π14, π18, π22}, the parts in Φµ

of size up to 3(` + 1) are ⊕`−1i=0φ
3i(µi) plus one of φ3`(3), φ3`(2 + 2) or φ3`(3 + 3) none of

which could be φ3`(ν`). This implies that Φµ 6= Φν , which leads to a contradiction.
Once we have shown that the induced partitions Φλ are pairwise distinct, the rest is

a simple application of the framework developed in this paper by first constructing the
associated directed graph as in Section 2.3. We leave this as an exercise to the interested
reader.

5 Closing remarks

Our main concern is about the Factorization Property. Recall that U is a (0, 1)-matrix
such that all entries in the first row and column are 1, and V is a diagonal matrix such that
all (diagonal) entries are monic monomials in x and q with V1,1 = 1. The Factorization
Property says that

Fβ(x) = U .V .Fβ(xqS), (73)

where S is a positive integer and

Fβ(x) =


F1(x)
F2(x)

...
FK(x)

 =


H(β

1
)

H(β
2
)

...
H(β

K
)

 ,

in which H(β) = H(β1, . . . , βR) is of the form

H(β) =
∑

n1,...,nR>0

q
∑R

r=1 αr,rnr(nr−1)/2q
∑

16i<j6R αi,jninjq
∑R

r=1 βrnrx
∑R

r=1 γrnr

(qA1 ; qA1)n1 · · · (qAR ; qAR)nR

.

Probably we also require the Additional Conditions: for all 1 6 s 6 R:
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(i). γsS ∈ AsZ;

(ii). for all 1 6 r 6 R, αr,s ∈ AsZ.

Problem 26. For given U and V , is it possible to determine if there exist Fβ(x) and S

such that (73) is true?

We have another problem from a different direction.

Problem 27. Are there any criteria of Fβ(x) that we are always able to find U , V and

S such that (73) is true?

The last problem is probably simpler.

Problem 28. Can we construct a family of U , V , Fβ(x) and S such that (73) holds?

If we are able to find such a construction, then we may derive family of span one
linked partition ideals (or at least a family of modified directed graphs) with nice analytic
generation functions.
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