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Abstract

Let G be a complex simply-laced semisimple algebraic group of rank r and B
a Borel subgroup. Let i ∈ [r]n be a word and let ` = (`1, . . . , `n) be a sequence
of non-negative integers. Grossberg and Karshon introduced a virtual lattice poly-
tope associated to i and ` called a twisted cube, whose lattice points encode the
character of a B-representation. More precisely, lattice points in the twisted cube,
counted with sign according to a certain density function, yield the character of
the generalized Demazure module determined by i and `. In a recent work, the
author and Harada described precisely when the Grossberg–Karshon twisted cube
is untwisted, i.e., the twisted cube is a closed convex polytope, in the situation
when the integer sequence ` comes from a weight λ for G. However, not every
integer sequence ` comes from a weight for G. In the present paper, we interpret
the untwistedness of Grossberg–Karshon twisted cubes associated with any word i
and any integer sequence ` using the combinatorics of i and `. Indeed, we prove
that the Grossberg–Karshon twisted cube is untwisted precisely when i is hesitant-
jumping-`-walk-avoiding.

Mathematics Subject Classifications: 20G05, 52B20

1 Introduction

Formulating a combinatorial model for a basis of representation provides a fruitful con-
nection between representation theory and algebraic geometry as exhibited by the theory
of crystal bases and string polytopes. Kaveh [Kav15] showed that the string polytopes can
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be obtained as Newton–Okounkov bodies of the flag variety, and this association is ex-
tended to the generalized string polytopes and Bott–Samelson varieties by Fujita [Fuj18].
On the other hand, Grossberg and Karshon [GK94] also provided a combinatorial model
called twisted cubes. Considering the lattice points in the twisted cube with signs, the
character of the corresponding representation is computed. Note that both generalized
string polytopes and twisted cubes are combinatorial models for the same representation.

Twisted cubes are combinatorially much simpler than generalized string polytopes.
Indeed, when a twisted cube is closed and convex, then it is combinatorially equivalent
to an n-cube [0, 1]n while the combinatorial structure of a generalized string polytope is
not known in general. However, twisted cubes may not be actual polytopes in the sense
that they may not be convex nor closed and the intersection of faces may not be a face
(cf. [GK94, §2.5 and Figure 1 therein] and Figure 1.1). More precisely, a Grossberg–
Karshon twisted cube is a pair (C = C(c, `), ρ), where C is a subset of Rn and ρ is a
density function whose support is C, taking values in {±1}. The defining parameters
c = {cj,k}16j<k6n and ` = (`1, . . . , `n) are fixed constants with cj,k ∈ Z and `j ∈ R.

The main result of this paper concerns twisted cubes obtained from representation-
theoretic data. Let G be a complex semisimple algebraic group of rank r and B a
Borel subgroup. Indeed, we consider a (not necessarily reduced) word decomposition
i = (i1, . . . , in) ∈ [r]n of an element si1 · · · sin in the Weyl group W of G and non-negative
integers m = (m1, . . . ,mn). Here, [r] := {1, . . . , r}. In this situation, parameters c(i)
and `(i,m) are associated, and the Grossberg–Karshon twisted cube (C(c(i), `(i,m)), ρ)
encodes the character of a certain B-representation which is the space of holomorphic
sections. (See Section 1 for more details.)

In this paper, we present a necessary and sufficient condition on i and ` such that the
associated Grossberg–Karshon twisted cube is untwisted (see Definition 4), i.e., C(c, `)
is a closed convex polytope and the density function is equal to 1 on C(c, `), so that the
Grossberg–Karshon character formula is a purely combinatorial positive formula. In other
words, there is no minus sign in the formula.

In order to introduce our result, we prepare some terminology (see Section 2 for precise
definitions). We say a word i = (i1, . . . , in) is a jumping walk if for each 2 6 j 6 n, the
set {i1, . . . , ij−1} and an element ij are adjacent in the Dynkin diagram, i.e., the distance
d({i1, . . . , ij−1}, ij) = min{d(ik, ij) | k = 1, . . . , j − 1} is one. Here, d(a, b) is the distance
of two nodes a and b on the Dynkin diagram. Therefore, to make a jumping walk, one
can jump for the next step, but cannot away far. For example, in type A5

1 2 3 4 5

the word i = (1, 3, 2, 4) is not a jumping walk since d(1, 3) = 2, but i = (3, 2, 1, 4, 5) is
a jumping walk. In the above diagram, one can see the jumping walk (3, 2, 1, 4, 5). The
word i = (i1, i2, . . . , in) is a hesitant jumping `-walk if i1 = i2, the subword (i2, . . . , in) is
a jumping walk, and the integers `1, `2, . . . , `n satisfy an inequality `1− `2 < `2 + · · ·+ `n.
Finally, we say that i is hesitant-jumping-`-walk-avoiding if there is no subword j =

the electronic journal of combinatorics 27(3) (2020), #3.34 2



(ij0 , ij1 , . . . , ijs) of i which is a hesitant jumping (`j0 , `j1 , . . . , `js)-walk. Now we state our
main theorem.

Theorem 1 (Theorem 18). Let G be a complex simply-laced semisimple algebraic group
of rank r. Let i = (i1, . . . , in) ∈ [r]n and ` = (`1, . . . , `n) ∈ Zn>0. Then the corresponding
Grossberg–Karshon twisted cube is untwisted if and only if i is hesitant-jumping-`-walk-
avoiding.

We note that if we consider a simpler situation such that the pair (i,m) satisfies a
condition that mj 6= 0 only if ij′ 6= ij for any j < j′ 6 n, then the untwistedness of
the corresponding Grossberg–Karshon twisted cube can be detected using hesitant λ-walk
avoidance by Harada and the author [HL15]. Here, λ encodes the data of nonzero mj’s.
However, not every pair (i,m) satisfies the condition usually. Since our main result can be
applied to any pair (i,m), the present result is more powerful than the previous one [HL15]
(see Remark 10 and Corollary 20).

Additionally, for given i ∈ [r]n and m, with an appropriate choice of a valuation ν,
Harada and Yang [HY16] constructed a Newton–Okounkov body ∆ = ∆(i,m, ν), which is
a closed convex polytope. They proved that when the twisted cube (C(c(i), `(i,m)), ρ) is
untwisted, then the Newton–Okounkov body ∆ and the twisted cube C(c(i), `(i,m)) are
the same (up to a certain coordinate change). Our result presents a sufficient condition
on i and m such that the Newton–Okounkov body ∆ coincides with the twisted cube.

This paper is organized as follows. In Section 1, we recall the necessary definitions and
establish terminology and notation. In Section 2, we introduce the notions of jumping
walks, hesitant jumping walks, and hesitant-jumping-`-walk-avoidance. Using this ter-
minology we then make the statement of our main result, which is that untwistedness is
equivalent to hesitant-jumping-`-walk-avoidance. The proof of the main result occupies
Section 3.

2 Background on Grossberg–Karshon twisted cubes

We begin by recalling the definition of twisted cubes introduced by Grossberg and Karshon
[GK94, §2.5]. Let n be a fixed positive integer. A twisted cube is defined to be a pair
(C(c, `), ρ), where C(c, `) is a subset of Rn and ρ : Rn → R is a density function with
support equal to C(c, `). Here, c = {cj,k}16j<k6n and ` = (`1, `2, . . . , `n) are fixed integers.
In order to simplify the notation in what follows, we define the following functions on Rn:

An(x) = An(x1, . . . , xn) = `n,

Aj(x) = Aj(x1, . . . , xn) = `j −
∑
k>j

cj,kxk for all 1 6 j 6 n− 1. (2.1)

We also define a function sgn: R → {±1} by sgn(x) = 1 for x < 0 and sgn(x) = −1 for
x > 0.

We now give the definition of twisted cubes.
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Definition 2. Let n, c, ` and Aj be as above. Let C(c, `) denote the following subset of
Rn:

C(c, `) :={x = (x1, . . . , xn) ∈ Rn |
Aj(x) < xj < 0 or 0 6 xj 6 Aj(x) for 1 6 j 6 n}.

Moreover, we define a density function ρ : Rn → R by

ρ(x) =

{
(−1)n

∏n
k=1 sgn(xk) if x ∈ C(c, `),

0 else.

Obviously, the support supp(ρ) of the density function ρ is C(c, `). We call the pair
(C(c, `), ρ) the twisted cube associated to c and `.

A twisted cube may not be combinatorially equivalent to a cube [0, 1]n in the standard
sense. In particular, the set C(c, `) may be neither convex nor closed, as the following
example shows. See also the discussion in [GK94, §2.5].

Example 3. Let n = 2, ` = (`1 = 2, `2 = 3) and c = {c1,2 = 1}. Then C := C(c, `)
consists of points (x1, x2) ∈ R2 satisfying

0 6 x2 6 3,

2− x2 < x1 < 0 or 0 6 x1 6 2− x2.

See Figure 1.1 for the set C. The value of the density function ρ is recorded within each
region.

x1

x2

+1

−1

2

2

3

Figure 2.1: A twisted cube.

Note that the subset C does not contain the points {(0, x2) | 2 < x2 < 3} and the
points {(x1, x2) | 2 < x2 < 3 and x1 = 2− x2}, so C is neither closed nor convex.

As mentioned in the introduction, the primary goal of this manuscript is to give
necessary and sufficient conditions for the untwistedness of the twisted cube, in terms of
the combinatorics of the defining parameters. The following makes this notion precise.
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Definition 4 (cf. [HY15, Definition 2.2]). We say that the Grossberg–Karshon twisted
cube (C = C(c, `), ρ) is untwisted if C is a closed convex polytope, and the density
function ρ is equal to 1 on C and 0 elsewhere.

The main result of [HY15] characterizes the untwistedness of the Grossberg–Karshon
twisted cube in terms of the basepoint-freeness of a certain toric divisor on a toric variety
constructed from the data of c and `. In particular, their result can be stated in terms
of the Cartier data {mσ} associated to the divisor on the toric variety. Before reviewing
the relevant result from [HY15], we introduce some terminology.

Let {e+
1 , . . . , e

+
n } be the standard basis of Rn. For σ = (σ1, . . . , σn) ∈ {+,−}n, define

mσ = (mσ,1, . . . ,mσ,n) =
∑n

j=1mσ,je
+
j ∈ Zn as follows.

mσ,j =


0 if σj = +,

Aj(0, . . . , 0︸ ︷︷ ︸
j

,mσ,j+1, . . . ,mσ,n) if σj = −.

Here, Aj(x) are the functions in (1.1). With this notation, we recall the following.

Theorem 5 (cf. [HY15, Proposition 2.1]). Let n, c and ` be as above and let (C(c, `), ρ)
denote the corresponding Grossberg–Karshon twisted cube. Then (C(c, `), ρ) is untwisted
if and only if mσ,j > 0 for all σ ∈ {+,−}n and for all j with 1 6 j 6 n.

Remark 6 (cf. [HY15, §1.2]). Define

e−j := −e+
j −

∑
k>j

cj,ke
+
k for 1 6 j 6 n.

Let Σ(c) be the fan consisting of maximal cones generated by {eσjj | 1 6 j 6 n} for each
σ = (σ1, . . . , σn) ∈ {+,−}n. The toric variety X(Σ(c)) constructed by the fan Σ(c) is
called a Bott manifold. For the torus-invariant divisor

D(c, `) :=
n∑
j=1

`jDe−j
,

the Cartier data for D(c, `) is the same as {mσ}. Here, De−j
denotes the torus-invariant

divisor corresponding to the ray spanned by e−j for 1 6 j 6 n.

Recall that we will study the case when the defining parameters for the Grossberg–
Karshon twisted cube arise from certain representation-theoretic data. We now briefly
describe how to derive the c and ` in this case.

Following the setting in [GK94], let G be a complex semisimple linear algebraic group
of rank r. Choose a Cartan subgroup H ⊂ G, and let g = h ⊕

⊕
α gα be the decom-

position into root spaces. We choose a set ∆+ of positive roots, and let B be the Borel
subgroup whose Lie algebra is h⊕

⊕
α∈∆+ g−α. Let {α1, . . . , αr} denote the simple roots,

{α∨1 , . . . , α∨r } the simple coroots, and {$1, . . . , $r} the fundamental weights. Note that
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fundamental weights are characterized by the relation 〈$i, α
∨
j 〉 = δij. Let W be the Weyl

group of G and sα ∈ W denote the simple reflection in W corresponding to the root α.
For simplicity, we denote si for the reflection sαi

corresponding to the simple root αi.
Let i = (i1, . . . , in) be a sequence of elements in [r] and m = (m1, . . . ,mn) ∈ Zn>0.

Then i corresponds to a decomposition of an element w = si1si2 · · · sin in W which is
not necessarily reduced. For such i and m, we define constants c(i) = {cj,k}16j<k6n and
`(i,m) = (`1, . . . , `n) by the formulas in [GK94, §3.7]

cj,k = 〈αik , α∨ij〉 for 1 6 j < k 6 n, (2.2)

`j = 〈mj$ij + · · ·+mn$in , α
∨
ij
〉 for 1 6 j 6 n. (2.3)

Note that the constants cj,k are Cartan integers of G. The following example illustrates
these definitions.

Example 7. Consider G = SL(3,C) with simple roots {α1, α2}. Let i = (1, 2, 1) and
m = (1, 1, 1). Then we have

c1,2 = 〈α2, α
∨
1 〉 = −1, c1,3 = 〈α1, α

∨
1 〉 = 2, c2,3 = 〈α1, α

∨
2 〉 = −1,

and

`1 = 〈$1 +$2 +$1, α
∨
1 〉 = 2,

`2 = 〈$2 +$1, α
∨
2 〉 = 1,

`3 = 〈$1, α
∨
1 〉 = 1.

Example 8. Consider G = SO(8) with simple roots {α1, . . . , α4}. See Table 1 for the
numbering on simple roots. Let i = (1, 2, 3, 2, 4) and m = (2, 1, 3, 1, 1). Then the integers
cj,k and ` are given by

(cj,k) =


0 −1 0 −1 0
0 0 −1 2 −1
0 0 0 −1 0
0 0 0 0 −1
0 0 0 0 0

 , ` = (2, 2, 3, 1, 1).

Here, we set cj,k = 0 if j > k.

Geometrically, a word i = (i1, . . . , in) and the integer vector m define a Bott–Samelson
variety Zi and a line bundle Li,m on it. More precisely, the Bott–Samelson variety Zi is
defined to be the quotient

Zi = (Pi1 × · · · × Pin)/Bn,

where Pi is the parabolic subgroup associated with the simple root αi, i.e., its Lie algebra
is gαi

⊕ Lie(B), and the right action of Bn on Pi1 × · · · × Pin is given by

(p1, . . . , pn) · (b1, . . . , bn) = (p1b1, b
−1
1 p2b2, . . . , b

−1
n−1pnbn).
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The multiplication map (p1, . . . , pn) 7→ p1 · · · pn yields a well-defined morphism

µ : Zi → G/B.

The integer vector m = (m1, . . . ,mn) defines the line bundle Li,m → Zi

Li,m = (Pi1 × · · · × Pin × C)/Bn,

where the right action of Bn on Pi1 × · · · × Pin × C is defined by

(p1, . . . , pn, v) · (b1, . . . , bn)

= (p1b1, b
−1
1 p2b2, . . . , b

−1
n−1pnbn, (m1$i1)(b1) · · · (mn$in)(bn)v).

In this setting, the Bott–Samelson variety Zi determined by the sequence i has a toric
degeneration to the toric variety X(Σ(c(i))) (see [Pas10, §1] and [GK94]). Moreover, the
line bundle Li,m over the Bott–Samelson variety Zi degenerates into the line bundle over
the Bott manifold X(Σ(c(i))). In particular, the degeneration of the line bundle Li,m over
X(Σ(c(i))) is given by the divisor D(c(i), `(i,m)).

Remark 9. Grossberg and Karshon [GK94] constructed a one-parameter family of complex
structures on a Bott–Samelson variety which makes the Bott–Samelson variety into a
Bott manifold. This degeneration of complex structures can be interpreted as the toric
degeneration of a Bott–Samelson variety to a Bott manifold by Pasquier [Pas10]. Indeed,
there is a flat family X over C such that X(t) is isomorphic to the Bott–Samelson variety
for all t ∈ C \ {0} and X(0) is the Bott manifold. Here, X(t) denotes the fiber over t.
This connection is generalized to flag Bott–Samelson varieties and flag Bott manifolds
in [FLS].

The set H0(Zi,Li,m) of holomorphic sections possesses a B-representation structure,
and indeed its dual is a generalized Demazure module. Moreover, the ordinary Demazure
module can be obtained in this way. Indeed, suppose that i = (i1, . . . , in) ∈ [r]n is a
reduced decomposition of an element w in the Weyl group W , i.e., w = si1 · · · sin and
`(w) = n. Then a dominant integral weight1 λ =

∑r
i=1 λi$i gives a line bundle Lλ on

the flag variety G/B, so that on the Schubert variety X(w) := BwB/B ⊂ G/B. Define
m = (m1, . . . ,mn) ∈ Zn>0 by

mj =

{
λij if ij′ 6= ij for any j < j′ 6 n,

0 otherwise
(2.4)

for 1 6 j 6 n. Then, we have that

µ∗Lλ = Li,m, (2.5)

and the morphism µ induces an isomorphism of B-modules

H0(X(w),Lλ) ' H0(Zi, µ
∗Lλ) ' C−λ′ ⊗H0(Zi,Li,m), (2.6)

1A weight λ =
∑r

i=1 λi$i is dominant integral if λi ∈ Z>0 for all i.
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where λ′ =
∑

i∈[r]\{i1,...,in} λi$i. We note that the relation (1.5) and the second isomor-

phism of B-modules in (1.6) hold even when i is not reduced. See [Fuj18, Section 2] and
references therein for more details on generalized Demazure modules.

Remark 10. Since the Picard number of Zi is n and that of G/B is r, not every line
bundle over Zi can be obtained from Lλ. For example, let G = SL(3,C) and i = (1, 2, 1).
Consider a morphism µ : Zi → G/B and a dominant weight λ = λ1$1+λ2$2. Using (1.5),
we obtain

µ∗Lλ = L(1,2,1),(0,λ2,λ1).

For this reason, any line bundle L(1,2,1),(m1,m2,m3) with m1 6= 0 cannot be expressed as the
form µ∗Lλ.

As a consequence of equations (1.3) and (1.4), we obtain the following result which
will be used later:

Lemma 11. Let i = (i1, . . . , in) ∈ [r]n and λ =
∑r

i=1 λi$i a dominant weight. Suppose
that m is given by (1.4). Then the constant `(i,m) = (`1, . . . , `n) is given by the formula

`j = λij for 1 6 j 6 n.

Proof. From (1.3) and (1.4), we get

`j = 〈mj$ij + · · ·+mn$in , α
∨
ij
〉 (by (1.3))

=
∑
j′>j,
ij=ij′

mj′

= λij (by (1.4)).

This proves the lemma.

As mentioned in the introduction, Grossberg and Karshon derived a Demazure-type
character formula for the B-representation H0(Zi,Li,m) corresponding to i and m, ex-
pressed as a sum over the lattice points Zn ∩ C(c, `) in the Grossberg–Karshon twisted
cube (C(c, `), ρ) (see [GK94, Theorems 5 and 6]). The lattice points appear with a plus or
minus sign according with the density function ρ. Accordingly, their formula is a positive
formula if ρ is equal to 1 on all of C(c, `). From a point of view of representation theory,
it is therefore of interest to determine conditions on the integer vector ` = (`1, . . . , `n)
and the word decomposition i = (i1, . . . , in) such that the associated Grossberg–Karshon
twisted cube is in fact untwisted.

3 Diagram jumping walks, hesitant jumping walk avoidance,
and the statement of the main theorem

From now on, we assume that the group G is simply-laced, i.e., the Dynkin diagram of G
only contains simple links. Accordingly, the Lie algebra of G is a direct sum of simple Lie
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Φ Dynkin diagram

Ar (r > 1)
1 2 3 r − 1 r

Dr (r > 4)
1 2 r − 3 r − 2

r − 1

r

E6

1 3 4 5 6

2

E7

1 3 4 5 6 7

2

E8

1 3 4 5 6 7 8

2

Table 1: Dynkin diagrams of type A, D, E.

algebras of type A, D, or E. In what follows, we fix an ordering on the simple roots as in
Table 1; our conventions agree with that in the standard textbook of Humphreys [Hum78].

In order to simplify the notation, we define a distance d(A,B) of two subsets A,B ⊂ [r]
to be

d(A,B) := min{d(a, b) | a ∈ A, b ∈ B}.

Here, d(a, b) for a, b ∈ [r] is the minimal distance of elements a, b in the corresponding
Dynkin diagram. For example, suppose that G is of type A5. Then we have the following
enumerations.

d({1, 2, 3}, {4, 5}) = 1, d({1, 2}, {2}) = 0.

Moreover, when G is of type D4, we have d({1, 2}, {4}) = 1 and d({3}, {4}) = 2.

Definition 12. Let i = (i1, i2, . . . , in) ∈ [r]n. We say that i is a jumping walk if

d(ij, {i1, . . . , ij−1}) = 1

for all 2 6 j 6 n.

Example 13. 1. In Type A, the words (1, 2, 3, 4), (3, 2, 1, 4, 5), and (3, 2, 4, 1, 5) are
all jumping walks. See Figures 2.1(a), 2.1(b), 2.1(c).
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1 2 3 4

(a) (1, 2, 3, 4).

1 2 3 4 5

(b) (3, 2, 1, 4, 5).

1 2 3 4 5

(c) (3, 2, 4, 1, 5).

1 2 3

4

5

(d) (4, 3, 2, 5, 1).

1 3 4 5 6 7 8

2

(e) (4, 2, 3, 5, 1, 6, 7, 8).

Figure 3.1: Jumping walks.

2. In Type D, (r − 1, r − 2, r − 3, r, r − 4) is a jumping walk. See Figure 2.1(d) for
r = 5.

3. In Type E8, (4, 2, 3, 5, 1, 6, 7, 8) is a jumping walk. See Figure 2.1(e).

Because of the definition, a jumping walk is minimal. More precisely, the indices
{i1, . . . , in} are all distinct, i.e., the jumping walk visits any given vertex of the Dynkin
diagram at most once.

In what follows, we also find it useful to consider words which are ‘almost’ jumping
walks, except that the word begins with a repetition (thus disqualifying it from being a
walk), i.e., the initial index appears twice.

Definition 14. Let i = (i0, i1, . . . , in) ∈ [r]n+1. We say that i is a hesitant jumping walk
if

• n > 1,

• i0 = i1, and

• the subword (i1, . . . , in) is a jumping walk.

In other words, except for the ‘hesitation’ at the first step, the remainder of the word is
a jumping walk. We refer to the subword (i1, . . . , in) as the jumping component of the
hesitant jumping walk.

Definition 15. Let ` = (`0, `1, . . . , `n) ∈ Zn+1
>0 and i ∈ [r]n+1. We say that i is a hesitant

jumping `-walk if

• i is a hesitant jumping walk, and

• `0 − `1 < `1 + `2 + · · ·+ `n.

A word i is hesitant-jumping-`-walk-avoiding if there is no subword j = (ij0 , ij1 , . . . , ijs)
of i which is a hesitant jumping (`j0 , `j1 , . . . , `js)-walk.
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Example 16. Let G = SL(3,C). Suppose that i = (1, 2, 1) and (`1, `2, `3) ∈ Z3
>0. Then

the indices (j0, j1) = (1, 3) define a hesitant jumping walk

(ij0 , ij1) = (i1, i3) = (1, 1).

Consequently, the word i is hesitant-jumping-`-walk-avoiding if and only if the integers
`1, `2, `3 satisfy `1 − `3 > `3.

Example 17. Let G = SL(4,C). Suppose that i = (1, 2, 1, 3, 2, 1) and (`1, . . . , `6) ∈ Z6
>0.

Then there are five hesitant jumping subwords of i.

(j0, j1, . . . , js) 1 2 1 3 2 1
(1, 3) 1 1
(1, 3, 5) 1 1 2
(2, 5) 2 2
(2, 5, 6) 2 2 1
(3, 6) 1 1

Consequently, the word i is hesitant-jumping-`-walk-avoiding if and only if the integers
`1, . . . , `6 satisfy

`1 − `3 > `3, `1 − `3 > `3 + `5,

`2 − `5 > `5, `2 − `5 > `5 + `6, `3 − `6 > `6.

Given the terminology introduced above we state our main theorem.

Theorem 18. Let G be a complex simply-laced semisimple algebraic group of rank r. Let
i = (i1, i2, . . . , in) ∈ [r]n be a word and let ` = (`1, . . . , `n) ∈ Zn>0. Let c = {cj,k} be
determined from i as in (1.2). Then the corresponding Grossberg–Karshon twisted cube
(C(c, `), ρ) is untwisted if and only if i is hesitant-jumping-`-walk-avoiding.

Example 19. Let G = SL(3,C) and i = (1, 2, 1). Then by Example 7, the subset
C(c, `) ⊂ R3 consists of points (x1, x2, x3) satisfying:

`1 + x2 − 2x3 < x1 < 0 or 0 6 x1 6 `1 + x2 − 2x3,

`2 + x3 < x2 < 0 or 0 6 x2 6 `2 + x3,

`3 < x3 < 0 or 0 6 x3 6 `3.

By Example 16, the word i is hesitant-jumping-`-walk-avoiding if and only if

`1 − `3 > `3.

In Figure 2.2, we draw the twisted cubes for (`1, `2, `3) = (3, 1, 1) and (2, 1, 2), and the
former one gives an untwisted twisted cube but not the latter. We present the lattice
points in twisted cubes with plus sign in red color and with minus sign in blue color.
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x2

x3

x1

(a) C(c, (3, 1, 1)).

x2

x3

x1

(b) C(c, (2, 1, 2)).

Figure 3.2: Twisted cubes for G = SL(3,C) and i = (1, 2, 1).

We now present a corollary of Theorem 18 which is already observed by Harada and the
author [HL15]. In order to state the corollary, it is useful to introduce some terminology
in the paper [HL15]. We call a word i = (i1, . . . , in) a diagram walk if d(ij, ij+1) = 1
for all 1 6 j < n. For a dominant weight λ =

∑r
i=1 λi$i, we say i = (i0, i1, . . . , in) is a

hesitant λ-walk if i0 = i1, the subword (i1, . . . , in) is a diagram walk, and λin > 0. Lastly,
we say i is hesitant-λ-walk-avoiding if there is no subword which is a hesitant λ-walk.
With these expressions, we present the following corollary of Theorem 18 whose proof is
different from that of [HL15].

Corollary 20 (see [HL15, Theorem 2.9]). Let G be a complex simply-laced semisimple
algebraic group of rank r. Let i = (i1, i2, . . . , in) ∈ [r]n be a word and let λ be a dominant
weight. Let c = {cj,k} be determined from i as in (1.2) and let ` = (`1, . . . , `n) be given
by Lemma 11. Then the corresponding Grossberg–Karshon twisted cube (C(c, `), ρ) is
untwisted if and only if i is hesitant-λ-walk-avoiding.

Proof. By Theorem 18, it is enough to show that the word i is hesitant-jumping-`-walk-
avoiding if and only if it is hesitant-λ-walk-avoiding. We prove the contrapositive of the
claim, that is, we will prove that i has a subword j = (ij0 , ij1 , . . . , ijs) which is a hesitant
jumping (`j0 , `j1 , . . . , `js)-walk if and only if it has a subword which is a hesitant λ-walk.

We now suppose that i has a subword j = (ij0 , ij1 , . . . , ijs) which is a hesitant λ-walk.
It is clear from the definition that there exists a subword k = (ik0 , ik1 , . . . , ikp) of j (i.e.,
{k0, k1, . . . , kp} ⊂ {j0, j1, . . . , js}) satisfying that k is a hesitant λ-walk, {ik1 , . . . , ikp}
are all distinct, and λik1 = · · · = λikp = 0. Such a hesitant λ-walk is called minimal
(see [HL15, Definition 4.1]). Accordingly, we may assume that the subword j is minimal.
Since {ij1 , . . . , ijs} are all distinct, j is a hesitant jumping walk. Moreover, the condition
ij0 = ij1 implies that `j0 = `j1 by Lemma 11, and the condition λijs > 0 indicates that
`js = λijs > 0. Therefore we get

`j0 − `j1 = 0 < `j1 + · · ·+ `js ,

which provides that j is a hesitant jumping (`j0 , `j1 , . . . , `js)-walk.
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On the other hand, suppose that i has a subword j = (ij0 , ij1 , . . . , ijs) which is a
hesitant jumping (`j0 , `j1 , . . . , `js)-walk. Then, the condition ij0 = ij1 provides `j0 = `j1 ,
and we get the inequality

0 = `j0 − `j1 < `j1 + · · ·+ `js .

Accordingly, there exists t ∈ [s] such that `jt > 0. By the definition of jumping walks,
one can always find a subword of j which is a hesitant λ-walk starting with ij0 , ij1 and
ending at ijt . This proves that i has a subword which is a hesitant λ-walk, so the result
follows.

We enclose this section presenting one more application of Theorem 18 on the Newton–
Okounkov body theory. Let i = (i1, . . . , in) ∈ [r]n and m = (m1, . . . ,mn) ∈ Zn>0. Let
Zi and Li,m be the Bott–Samelson variety and the line bundle on it given by i and
m, respectively. Suppose that c = {cj,k} and ` are determined from (1.2) and (1.3),
and C(c, `) is the corresponding twisted cube. Harada and Yang [HY16] constructed a
valuation ν : H0(Zi,L

⊗k
i,m)\{0} → Zn for each k > 0 such that if the corresponding twisted

cube C(c, `) is untwisted then it coincides with the Newton–Okounkov body ∆(Zi,Li,m, ν)
defined to be

∆(Zi,Li,m, ν) = conv

(⋃
k>0

{
ν(σ)

k

∣∣∣∣ σ ∈ H0(Zi,L
⊗k
i,m) \ {0}

})
up to a certain coordinate change (see [HY16, Theorem 3.4] for more details). As a
consequence, we get the following corollary which is related to the question (2) in [HL15,
Section 5].

Corollary 21. Let G be a complex simply-laced semisimple algebraic group of rank r. Let
i = (i1, . . . , in) ∈ [r]n be a word and let m = (m1, . . . ,mn) ∈ Zn>0. Let c = {cj,k} and
` ∈ Zn be determined from i and m as in (1.2) and (1.3). If the word i is hesitant-jumping-
`-walk-avoiding, then the twisted cube C(c, `) coincides with the Newton–Okounkov body
∆(Zi,Li,m, ν) up to a coordinate change, where ν is the valuation constructed in [HY16].

4 Proof of the main theorem

In this section, we will present a proof of the main theorem. We start with a proposition
which will be used in the proof. One can see that the subsequent proposition holds only
in simply-laced cases.

Proposition 22. Let G be a complex simply-laced semisimple algebraic group of rank r.
Let i = (i1, i2, . . . , in) ∈ [r]n be a word, and let c = {cj,k} be determined from i as in (1.2).
Suppose that (j0 < j1 < j2 < · · · < js) is an increasing sequence of elements in [n], and
j = (ij0 , ij1 , . . . , ijs) is the corresponding subword. Then, the sequence (j0 < j1 < j2 <
· · · < js) satisfies the condition

cj0,j1 = 2,

cj1,jt + cj2,jt + · · ·+ cjt−1,jt = −1 for 2 6 t 6 s

the electronic journal of combinatorics 27(3) (2020), #3.34 13



if and only if j is a hesitant jumping walk.

Lemma 23. Suppose that G is simply-laced and (i1, . . . , in−1) is a jumping walk. For
in ∈ [r], we have the following.

1. If d(in, {i1, . . . , in−1}) = 0, then cin,i1 + · · ·+ cin,in−1 > 0.

2. If d(in, {i1, . . . , in−1}) = 1, then cin,i1 + · · ·+ cin,in−1 = −1.

3. If d(in, {i1, . . . , in−1}) > 1, then cin,i1 + · · ·+ cin,in−1 = 0.

Here, cj,k are Cartan integers:

cj,k = 〈αj, α∨k 〉 =


2 if j = k,

−1 if d(j, k) = 1,

0 otherwise.

(4.1)

Proof. Note that since (i1, . . . , in−1) is a jumping walk, the set I := {i1, . . . , in−1} forms
an interval on the Dynkin diagram, i.e., if j ∈ [n] satisfies min I < j < max I, then j ∈ I.

We consider the first case. Since the distance between in and the set I is zero, in ∈ I.
Suppose that in sits in the right-most/left-most position among I, i.e., in = min I or
in = max I. Then,

cin,i1 + · · ·+ cin,in−1 = 2− 1 = 1 > 0,

which is the desired inequality. Suppose that in is neither maximum nor minimum of I.
Then, we have that

cin,i1 + · · ·+ cin,in−1 = 2− 1− 1 = 0 > 0.

Consequently, we prove the claim for (1). For the second and the third cases, by the
definition of Cartan integers, we get the required equalities.

Proof of Proposition 22. Suppose that a subword j = (ij0 , ij1 , . . . , ijs) of i is a hesitant
jumping walk. Then, by the hesitant condition ij0 = ij1 , we have cj0,j1 = 2. Moreover,
the jumping walk condition d(ijt , {ij1 , . . . , ijt−1}) = 1 and Lemma 23 imply that

cj1,jt + · · ·+ cjt−1,jt = cijt ,ij1 + · · ·+ cijt ,ijt−1
= −1,

which proves the “if” part of the proposition.
Suppose that we have an increasing sequence (j0 < j1 < · · · < js) satisfying conditions.

Consider the subword j = (ij0 , ij1 , . . . , ijs). The first condition cj0,j1 = 2 implies that
ij0 = ij1 . Accordingly, the word j hesitates at the first. When t = 2, the second condition
becomes cj1,j2 = −1. Then by (3.1), we have that d(ij2 , ij1) = 1, so that (ij0 , ij1 , ij2) is a
hesitant jumping walk. Using an induction on s and Lemma 23, we prove the “only if”
part of the proposition.
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4.1 Necessity

We first prove that if i has a subword j = (ij0 , ij1 , . . . , ijs) which is a hesitant jumping
(`j0 , `j1 , . . . , `js)-walk, then the corresponding twisted cube is twisted. Suppose that j =
(ij0 , ij1 , . . . , ijs) is a subword of i which is a hesitant jumping (`j0 , `j1 , . . . , `js)-walk, so we
have

`j0 − `j1 < `j1 + · · ·+ `js . (4.2)

Then by Proposition 22, the integers {cj,k} satisfy that

cj0,j1 = 2,

cj1,jt + cj2,jt + · · ·+ cjt−1,jt = −1 for 2 6 t 6 s. (4.3)

We then wish to show that (C(c, `), ρ) is twisted. To prove that (C(c, `), ρ) is twisted, it
is enough to find an element σ of {+,−}n and an index k ∈ [n] such that mσ,k < 0. To
achieve this, we consider the element σ = (σ1, . . . , σn) ∈ {+,−}n given by

σp =

{
− if p ∈ {j0, j1, . . . , js},
+ otherwise.

By the definition of mσ and mσ,p = 0 for p /∈ {j0, j1, . . . , js}, we then have

mσ,jt = `jt −
∑

p∈{jt+1,...,js}

cjt,pmσ,p for 0 6 t 6 s. (4.4)

We know that cj0,j1 = 〈αij0 , α
∨
ij1
〉 = 2 if and only if ij0 = ij1 . Moreover, in this case we

have cj0,p = cj1,p for all p. From these considerations, we have:

mσ,j0 = `j0 −
∑

p∈{j1,...,js}

cj0,pmσ,p

= `j0 − cj0,j1mσ,j1 −
∑

p∈{j2,...,js}

cj0,pmσ,p

= `j0 − 2

`j1 − ∑
p∈{j2,...,js}

cj1,pmσ,p

− ∑
p∈{j2,...,js}

cj0,pmσ,p

= `j0 − 2`j1 +
∑

p∈{j2,...,js}

cj1,pmσ,p

= `j0 − `j1 −mσ,j1 .

We now claim that mσ,j0 < 0; as already noted, this suffices to prove the necessity of
the theorem. In order to prove this claim, it is enough to show that

mσ,j1 = `j1 + · · ·+ `js . (4.5)
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This is because if (3.5) holds, then we get

mσ,j0 = `j0 − `j1 −mσ,j1

= `j0 − `j1 − (`j1 + · · ·+ `js)

< 0 (by (3.2))

which proves the claim, so now we prove (3.5). Using (3.3) and the description (3.4) of
mσ,jt , we have that

mσ,j1 = `j1 − cj1,j2mσ,j2 − · · · − cj1,jsmσ,js

= `j1 + (`j2 − cj2,j3mσ,j3 − · · · − cj2,jsmσ,js)− cj1,j3mσ,j3 − · · · − cj1,jsmσ,js

= `j1 + `j2 − (cj2,j3 + cj1,j3)mσ,j3 − · · · − (cj2,js + cj1,js)mσ,js

= `j1 + `j2 + (`j3 − cj3,j4mσ,j4 − · · · − cj3,jsmσ,js)− · · · − (cj2,js + cj1,js)mσ,js

= `j1 + `j2 + `j3 − (cj3,j4 + cj2,j4 + cj1,j4)mσ,j4 − · · · − (cj3,js + cj2,js + cj1,js)mσ,js

= · · · = `j1 + `j2 + · · ·+ `js−1 − (cjs−1,js + · · ·+ cj1,js)mσ,js

= `j1 + `j2 + · · ·+ `js .

Consequently, we prove the equation (3.5), so the necessity of the theorem follows.

4.2 Sufficiency

We now prove that the twistedness implies the existence of a subword j = (ij0 , ij1 , . . . , ijs)
which is a hesitant jumping (`j0 , `j1 , . . . , `js)-walk. To give a proof, we prepare one lemma.

Lemma 24. Suppose that a sequence (j1 < j2 < · · · < js−1) of indices defines a jumping
walk (ij1 , . . . , ijs−1). If for some js > js−1 we have

cj1,js + cj2,js + · · ·+ cjs−1,js < 0,

then the sequence (j1 < j2 < · · · < js−1 < js) also defines a jumping walk and cj1,js +
cj2,js + · · ·+ cjs−1,js = −1.

Proof. Assume on the contrary that (j1 < j2 < · · · < js−1 < js) does not define a jumping
walk, i.e., d(ijs , {ij1 , . . . , ijs−1}) 6= 1. Then, by Lemma 23, we have that

cj1,js + cj2,js + · · ·+ cjs−1,js = cijs ,ij1 + cijs ,ij2 + · · ·+ cijs ,ijs−1
> 0,

which contradicts to the assumption. As a consequence, we prove the lemma.

By Theorem 5, there exists an element σ of {+,−}n and an index k such that mσ,k < 0.
For such a choice of σ, we may assume without loss of generality that k is chosen to be
the maximal such index, i.e., mσ,k < 0 and mσ,s > 0 for s > k. Recall that

mσ,k = `k −
∑
s>k

ck,smσ,s.
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By assumption mσ,k < 0, we have that∑
s>k

ck,smσ,s > `k > 0.

Since mσ,s > 0 for s > k, this implies that there exists some p > k with ck,p > 0 and
mσ,p > 0. Choose j1 to be the minimal such index. Consequently, ck,s 6 0 or mσ,s = 0 for
all k < s < j1, so we have that

`k <
∑
s>k

ck,smσ,s 6 ck,j1mσ,j1 +
∑
s>j1

ck,smσ,s. (4.6)

By definition, we have that ck,j1 = 〈αij1 , α
∨
ik
〉 > 0 if and only if ik = ij1 . Furthermore, in

this case we get ck,j1 = 2 and cj1,s = ck,s for all s. From these observations, we get:

ck,j1mσ,j1 +
∑
s>j1

ck,smσ,s = 2

(
`j1 −

∑
s>j1

cj1,smσ,s

)
+
∑
s>j1

cj1,smσ,s. (4.7)

Combining (3.6) and (3.7), we have that

`k − `j1 < `j1 −
∑
s>j1

cj1,smσ,s = mσ,j1 . (4.8)

First suppose −
∑

s>j1
cj1,smσ,s 6 0. In this case, we have that

`k − `j1 < `j1 .

Accordingly, the sequence (j0 = k < j1) satisfies the three required conditions of hesitant
jumping (`j0 , `j1)-walks, so we are done.

On the other hand, if −
∑

s>j1
cj1,smσ,s > 0, we set j0 = k and define j2 as follows.

Since mσ,s > 0 for s > k by assumption, in order for the summand
∑

s>j1
cj1,smσ,s to be

strictly negative there must exist an index j2 > j1 with cj1j2 < 0 and mσ,j2 > 0. Note
that since cj1j2 = 〈αij2 , α

∨
ij1
〉 we have that cj1,j2 = −1. Choose j2 to be the minimal such

index, i.e., cj1,s > 0 or mσ,s = 0 for all j1 < s < j2. Then we have that

mσ,j1 = `j1 −
∑
s>j1

cj1,smσ,s

6 `j1 − cj1,j2mσ,j2 −
∑
s>j2

cj1,smσ,s

= `j1 +mσ,j2 −
∑
s>j2

cj1,smσ,s

= `j1 + `j2 −
∑
s>j2

(cj2,s + cj1,s)mσ,s.

(4.9)
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If −
∑

s>j2
(cj2,s + cj1,s)mσ,s 6 0, then the sequence (j0 = k < j1 < j2) satisfies the three

required conditions since we get the following inequality by considering (3.8) and (3.9):

`j0 − `j1 < mσ,j1 6 `j1 + `j2 .

Otherwise, i.e.,
∑

s>j2
(cj2,s + cj1,s)mσ,s < 0, then we choose j3 > j2 to be the minimal

index such that cj2,s + cj1,s < 0 and mσ,s > 0. Since (j1 < j2) defines a jumping walk, we
have that (j1 < j2 < j3) defines a jumping walk and cj2,j3 + cj1,j3 = −1 by Lemma 24.
Therefore the inequality (3.9) becomes to

mσ,j1 6 `j1 + `j2 +mσ,j3 −
∑
s>j3

(cj2,s + cj1,s)mσ,s

= `j1 + `j2 + `j3 −
∑
s>j3

(cj3,s + cj2,s + cj1,s)mσ,s.

If −
∑

s>j3
(cj3,s + cj2,s + cj1,s)mσ,s 6 0, then the sequence (j0 = k < j1 < j2 < j3) satisfies

the three required conditions. Otherwise, we may repeat the above argument as many
times as necessary. Since the indices jt are bounded above by n, this process must stop,
i.e., there must exist some s > 1 such that the sequence j0 < j1 < · · · < js found in this
manner satisfies the requirements. Consequently, we prove the sufficiency of the theorem.
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