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Abstract

Alternating sign matrices are known to be equinumerous with descending plane
partitions, totally symmetric self-complementary plane partitions and alternating
sign triangles, but no bijective proof for any of these equivalences has been found
so far. In this paper we provide the first bijective proof of the operator formula
for monotone triangles, which has been the main tool for several non-combinatorial
proofs of such equivalences. In this proof, signed sets and sijections (signed bijec-
tions) play a fundamental role.

Mathematics Subject Classifications: 05A15

1 Introduction

An alternating sign matrix (ASM) is a square matrix with entries in {0,1,−1} such that
in each row and each column the non-zero entries alternate and sum to 1. Robbins and
Rumsey introduced alternating sign matrices in the 1980s [RR86] when studying their
λ-determinant (a generalization of the classical determinant) and showing that the λ-
determinant can be expressed as a sum over all alternating sign matrices of fixed size.
The classical determinant is obtained from this by setting λ = −1, in which case the sum
reduces so that it extends only over all ASMs without −1’s, i.e., permutation matrices,
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and the well-known formula of Leibniz is recovered. Numerical experiments led Robbins
and Rumsey to conjecture that the number of n × n alternating sign matrices is given by
the surprisingly simple product formula

n−1

∏
i=0

(3i + 1)!

(n + i)!
. (1)

Back then the surprise was even bigger when they learned from Stanley (see [BP99,
Bre99]) that this product formula had recently also appeared in Andrews’ paper [And79]
on his proof of the weak Macdonald conjecture, which in turn provides a formula for the
number of cyclically symmetric plane partitions. As a byproduct, Andrews had introduced
descending plane partitions and had proven that the number of descending plane partitions
(DPPs) with parts at most n is also equal to (1). Since then, the problem of finding an
explicit bijection between alternating sign matrices and descending plane partitions has
attracted considerable attention from combinatorialists. To many, it is remarkable that
a bijection has not yet been found—all the more so because Mills, Robbins and Rumsey
had also introduced several “statistics” on alternating sign matrices and on descending
plane partitions for which they had strong numerical evidence that the joint distributions
coincide as well, see [MRR83].

There were a few further surprises yet to come. Robbins introduced a new operation
on plane partitions, complementation, and had strong numerical evidence that totally
symmetric self-complementary plane partitions (TSSCPPs) in a 2n× 2n× 2n-box are also
counted by (1). Again this was further supported by statistics that have the same joint
distribution as well as certain refinements, see [MRR86, Kra96, Kra16, BC16]. We still
lack an explicit bijection between TSSCPPs and ASMs, as well as between TSSCPPs and
DPPs.

In his collection of bijective proof problems [Sta09, Problem 226], Stanley says the
following about the problem of finding all these bijections: “This is one of the most
intriguing open problems in the area of bijective proofs.” In Krattenthaler’s survey on
plane partitions [Kra16] he expresses his opinion by saying: “The greatest, still unsolved,
mystery concerns the question of what plane partitions have to do with alternating sign
matrices.”

Many of the above mentioned conjectures have since been proved by non-bijective
means: Zeilberger [Zei96a] was the first who proved that n×n ASMs are counted by (1).
Kuperberg gave another, shorter proof [Kup96] based on the remarkable observation that
the six-vertex model (which had been introduced by physicists several decades earlier)
with domain wall boundary conditions is equivalent to ASMs, see [EKLP92a, EKLP92b],
and he used the techniques that had been developed by physicists to study this model.
Andrews enumerated TSSCPPs in [And94]. The equidistribution of certain statistics
for ASMs and of certain statistics for DPPs has been proved in [BDFZJ12, BDFZJ13],
while for ASMs and TSSCPPs see [Zei96b, FZJ08], and note in particular that already in
Zeilberger’s first ASM paper [Zei96a] he could deal with an important refinement. Further
work including the study of symmetry classes has been accomplished; for a more detailed
description of this we defer to [BFK17]. Then, in very recent work, alternating sign
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triangles (ASTs) were introduced in [ABF20], which establishes a fourth class of objects
that are equinumerous with ASMs, and also in this case nobody has so far been able to
construct a bijection.

Another aspect that should be mentioned here is Okada’s work [Oka06](see also [Str]),
which hints at a connection between ASMs and representation theory that has not yet
been well understood. He observed that a certain multivariate generating function (a
specialization at a root of unity of the partition function that had been introduced by
physicists in their study of the six-vertex model) can be expressed—up to a power of
3—by a single Schur polynomial. Since Schur polynomials are generating functions of
semistandard tableaux, this establishes yet another challenging open problem for combi-
natorialists inclined to find bijections.

The proofs of the results briefly reviewed above contain rather long and complicated
computations, and include hardly any arguments of a combinatorial flavor; in this paper
we refer to such proofs as “computational” proofs. In fact, it seems that all ASM-related
identities for which there exists a bijective proofs are trivial, with the exception of the
rotational invariance of fully packed loop configurations. This was proved bijectively
by Wieland [Wie00] and is also used in the celebrated proof of the Razumov-Stroganov
(ex-)conjecture [CS11].

We come now to the purpose of the current paper. This is the first paper in a planned
series that seeks to give the first bijective proofs of several results described so far. The
seed of the idea to do so came from a brief discussion of the first author with Zeilberger on
the problem of finding such bijections at the AMS-MAA Joint Mathematics Meetings in
January 2019. Zeilberger mentioned that such bijections can be constructed from existing
“computational” proofs but that, most likely, these bijections would be complicated. The
authors of the current paper agree—in fact, the first author gave her “own” proof of the
ASM theorem in [Fis06, Fis07, Fis16] and expressed some speculations in this direction
in the final section of the last paper. There is obviously no guarantee that there exists a
simple, satisfactory bijective proof of the ASM theorem that does not involve the Garsia-
Milne involution principle.

This is how the authors of the current paper decided to work on converting the proof
in [Fis16] into a bijective proof. After having figured out how to actually convert com-
putations and also having shaped certain useful fundamental concepts related to signed
sets (see Section 2), the translation of several steps became quite straightforward; other
steps were quite challenging. Then a certain type of (exciting) dynamics evolved, where
the combinatorial point of view led to simplifications and other modifications, and after
this process the original “computational” proof is in fact rather difficult to recognize. For
several obvious reasons, we find it essential to check all our constructions with computer
code (for details see the final section and [FKb]); to name one it can possibly be used to
identify new equivalent statistics in future work.

After the above mentioned simplifications, it seems that signs are unavoidable. After
all, if there would be a simple bijective proof that avoided signs, would it not also be
plausible that such a proof could be converted into a simple “computational” proof that
avoids signs? Such a proof has also not been found so far.
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0 0 0 1 0 0
0 1 0 −1 1 0
1 −1 0 1 −1 1
0 1 0 −1 1 0
0 0 0 1 0 0
0 0 1 0 0 0
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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→
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⎜
⎜
⎜
⎜
⎜
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⎝

0 0 0 1 0 0
0 1 0 0 1 0
1 0 0 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 1 1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

→

4
2 5

1 4 6
1 2 5 6

1 2 4 5 6
1 2 3 4 5 6

Figure 1: ASM → partial columnsums → monotone triangle

In the remainder of the introduction we discuss the result that is proved bijectively in
this paper, in particular we discuss why signed enumerations seem to be unavoidable from
this point of view. We also sketch a few ideas informally before giving rigorous definitions
and proofs later on.

The operator formula

We use the well-known correspondence between order n×n ASMs and monotone triangles
with bottom row 1,2, . . . , n. A monotone triangle is a triangular array (ai,j)1≤j≤i≤n of
integers, where the elements are usually arranged as follows

a1,1

a2,1 a2,2

. . . . . . . . .
an−2,1 . . . . . . an−2,n−2

an−1,1 an−1,2 . . . . . . an−1,n−1

an,1 an,2 an,3 . . . . . . an,n
(2)

such that the integers increase weakly along ↗-diagonals and ↘-diagonals, and increase
strictly along rows, i.e., ai,j ≤ ai−1,j ≤ ai,j+1 and ai,j < ai,j+1 for all i, j with 1 ≤ j < i ≤ n. In
order to convert an ASM into the corresponding monotone triangle, add to each entry all
the entries that are in the same column above it, and record then row by row the positions
of the 1’s, see Figure 1 for an example.

The following operator formula for the number of monotone triangles with prescribed
bottom row was first proved in [Fis06] (see [Fis10, Fis16] for simplifications and generali-
zations). Note that we allow arbitrary strictly increasing bottom rows.

Theorem 1. Denote by Ex the shift operator with respect to the variable x, i.e., Exp(x) =
p(x + 1). The polynomial

∏
1≤p<q≤n

(Exp +E−1
xq −ExpE−1

xq) ∏
1≤i<j≤n

xj − xi + j − i

j − i
(3)

evaluated at (x1, . . . , xn) = (k1, . . . , kn) gives the number of monotone triangles with bottom
row k1, . . . , kn for every strictly increasing sequence k1 < k2 < ⋅ ⋅ ⋅ < kn.
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The purpose of this paper is to provide a bijective proof of Theorem 1, following the
approach suggested in [Fis16]. While the operator formula is an interesting result in its
own right, it has also been the main tool for proofs of several results mentioned above.
This will be reviewed in the final section of this paper along with indications for future
projects on converting also these proofs into bijective proofs.

In order to be able to construct a bijective proof of Theorem 1, we need to interpret (3)
combinatorially. Recall that Gelfand–Tsetlin patterns are defined as monotone triangles
with the condition on the strict increase along rows being dropped, see [Sta99, p. 313] or
[GC50, (3)] for the original reference1. It is well known that the number of Gelfand–Tsetlin
patterns with bottom row k1 ≤ k2 ≤ ⋅ ⋅ ⋅ ≤ kn is

∏
1≤i<j≤n

kj − ki + j − i

j − i
, (4)

which is the operand in the formula (3). Expanding ∏1≤p<q≤n (Ekp +E−1
kq −EkpE−1

kq ) into

3(
n
2
) monomials in E±1

k1 ,E
±1
k2 , . . . ,E

±1
kn (keeping a copy for each multiplicity), (3)is a signed

enumeration of certain Gelfand–Tsetlin patterns, where each monomial causes a defor-
mation of the bottom row k1, . . . , kn. It is useful to encode these deformations by arrow
patterns as defined in Section 5, where we choose ↙ if we pick Ekp from Ekp +E−1

kq −EkpE−1
kq ,

we choose ↘ if we pick E−1
kq , while we choose ↙↘ if we pick −EkpE−1

kq . Arranging the (
n
2
)

arrows in a triangular manner so that the arrows coming from Ekp + E−1
kq − EkpE−1

kq are
situated in the p-th ↙-diagonal and the q-th ↘-diagonal, and placing k1, . . . , kn in the
bottom row will allow us to describe the deformation coming from a particular monomial
in a convenient way. The combinatorial objects associated with (3) then consist of a
pair of such an arrow pattern and a Gelfand–Tsetlin pattern where the bottom row is a
deformation of k1, . . . , kn as prescribed by the arrow pattern. This will lead directly to the
definition of shifted Gelfand–Tsetlin patterns. Let us clarify that “shifted” refers to the
shift operator, and not to shifted tableaux or some kind of B or C type Gelfand-Tsetlin
patterns.

A sign comes from picking −EkpE−1
kq , but there is also a more subtle appearance. The

deformation induced by the arrow pattern can cause a deformation of the increasing
bottom row k1, k2, . . . , kn into a sequence that is not increasing. Therefore we are in need
of an extension of the combinatorial interpretation of (4) to any sequence k1, . . . , kn of
integers. Such an interpretation was given in [Fis05] and is repeated below in Section 4.

Outline of the bijective proof

Given a sequence k1 < ⋅ ⋅ ⋅ < kn, it suffices to find an injective map from the set of monotone
triangles with bottom row k1, . . . , kn to our shifted Gelfand–Tsetlin patterns associated
with k1, . . . , kn so that the images under this map have positive signs, along with a sign-
reversing involution on the set of shifted Gelfand–Tsetlin patterns that are not the image
of a monotone triangle.

1Gelfand–Tsetlin patterns with bottom row 0 ≤ k1 ≤ k2 ≤ ⋅ ⋅ ⋅ ≤ kn are in an easy bijective correspon-
dence with semistandard tableaux of shape (kn, kn−1, . . . , k1) and entries in {1,2, . . . , n}.
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We will accomplish something more general, as we will also consider an extension of
monotone triangles to all integer sequences k1, . . . , kn, see Section 5, along with a sign
function on these objects, and prove that the operator formula also holds in this instance.
To do that, we will construct a sign-reversing involution on a subset of monotone triangles,
another sign-reversing involution on a subset of shifted Gelfand–Tsetlin patterns, and a
sign-preserving bijection between the remaining monotone triangles and the remaining
shifted Gelfand–Tsetlin patterns. Note that this is actually equivalent to the construction
of a bijection between the (disjoint) union of the “positive” monotone triangles and the
“negative” shifted Gelfand–Tsetlin patterns, and the (disjoint) union of the “negative”
monotone triangles and the “positive” shifted Gelfand–Tsetlin patterns. We call such
maps sijections for general signed sets. For an illustration, see Figure 1. In the figure,
S+ (resp. S−) refers to positive (resp. negative) monotone triangles, and T + (resp. T −)
refers to positive (resp. negative) shifted Gelfand–Tsetlin patterns. Furthermore, there is
a sign-reversing involution on the blue (resp. green) part of S (resp. T ), and a bijection
between light (resp. dark) gray parts of S+ and T + (resp. S− and T −). It is clear that this
implies that ∣S+∣ − ∣S−∣ = ∣T +∣ − ∣T −∣.

S+

S−

T+

T−

Figure 2: An illustration of a sijection.

The actual construction here will make use of the recursion underlying monotone
triangles. For a monotone triangle with bottom row k1, . . . , kn, the eligible penultimate
rows l1, . . . , ln−1 are those with

k1 ≤ l1 ≤ k2 ≤ l2 ≤ ⋅ ⋅ ⋅ ≤ ln−1 ≤ kn,

and l1 < l2 < ⋅ ⋅ ⋅ < ln−1. This establishes a recursion that can be used to construct all
monotone triangles. Phrased differently, “at” each ki we need to sum over all li−1, li such
that li−1 ≤ ki ≤ li and li−1 < li.2 However, we can split this into the following three cases:

1. Consider all li−1, li with li−1 < ki ≤ li.

2. Consider all li−1, li with li−1 ≤ ki < li.

3. Combining (1) and (2), we have done some double counting, thus we need to subtract
the intersection, i.e., all li−1, li with li−1 < ki < li.

2The degenerate cases k1 and kn are slightly different.
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This can be written as a recursion. The arrow rows in Section 5 are used to describe this
recursion: we choose ↖ “at” ki if we are in Case (1), ↗ in Case (2), and ↖↗ in Case (3).
Our main effort will be to show “sijectively” that shifted Gelfand–Tsetlin patterns also
fulfill this recursion.

Outline of the paper

The remainder of this paper is devoted to the bijective proof of Theorem 1 (or rather, the
more general version with the increasing condition on k1, . . . , kn dropped). In Section 2
we lay the groundwork by defining concepts like signed sets and sijections, and we extend
known concepts such as disjoint union, Cartesian product and composition for ordinary
sets and bijections to signed sets and sijections. The composition of sijections will use
a variation of the well-known Garsia-Milne involution principle [GM81, And86]. Many
of the signed sets we will be considering are signed boxes (Cartesian products of signed
intervals) or at least involve them, and we define some sijections on them in Section 3.
These sijections will be the building blocks of our bijective proof later on. In Section 4 we
introduce the extended Gelfand–Tsetlin patterns and construct some related sijections.
In Section 5, we finally define the extended monotone triangles as well as the shifted
Gelfand–Tsetlin patterns (i.e., the combinatorial interpretation of (3)), and use all the
preparation to construct the sijection between monotone triangles and shifted Gelfand–
Tsetlin patterns. In the final section, we discuss further projects.

To emphasize that we are not merely interested in the fact that two signed sets have
the same size, but want to use the constructed signed bijection later on, we will be using a
convention that is slightly unorthodox in our field. Instead of listing our results as lemmas
and theorems with their corresponding proofs, we will be using the Problem–Construction
terminology. See for instance [Voe] and [Bau].

Outline of future work

This is the first in a series of papers that will deal with bijective proofs of results in the
theory of alternating sign matrices. The second paper [FKa] will give the first bijective
proofs of the enumeration formula and of the relation between ASMs and DPPs. We
expect Part III to cover the relation between DPPs and ASTs, and Part IV the relation
between ASTs and TSSCPPs. The constructions presented in this paper will be heavily
used in all these follow-up papers, but we expect them to be more or less independent of
one another. See Section 6 for more details.

2 Signed sets and sijections

Signed sets

A signed set is a pair of disjoint finite sets: S = (S+, S−) with S+ ∩ S− = ∅. Equivalently,
a signed set is a finite set S together with a sign function sign∶S → {1,−1}. While we
will mostly avoid the use of the sign function altogether (with the exception of monotone
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triangles defined in Section 5), it is useful to keep this description at the back of one’s
mind. Note that throughout the paper, signed sets are underlined. We will write i ∈ S to
mean i ∈ S+ ∪ S−.

The size of a signed set S is ∣S∣ = ∣S+∣ − ∣S−∣. The opposite signed set of S is −S =

(S−, S+). We have ∣−S∣ = −∣S∣. The Cartesian product of signed sets S and T is

S × T = (S+ × T + ∪ S− × T −, S+ × T − ∪ S− × T +),

and we can similarly (or recursively) define the Cartesian product of a finite number of
signed sets. We have

∣S × T ∣ = ∣S+∣ ⋅ ∣T +∣ + ∣S−∣ ⋅ ∣T −∣ − ∣S+∣ ⋅ ∣T −∣ − ∣S−∣ ⋅ ∣T +∣ = ∣S∣ ⋅ ∣T ∣.

The intersection of signed sets S and T is defined as S ∩T = (S+ ∩T +, S− ∩T −), while
the union S ∪ T = (S+ ∪ T +, S− ∪ T −) is only defined when S+ ∩ T − = S− ∩ T + = ∅. Again,
we can extend these definitions to a finite family of signed sets.

Example. One of the crucial signed sets is the signed interval

[a, b] =

⎧⎪⎪
⎨
⎪⎪⎩

([a, b],∅) if a ≤ b

(∅, [b + 1, a − 1]) if a > b

for a, b ∈ Z, where [a, b] stands for an interval in Z in the usual sense. We have
[b + 1, a − 1] = −[a, b] and ∣[a, b]∣ = b − a + 1. For every a ∈ Z, [a + 1, a] is the empty

signed set ∅ = (∅,∅).
We will also see many signed boxes, Cartesian products of signed intervals. Note that
S+ = ∅ or S− = ∅ for every signed box S.

Signed subsets T ⊆ S are defined in an obvious manner, in particular, for s ∈ S, we
have

{s} =

⎧⎪⎪
⎨
⎪⎪⎩

({s},∅) if s ∈ S+

(∅,{s}) if s ∈ S−
.

The disjoint union of signed sets S and T is the signed set

S ⊔ T = (S × ({0},∅)) ∪ (T × ({1},∅))

with elements (s,0) for s ∈ S and (t,1) for t ∈ T . If S and T are signed sets with
(S+ ∪ S−) ∩ (T + ∪ T −) = ∅, we can identify S ∪ T and S ⊔ T .

More generally, we can define the disjoint union of a family of signed sets St, where
the family is indexed with a signed set T :

⊔
t∈T

St = ⋃
t∈T

(St × {t}).

We get ⊔t∈[0,1] St = S0 ⊔ S1. For a, b ∈ Z, we may also write ⊔bi=a Si instead of ⊔i∈[a,b] Si.
As for the size, we have

∣⊔
t∈T

St∣ =∑
t∈T

∣St∣ ⋅ ∣{t}∣.
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The usual properties such as associativity (S ⊔T )⊔U = S ⊔ (T ⊔U) and distributivity
(S ⊔ T ) × U = S × U ⊔ T × U also hold. Strictly speaking, the = sign here and sometimes
later on indicates that there is an obvious and natural sign-preserving bijection between
the two signed sets. We summarize a few more basic properties that will be needed in the
following and that are easy to prove.

1.

⊔
l∈[a1,b1]×⋅⋅⋅×[an,bn]

Sl1+c1,...,ln+cn = ⊔
l∈[a1+c1,b1+c1]×⋅⋅⋅×[an+cn,bn+cn]

Sl1,...,ln

2.

⊔
t∈T
⊔
u∈U

St,u = ⊔
(u,t)∈U×T

St,u = ⊔
(t,u)∈T×U

St,u = ⊔
u∈U
⊔
t∈T

St,u

3.

⊔
t∈⊔u∈U Tu

St = ⊔
u∈U

⊔
t∈Tu

St

4.
−⊔
t∈T

St = ⊔
t∈T

−St = ⊔
t∈−T

St.

Sijections

The role of bijections for signed sets is played by “signed bijections”, which we call sijec-
tions. A sijection ϕ from S to T ,

ϕ∶S Ô⇒ T ,

is an involution on the set (S+ ∪S−)⊔ (T + ∪T −) with the property ϕ(S+ ⊔T −) = S− ⊔T +,
where ⊔ refers to the disjoint union for ordinary (“unsigned”) sets. It follows that also
ϕ(S− ⊔ T +) = S+ ⊔ T −. There is an obvious sijection idS ∶S ⇒ S.

We can think of a sijection as a collection of a sign-reversing involution on a subset of
S, a sign-reversing involution on a subset of T , and a sign-preserving matching between
the remaining elements of S with the remaining elements of T . When S− = T − = ∅, the
signed sets can be identified with ordinary sets, and a sijection in this case is simply a
bijection.

A sijection is a manifestation of the fact that two signed sets have the same size.
Indeed, if there exists a sijection ϕ∶S ⇒ T , we have ∣S+∣ + ∣T −∣ = ∣S+ ⊔ T −∣ = ∣S− ⊔ T +∣ =

∣S−∣+∣T +∣ and therefore ∣S∣ = ∣S+∣−∣S−∣ = ∣T +∣−∣T −∣ = ∣T ∣. A sijection ϕ∶S ⇒ T has an inverse
ϕ−1∶T ⇒ S that we obtain by identifying (T +∪T −)⊔(S+∪S−) with (S+∪S−)⊔(T +∪T −).

For a signed set S, there is a natural sijection ϕ from S ⊔ (−S) to the empty signed
set ∅ = (∅,∅). Indeed, the involution should be defined on (S+ × {0} ∪ S− × {1}) ∪ (S− ×
{0} ∪ S+ × {1}) and map S+ × {0} ∪ S− × {1} to S+ × {1} ∪ S− × {0}, and so we can take
ϕ((s,0),0) = ((s,1),0), ϕ((s,1),0) = ((s,0),0). Note that in general, a sijection from a
signed set S to ∅ is simply a sign-reversing involution on S, in other words, a bijection
between S+ and S−.
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If we have a sijection ϕ∶S ⇒ T , there is a natural sijection −ϕ∶ −S ⇒ −T (as a map, it
is actually precisely the same).

If we have sijections ϕi∶Si⇒ T i for i = 0,1, then there is a natural sijection ϕ∶S0⊔S1 ⇒

T 0⊔T 1. More interesting ways to create new sijections are described below in Proposition
1, but we will need this in our first construction for the special case S0 = T 0 and ϕ0 = idS0

.
To motivate our first result, note that if a ≤ b ≤ c or c < b < a, then [a, c] = [a, b] ∪

[b + 1, c] = [a, b] ⊔ [b + 1, c]. This does not hold in general; for a = 1, b = 8, c = 5, [1,5] =

({1,2,3,4,5},∅), ([1,8] ⊔ [9,5])+ = ({(1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0), (8,0)}

and ([1,8] ⊔ [9,5])− = {(6,1), (7,1), (8,1)}). The following, however, tells us that there

is in general a sijection between [a, c] and [a, b] ⊔ [b + 1, c]. This map will be the crucial
building block for more complicated sijections.

Problem 1. Given a, b, c ∈ Z, construct a sijection

α = αa,b,c∶ [a, c]Ô⇒ [a, b] ⊔ [b + 1, c].

Construction. For a ≤ b ≤ c and c < b < a, there is nothing to prove. For, say, a ≤ c < b, we
have

[a, b] ⊔ [b + 1, c] = ([a, c] ⊔ [c + 1, b]) ⊔ [b + 1, c] = [a, c] ⊔ ([c + 1, b] ⊔ (−[c + 1, b]))

and since there is a sijection [c + 1, b] ⊔ (−[c + 1, b]) ⇒ ∅, we get a sijection [a, b] ⊔

[b + 1, c]⇒ [a, c]. The cases b < a ≤ c, b ≤ c < a, and c < a ≤ b are analogous.

The following proposition describes composition, Cartesian product, and disjoint union
of sijections. The composition is a variant of the well-known Garsia-Milne involution
principle. All the statements are easy to prove, and the proofs are left to the reader.

Proposition 1.

1. (Composition) Suppose we have sijections ϕ∶S ⇒ T and ψ∶T ⇒ U . For s ∈ S (resp.
u ∈ U), define ψ ○ ϕ(s) (resp. ψ ○ ϕ(u)) as the last well-defined element in the se-
quence s,ϕ(s), ψ(ϕ(s)), ϕ(ψ(ϕ(s))), . . . (resp. u,ψ(u), ϕ(ψ(u)), ψ(ϕ(ψ(u))), . . . ).
Then ψ ○ ϕ is a well-defined sijection from S to U .

2. (Cartesian product) Suppose we have sijections ϕi∶Si ⇒ T i, i = 1, . . . , k. Then
ϕ = ϕ1 × ⋅ ⋅ ⋅ × ϕk, defined by

ϕ(s1, . . . , sk) =

⎧⎪⎪
⎨
⎪⎪⎩

(ϕ1(s1), . . . , ϕk(sk)) if ϕi(si) ∈ T i for i = 1, . . . , k

(s1, . . . , sj−1, ϕj(sj), sj+1, . . . , sk) if ϕj(sj) ∈ Sj, ϕi(si) ∈ T i for i < j

if (s1, . . . , sk) ∈ S1 × ⋅ ⋅ ⋅ × Sk and

ϕ(t1, . . . , tk) =

⎧⎪⎪
⎨
⎪⎪⎩

(ϕ1(t1), . . . , ϕk(tk)) if ϕi(ti) ∈ Si for i = 1, . . . , k

(t1, . . . , tj−1, ϕj(tj), tj+1, . . . , tk) if ϕj(tj) ∈ T j, ϕi(ti) ∈ Si for i < j

if (t1, . . . , tk) ∈ T 1×⋅ ⋅ ⋅×T k, is a well-defined sijection from S1×⋅ ⋅ ⋅×Sk to T 1×⋅ ⋅ ⋅×T k.

the electronic journal of combinatorics 27(3) (2020), #3.35 10



3. (Disjoint union) Suppose we have signed sets T , T̃ and a sijection ψ∶T ⇒ T̃ . Further-
more, suppose that for every t ∈ T ⊔ T̃ , we have a signed set St and a sijection
ϕt∶St⇒ Sψ(t) satisfying ϕψ(t) = ϕ

−1
t . Then ϕ = ⊔t∈T⊔T̃ ϕt, defined by

ϕ(st, t) =

⎧⎪⎪
⎨
⎪⎪⎩

(ϕt(st), t) if t ∈ T ⊔ T̃ , st ∈ St, ϕt(st) ∈ St
(ϕt(st), ψ(t)) if t ∈ T ⊔ T̃ , st ∈ St, ϕt(st) ∈ Sψ(t)

is a sijection ⊔t∈T St⇒ ⊔t∈T̃ St.

One important special case of Proposition 1 (3) is T = T̃ and ψ = id. We have two sets
of signed sets indexed by T , S(t,0) =∶ S

0
t and S(t,1) =∶ S

1
t , and sijections ϕt∶S

0
t ⇒ S1

t . By the

proposition, these sijections have a disjoint union that is a sijection ⊔t∈T S
0
t ⇒ ⊔t∈T S

1
t .

By the proposition, the relation

S ≈ T ⇐⇒ there exists a sijection from S to T

is an equivalence relation on signed sets.

Elementary signed sets and normal sijections

Often, we will be interested in disjoint unions of Cartesian products of signed intervals.
An element of such a signed set is a pair, consisting of a tuple of integers and an element
of the indexing signed set. Intuitively, the first one is “more important”, as the second
one serves just as an index. We formalize this notion in the following definition.

Example. A signed set A is elementary of dimension n and depth 0 if its elements are
in Zn. A signed set A is elementary of dimension n and depth d, d ≥ 1, if it is of the form

⊔
t∈T

St,

where T is a signed set, and St are all signed sets of dimension n and depth at most d−1,
with the depth of at least one of them equal to d − 1. A signed set A is elementary of
dimension n if it is an elementary signed set of dimension n and depth d for some d ∈ N.
The projection map on an elementary set of dimension n is the map

ξ∶AÐ→ Zn

defined as follows. If the depth of A is 0, then ξ is simply the inclusion map. Once ξ is
defined on elementary signed sets of depth < d, and the depth of A is d, then A = ⊔t∈T St,
where ξ is defined on all St. Then define ξ(s, t) = ξ(s) for (s, t) ∈ A.
A sijection ψ∶T ⇒ T̃ between elementary signed sets T and T̃ of the same dimension is
normal if ξ(ψ(t)) = ξ(t) for all t ∈ T ⊔ T̃ .
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Simple examples of elementary signed sets are [a, c], [a, b]⊔[b + 1, c] and [a, c]⊔([a, b]⊔

[b + 1, c]). They are all of dimension 1 and depth 0, 1 and 2, respectively.3 It is easy to
see that the sijection αa,b,c from Problem 1 is normal.

Let us illustrate this with the example a = 1, b = 5, c = 3. We have [a, c] = ({1,2,3},∅)

and [a, b] ⊔ [b + 1, c] = ({(1,0), (2,0), (3,0), (4,0), (5,0)},{(4,1), (5,1)}). The sijection

α1,5,3 is the involution on [1,3] ⊔ ([1,5] ⊔ [6,3]) defined by

(1,0)↔ ((1,0),1), (2,0)↔ ((2,0),1), (3,0)↔ ((3,0),1),

((4,0),1)↔ ((4,1),1), ((5,0),1)↔ ((5,1),1).

Since ξ(i,0) = i for i = 1,2,3, ξ((i,0),1) = i for i = 1,2,3,4,5 and ξ((i,1),1) = i for i = 4,5,
α1,5,3 is indeed normal.

Other examples of elementary signed sets appear in the statements of Problems 2 and
3 (in both cases, they are of dimension n − 1).

Normality is preserved under Cartesian product, disjoint union etc. For example, the
sijection

[a1, c1] × [a2, c2]⇒

[a1, b1] × [a2, b2] ⊔ [a1, b1] × [b2 + 1, c2] ⊔ [b1 + 1, c1] × [a2, b2] ⊔ [b1 + 1, c1] × [b2 + 1, c2],

obtained by using αa1,b1,c1 × αa2,b2,c2 and distributivity on disjoint unions, is normal.
The main reason normal sijections are important is that they give a very natural

special case of Proposition 1 (3). Suppose that T and T̃ are elementary signed sets of
dimension n, and that ψ∶T ⇒ T̃ is a normal sijection. Furthermore, suppose that we have
a signed set Sk for every k ∈ Zn. Then we have a sijection

⊔
t∈T

Sξ(t) Ô⇒ ⊔
t∈T̃

Sξ(t).

Indeed, Proposition 1 gives us a sijection provided that we have a sijection ϕt∶Sξ(t) ⇒

Sξ(ψ(t)) satisfying ϕψ(t) = ϕ
−1
t for every t ∈ T ⊔ T̃ . But since ξ(ψ(t)) = ξ(t), we can take ϕt

to be the identity.

3 Some sijections on signed boxes

The first sijection in this section will serve as the base of induction for Problem 5.

3To avoid ambiguity, we should consider signed intervals in this case to be subsets of Z1 (1-tuples of
integers), not Z. Otherwise, [0,1]⊔[2,3] = ({(0,0), (1,0), (2,1), (3,1)},∅), and this can be seen either as
an elementary set of dimension 1 and depth 1, or as an elementary signed set of dimension 2 and depth
0. So the interpretation depends on the “representation” of the set as disjoint union. Instead, we should
understand [0,1] ⊔ [2,3] to mean ({((0),0), ((1),0), ((2),1), ((3),1)},∅), with dimension 1 and depth
1. For coding, the distinction is important, but in the paper we nevertheless think of elements of signed
intervals as integers.
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Example. For a, b ∈ Z, we have a normal sijection

⊔
(l1,l2)∈[a+1,b+1]×[a,b]

[l1, l2]Ô⇒ ∅

defined by ϕ((x, (l1, l2)),0) = ((x, (l2 + 1, l1 − 1)),0). It is well defined because (l1, l2) ∈

[a + 1, b + 1]×[a, b] if and only if (l2+1, l1−1) ∈ [a + 1, b + 1]×[a, b], and because x ∈ [l1, l2]

if and only if x ∈ [l2 + 1, l1 − 1].

Note that the 0 as the second coordinate in the example comes from the fact that a
sijection in question is an involution on the disjoint union

⎛

⎝
⊔

(l1,l2)∈[a+1,b+1]×[a,b]

[l1, l2]
⎞

⎠
⊔ ∅ =

⎛

⎝
⊔

(l1,l2)∈[a+1,b+1]×[a,b]

[l1, l2]
⎞

⎠
× {0} ∪ ∅ × {1}.

We could be a little less precise and write ϕ(x, (l1, l2)) = (x, (l2+1, l1−1)) without causing
confusion.

The following generalizes the construction of Problem 1; indeed, for n = 2 the con-
struction gives a sijection from [a1, b1] to [a1, x] ⊔ (−[b1 + 1, x]).

Problem 2. Given a = (a1, . . . , an−1) ∈ Zn−1, b = (b1, . . . , bn−1) ∈ Zn−1, x ∈ Z, construct a
normal sijection

β = βa,b,x∶ [a1, b1]×⋅ ⋅ ⋅×[an−1, bn−1]Ô⇒ ⊔
(l1,...,ln−1)∈S1×⋅⋅⋅×Sn−1

[l1, l2]×[l2, l3]×⋅ ⋅ ⋅×[ln−2, ln−1]×[ln−1, x],

where Si = ({ai},∅) ⊔ (∅,{bi + 1})

Note that ({ai},∅) ⊔ (∅,{bi + 1}) can be identified with ({ai},{bi + 1}) if ai /= bi + 1.

Construction. The proof is by induction, with the case n = 1 being trivial and the case
n = 2 was constructed in Problem 1. Now, for n ≥ 3,

[a1, b1] × ⋅ ⋅ ⋅ × [an−1, bn−1] ≈ [a1, b1] × ⊔
(l2,...,ln−1)∈S2×⋅⋅⋅×Sn−1

[l2, l3] × ⋅ ⋅ ⋅ × [ln−2, ln−1] × [ln−1, x]

≈
⎛

⎝
[a1, b1] × ⊔

(l3,...,ln−1)∈S3×⋅⋅⋅×Sn−1

[a2, l3] × ⋅ ⋅ ⋅ × [ln−1, x]
⎞

⎠

⊔
⎛

⎝
[a1, b1] × ⊔

(l3,...,ln−1)∈S3×⋅⋅⋅×Sn−1

(−[b2 + 1, l3]) × ⋅ ⋅ ⋅ × [ln−1, x]
⎞

⎠
,

where we used induction for the first equivalence, and distributivity and the fact that
S2 = ({a2},∅)⊔ (∅,{b2 + 1}) for the second equivalence. By Problem 1 and Proposition 1
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(2), there exists a sijection from the last expression to

⎛

⎝
([a1, a2] ⊔ (−[b1 + 1, a2])) × ⊔

(l3,...,ln−1)∈S3×⋅⋅⋅×Sn−1

[a2, l3] × ⋅ ⋅ ⋅ × [ln−1, x]
⎞

⎠

⊔
⎛

⎝
([a1, b2 + 1] ⊔ (−[b1 + 1, b2 + 1])) × ⊔

(l3,...,ln−1)∈S3×⋅⋅⋅×Sn−1

(−[b2 + 1, l3]) × ⋅ ⋅ ⋅ × [ln−1, x]
⎞

⎠

≈ ⊔
(l1,...,ln−1)∈S1×⋅⋅⋅×Sn−1

[l1, l2] × [l2, l3] × . . . . . . [ln−2, ln−1] × [ln−1, x],

where for the last equivalence we have again used distributivity. Normality follows from
the normality of all the sijections involved in the construction.

Problem 3. Given k = (k1, . . . , kn) ∈ Zn and x ∈ Z, construct a normal sijection

γ = γk,x∶ [k1, k2] × ⋅ ⋅ ⋅ × [kn−1, kn]

Ô⇒
n

⊔
i=1

[k1, k2] × ⋅ ⋅ ⋅ × [ki−1, x + n − i] × [x + n − i, ki+1] × ⋅ ⋅ ⋅ × [kn−1, kn]

⊔
n−2

⊔
i=1

⋅ ⋅ ⋅ × [ki−1, ki] × [ki+1 + 1, x + n − i − 1] × [ki+1, x + n − i − 2] × [ki+2, ki+3] × . . . .

Construction. The proof is by induction with respect to n. The case n = 1 is trivial, and
n = 2 is Problem 1. Now take n > 2. By the induction hypothesis (for (k1, . . . , kn−1) and
x + 1), we have

[k1, k2]×⋅ ⋅ ⋅×[kn−1, kn] ≈ (
n−1

⊔
i=1

[k1, k2]×⋅ ⋅ ⋅×[ki−1, x + n − i]×[x + n − i, ki+1]×⋅ ⋅ ⋅×[kn−2, kn−1]

⊔
n−3

⊔
i=1

[k1, k2]×⋅ ⋅ ⋅×[ki+1 + 1, x + n − i − 1]×[ki+1, x + n − i − 2]×⋅ ⋅ ⋅×[kn−2, kn−1])×[kn−1, kn].

We use distributivity. We keep all terms except the one corresponding to i = n − 1 in the
first part. Because

[kn−2, x + 1] × [kn−1, kn] ≈ [kn−2, x + 1] × ([kn−1, x] ⊔ [x + 1, kn])

≈ ([kn−2, kn−1] ⊔ [kn−1 + 1, x + 1]) × [kn−1, x] ⊔ [kn−2, x + 1] × [x + 1, kn]

≈ [kn−2, kn−1] × [kn−1, x] ⊔ [kn−1 + 1, x + 1] × [kn−1, x] ⊔ [kn−2, x + 1] × [x + 1, kn],

we obtain the required Cartesian products for the first term on the right-hand side at
i = n, the second term at i = n−2, and the first term at i = n−1. Again, normality follows
from the fact that α is normal.
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4 Gelfand–Tsetlin patterns

Using our definition of a disjoint union of signed sets, it is easy to define generalized
Gelfand–Tsetlin patterns, or GT patterns for short (compare with [Fis05]).

Definition. For k ∈ Z, define GT(k) = ({⋅},∅), and for k = (k1, . . . , kn) ∈ Zn, define
recursively

GT(k) = GT(k1, . . . , kn) = ⊔
l∈[k1,k2]×⋅⋅⋅×[kn−1,kn]

GT(l1, . . . , ln−1).

In particular, GT(a, b) ≈ [a, b].

Of course, one can think of an element of GT(k) in the usual way, as a triangular
array A = (Ai,j)1≤j≤i≤n of (

n+1
2
) numbers, arranged as

A1,1

A2,1 A2,2

A3,1 A3,2 A3,3

. .
.

⋮ ⋱ ⋮ . .
.

⋮ ⋱

An,1 An,2 . . . . . . An,n,

so that Ai+1,j ≤ Ai,j ≤ Ai+1,j+1 or Ai+1,j > Ai,j > Ai+1,j+1 for 1 ≤ j ≤ i < n, and An,i = ki. The
sign of such an array is (−1)m, where m is the number of (i, j) with ai,j > ai,j+1.

Some crucial sijections for GT patterns are given by the following constructions.

Problem 4. Given a = (a1, . . . , an−1) ∈ Zn−1, b = (b1, . . . , bn−1) ∈ Zn−1, x ∈ Z, construct a
sijection

ρ = ρa,b,x∶ ⊔
l∈[a1,b1]×⋅⋅⋅×[an−1,bn−1]

GT(l)Ô⇒ ⊔
(l1,...,ln−1)∈S1×⋅⋅⋅×Sn−1

GT(l1, . . . , ln−1, x),

where Si = ({ai},∅) ⊔ (∅,{bi + 1}).

Construction. In Problem 2, we constructed a normal sijection

[a1, b1] × ⋅ ⋅ ⋅ × [an−1, bn−1]Ô⇒ ⊔
(l1,...,ln−1)∈S1×⋅⋅⋅×Sn−1

[l1, l2] × [l2, l3] × ⋅ ⋅ ⋅ × [ln−2, ln−1] × [ln−1, x].

By Proposition 1 (3) (see the comment at the end of Section 2), this gives a sijection

⊔
l∈[a1,b1]×⋅⋅⋅×[an−1,bn−1]

GT(l)Ô⇒ ⊔
m∈⊔(l1,...,ln−1)∈S1×⋅⋅⋅×Sn−1 [l1,l2]×[l2,l3]×⋅⋅⋅×[ln−2,ln−1]×[ln−1,x]

GT(m).

By basic sijection constructions, we get that this is equivalent to

⊔
(l1,...,ln−1)∈S1×⋅⋅⋅×Sn−1

⊔
m∈[l1,l2]×[l2,l3]×⋅⋅⋅×[ln−2,ln−1]×[ln−1,x]

GT(m),

and by definition of GT, this is equal to ⊔(l1,...,ln−1)∈S1×⋅⋅⋅×Sn−1 GT(l1, . . . , ln−1, x).
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The result is important because while it adds a dimension to GT patterns, it (typically)
greatly reduces the size of the indexing signed set. In fact, there is an analogy to the
fundamental theorem of calculus: instead of extending the disjoint union over the entire
signed box, it suffices to consider the boundary; x corresponds in a sense to the constant
of integration.

In the following problem, the second sijection is necessary to construct the first.

Problem 5. Given k = (k1, . . . , kn) ∈ Zn and i, 1 ≤ i ≤ n − 1, construct a sijection

π = πk,i∶GT(k1, . . . , kn)Ô⇒ −GT(k1, . . . , ki−1, ki+1 + 1, ki − 1, ki+2, . . . , kn).

Given a = (a1, . . . , an) ∈ Zn, b = (b1, . . . , bn) ∈ Zn such that for some i, 1 ≤ i ≤ n − 1, we
have ai+1 = ai − 1 and bi+1 = bi − 1, construct a sijection

σ = σa,b,i∶ ⊔
l∈[a1,b1]×⋅⋅⋅×[an,bn]

GT(l)Ô⇒ ∅.

Construction. The proof is by induction, with the induction step for π using σ and vice
versa. For n = 1, there is nothing to prove. For n = 2 and i = 1, the existence of π
follows from the statement [k1, k2] = −[k2 + 1, k1 − 1], and σ was constructed in Example
3. Assume that n > 2 and 1 < i < n − 1. We have

GT(k1, . . . , kn) = ⊔
l∈[k1,k2]×⋅⋅⋅×[ki−1,ki]×[ki+1+1,ki−1]×[ki+1,ki+2]×⋅⋅⋅×[kn−1,kn]

−GT(l1, . . . , ln−1).

By using id× ⋅ ⋅ ⋅ × id×αki−1,ki+1+1,ki × id×αki+1,ki−2,ki+2 × id× ⋅ ⋅ ⋅ × id and distributivity, we get
a normal sijection

[k1, k2] × ⋅ ⋅ ⋅ × [ki−1, ki] × [ki+1 + 1, ki − 1] × [ki+1, ki+2] × ⋅ ⋅ ⋅ × [kn−1, kn]Ô⇒

[k1, k2] × ⋅ ⋅ ⋅ × [ki−1, ki+1 + 1] × [ki+1 + 1, ki − 1] × [ki − 1, ki+2] × ⋅ ⋅ ⋅ × [kn−1, kn]

⊔ [k1, k2] × ⋅ ⋅ ⋅ × [ki−1, ki+1 + 1] × [ki+1 + 1, ki − 1] × [ki+1, ki − 2] × ⋅ ⋅ ⋅ × [kn−1, kn]

⊔ [k1, k2] × ⋅ ⋅ ⋅ × [ki+1 + 2, ki] × [ki+1 + 1, ki − 1] × [ki − 1, ki+2] × ⋅ ⋅ ⋅ × [kn−1, kn]

⊔ [k1, k2] × ⋅ ⋅ ⋅ × [ki+1 + 2, ki] × [ki+1 + 1, ki − 1] × [ki+1, ki − 2] × ⋅ ⋅ ⋅ × [kn−1, kn]

By Proposition 1 (3), this gives a sijection

⊔
l∈[k1,k2]×⋅⋅⋅×[ki−1,ki]×[ki+1+1,ki−1]×[ki+1,ki+2]×⋅⋅⋅×[kn−1,kn]

−GT(l1, . . . , ln−1)Ô⇒

⊔
l∈[k1,k2]×⋅⋅⋅×[ki−1,ki+1+1]×[ki+1+1,ki−1]×[ki−1,ki+2]×⋅⋅⋅×[kn−1,kn]

−GT(l1, . . . , ln−1)

⊔ ⊔
l∈[k1,k2]×⋅⋅⋅×[ki−1,ki+1+1]×[ki+1+1,ki−1]×[ki+1,ki−2]×⋅⋅⋅×[kn−1,kn]

−GT(l1, . . . , ln−1)

⊔ ⊔
l∈[k1,k2]×⋅⋅⋅×[ki+1+2,ki]×[ki+1+1,ki−1]×[ki−1,ki+2]×⋅⋅⋅×[kn−1,kn]

−GT(l1, . . . , ln−1)

⊔ ⊔
l∈[k1,k2]×⋅⋅⋅×[ki+1+2,ki]×[ki+1+1,ki−1]×[ki+1,ki−2]×⋅⋅⋅×[kn−1,kn]

−GT(l1, . . . , ln−1).
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By definition, the first signed set on the right-hand side is −GT(k1, . . . , ki−1, ki+1 + 1, ki −
1, ki+2, . . . , kn). The other three disjoint unions all satisfy the condition needed for the
existence of σ (for i, for i − 1 and for both, i − 1 and i, respectively), and hence we can
siject them to ∅.
If i = 1 or i = n − 1, the proof is similar but easier (as we only have to use α once, and we
get only two factors after using distributivity). Details are left to the reader.
Now take l = (l1, . . . , ln) and l′ = (l1, . . . , li−1, li+1 + 1, li − 1, li+2, . . . , ln). The sijection σ can
then be defined as

σa,b,i(A, l) =

⎧⎪⎪
⎨
⎪⎪⎩

(πl,i(A), l) if πl,i(A) ∈ GT(l)

(πl,i(A), l′) if πl,i(A) ∈ GT(l′)
.

It is easy to check that this is a sijection. Compare with Example 3.

Problem 6. Given k = (k1, . . . , kn) ∈ Zn and x ∈ Z, construct a sijection

τ = τk,x∶GT(k1, . . . , kn)Ô⇒
n

⊔
i=1

GT(k1, . . . , ki−1, x + n − i, ki+1, . . . , kn).

Construction. In Problem 3, we constructed a normal sijection

[k1, k2]×⋅ ⋅ ⋅×[kn−1, kn]Ô⇒
n

⊔
i=1

[k1, k2]×⋅ ⋅ ⋅×[ki−1, x + n − i]×[x + n − i, ki+1]×⋅ ⋅ ⋅×[kn−1, kn]

⊔
n−2

⊔
i=1

⋅ ⋅ ⋅ × [ki−1, ki] × [ki+1 + 1, x + n − i − 1] × [ki+1, x + n − i − 2] × [ki+2, ki+3] × . . . ,

which gives a sijection

⊔
l∈[k1,k2]×⋅⋅⋅×[kn−1,kn]

GT(l)Ô⇒
n

⊔
i=1

⊔
l∈[k1,k2]×⋅⋅⋅×[ki−1,x+n−i]×[x+n−i,ki+1]×⋅⋅⋅×[kn−1,kn]

GT(l)

⊔
n−2

⊔
i=1

⊔
l∈[k1,k2]×⋅⋅⋅×[ki−1,ki]×[ki+1+1,x+n−i−1]×[ki+1,x+n−i−2]×[ki+2,ki+3]×⋅⋅⋅×[kn−1,kn]

GT(l).

All disjoint unions in the second term satisfy the conditions for the existence of σ from
Problem 5, so we can siject them to ∅. This gives a sijection

⊔
l∈[k1,k2]×⋅⋅⋅×[kn−1,kn]

GT(l)Ô⇒
n

⊔
i=1

⊔
l∈[k1,k2]×⋅⋅⋅×[ki−1,x+n−i]×[x+n−i,ki+1]×⋅⋅⋅×[kn−1,kn]

GT(l),

which is, by the definition of GT, a sijection GT(k1, . . . , kn) ⇒ ⊔
n
i=1 GT(k1, . . . , ki−1, x +

n − i, ki+1, . . . , kn).
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5 Combinatorics of the monotone triangle recursion

One side of the operator formula: Monotone triangles

Suppose that k = (k1, . . . , kn) and l = (l1, . . . , ln−1) are two sequences of integers. We say
that l interlaces k, l ≺ k, if the following holds:

1. for every i, 1 ≤ i ≤ n − 1, li is in the closed interval between ki and ki+1;

2. if ki−1 ≤ ki ≤ ki+1 for some i, 2 ≤ i ≤ n − 1, then li−1 and li cannot both be ki;

3. if ki > li = ki+1, then i ≤ n − 2 and li+1 = li = ki+1;

4. if ki = li > ki+1, then i ≥ 2 and li−1 = li = ki.

For example, if k1 < k2 < ⋅ ⋅ ⋅ < kn, then li ∈ [ki, ki+1] and l1 < l2 < ⋅ ⋅ ⋅ < ln−1.
A monotone triangle of size n is a map T ∶{(i, j)∶1 ≤ j ≤ i ≤ n} → Z so that line i − 1

(i.e. the sequence Ti−1,1, . . . , Ti−1,i−1) interlaces line i (i.e. the sequence Ti,1, . . . , Ti,i).

Example. The following is a monotone triangle of size 5:

4
3 5

3 4 5
3 3 4 5

5 3 1 4 6

This notion of (generalized) monotone triangle was introduced in [Rie13]. Other no-
tions appeared in [Fis12].

The sign of a monotone triangle T is (−1)r, where r is the sum of:

• the number of strict descents in the rows of T , i.e. the number of pairs (i, j) so that
1 ≤ j < i ≤ n and Ti,j > Ti,j+1, and

• the number of (i, j) so that 1 ≤ j ≤ i−2, i ≤ n and Ti,j > Ti−1,j = Ti,j+1 = Ti−1,j+1 > Ti,j+2.

The sign of our example is −1.
We denote the signed set of all monotone triangles with bottom row k by MT(k).

Recall that monotone triangles form one side of the operator identity in Theorem 1.
It turns out that MT(k) satisfies a recursive “identity”. Let us define the signed set

of arrow rows of order n as
ARn = ({↗,↖},{↖↗})n.

Alternatively, we can think of them as rows of length n with elements ↖,↗,↖↗, where
the positive elements are precisely those with an even number of ↖↗’s.

The role of an arrow row µ of order n is that it induces a deformation of [k1, k2] ×

[k2, k3] × ⋅ ⋅ ⋅ × [kn−1, kn] as follows. Consider

[k1, k2] [k2, k3] . . . [kn−2, kn − 1] [kn−1, kn]

µ1 µ2 µ3 . . . µn−1 µn,
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and if µi ∈ {↖,↖↗} (that is we have an arrow pointing towards [ki−1, ki]) then ki is

decreased by 1 in [ki−1, ki], while there is no change for this ki if µi =↗. If µi ∈ {↗,↖↗}

(that is we have an arrow pointing towards [ki, ki+1]) then ki is increased by 1 in [ki, ki+1],
while there is no change for this ki if µi =↖.

For a more formal description, we let δ↖(↖) = δ↖(↖↗) = δ↗(↗) = δ↗(↖↗) = 1 and
δ↖(↗) = δ↗(↖) = 0, and we define

e(k, µ) = [k1 + δ↗(µ1), k2 − δ↖(µ2)] × ⋅ ⋅ ⋅ × [kn−1 + δ↗(µn−1), kn − δ↖(µn)].

for k = (k1, . . . , kn) and µ ∈ ARn.

Problem 7. Given k = (k1, . . . , kn), construct a sijection

Ξ = Ξk∶MT(k)Ô⇒ ⊔
µ∈ARn

⊔
l∈e(k,µ)

MT(l).

Construction. The map we will construct maps all elements on the left to the right, and
there will be quite a few cancellations on the right-hand side. More specifically, take
a monotone triangle T with bottom row k. Then Ξ(T ) = ((T ′, l), µ), where T ′ is the
monotone triangle we obtain from T by deleting the last row, l is the bottom row of T ′,
and µ = (µ1, . . . , µn) is the arrow row defined as follows:

• µ1 =↖;

• µn =↗;

• for 1 < i < n, µi is determined as follows:

1. if ki−1 ≤ li−1 = ki, take µi =↗;

2. if ki−1 > li−1 = ki = li > ki+1, take µi =↖↗;

3. otherwise, take µi =↖.

It is easy to check that l is indeed in e(k, µ). Note that in (1) and (2) of the third bullet
point, µi is forced if we require l ∈ e(k, µ). In (3), µi =↖↗ would also be possible if and
only if µi =↗ would also be possible.
On the other hand, for ((T ′, l), µ), define Ξ((T ′, l), µ) as follows. For the construction it
is useful to keep in mind that l ∈ e(k, µ) implies that conditions (1) and (2) for l ≺ k are
satisfied.

• if µ1 ≠↖, take Ξ((T ′, l), µ) = ((T ′, l), µ′), where we obtain µ′ from µ by replacing ↖↗
in position 1 by ↗ and vice versa;

• if µ1 =↖ and µn ≠↗, take Ξ((T ′, l), µ) = ((T ′, l), µ′), where we obtain µ′ from µ by
replacing ↖↗ in position n by ↖ and vice versa;

• if µ1 =↖ and µn =↗, and l /≺ k, find the smallest i between 2 and n − 1 such that:
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– condition (3) of l ≺ k is not satisfied at i, i.e. ki−1 > li−1 = ki /= li (which implies
µi ∈ {↖,↖↗}), or

– condition (4) of l ≺ k is not satisfied at i, i.e. li−1 /= ki = li > ki+1 (which implies
µi ∈ {↗,↖↗}).

Then take Ξ((T ′, l), µ) = ((T ′, l), µ′), where we obtain µ′ from µ by replacing ↖↗ in
position i by ↖ and vice versa in the first case, and replacing ↖↗ in position i by ↗
and vice versa in the second case;

• if µ1 =↖ and µn =↗, and l ≺ k, find the smallest i for an instance of (3) of the
third bullet point in the first paragraph of the proof with µi /=↖ (if such an i exists).
Then take Ξ((T ′, l), µ) = ((T ′, l), µ′), where we obtain µ′ from µ by replacing ↖↗ in
position i by ↖ and vice versa.

If no such i exists, we take Ξ((T ′, l), µ) = T , where we obtain T from T ′ by adding k as
the last row. It is easy to see that this is a well-defined sijection.

Remark. The previous construction could have been avoided by using alternative exten-
sions of monotone triangles provided in [Fis12]. However, the advantage of the definition
used in this paper is that it is more reduced than the others in the sense that it can
obtained from these by canceling elements using certain sign-reversing involutions.

The other side of the operator formula: Arrow patterns and shifted GT pat-
terns

Define the signed set of arrow patterns of order n as

APn = ({↙,↘},{↙↘})(
n
2
).

Alternatively, we can think of an arrow pattern of order n as a triangular array T =

(tp,q)1≤p<q≤n arranged as

T =

t1,n
t1,n−1 t2,n

t1,n−2 t2,n−1 t3,n
⋰ ⋮ ⋱ ⋮ ⋰ ⋮ ⋱

t1,2 t2,3 ... ... tn−1,n

,

with tp,q ∈ {↙,↘,↙↘}, and the sign of an arrow pattern is 1 if the number of ↙↘’s is even
and −1 otherwise.

The role of an arrow pattern of order n is that it induces a deformation of (k1, . . . , kn),
which can be thought of as follows. Add k1, . . . , kn as bottom row of T (i.e., ti,i = ki),
and for each ↙ or↙↘ which is in the same ↙-diagonal as ki add 1 to ki, while for each ↘
or ↙↘ which is in the same ↘-diagonal as ki subtract 1 from ki. More formally, letting
δ↙(↙) = δ↙(↙↘) = δ↘(↘) = δ↘(↙↘) = 1 and δ↙(↘) = δ↘(↙) = 0, we set

ci(T ) =
n

∑
j=i+1

δ↙(ti,j) −
i−1

∑
j=1

δ↘(tj,i) and d(k, T ) = (k1 + c1(T ), k2 + c2(T ), . . . , kn + cn(T ))
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for k = (k1, . . . , kn) and T ∈ APn.
For k = (k1, . . . , kn) define shifted Gelfand–Tsetlin patterns, or SGT patterns for short,

as the following disjoint union of GT patterns over arrow patterns of order n:

SGT(k) = ⊔
T ∈APn

GT(d(k, T ))

Shifted Gelfand–Tsetlin patterns form the other side of the operator identity in Theo-
rem 1. We will prove Theorem 1 by showing that monotone triangles and shifted Gelfand–
Tsetlin patterns satisfy the same recurrence.

Considering that ∣({↙,↘},{↙↘})∣ = 1 and therefore ∣APn ∣ = 1, the following is not
surprising.

Problem 8. Given n and i, 1 ≤ i ≤ n, construct a sijection

Ψ = Ψn,i∶APn−1 Ô⇒ APn .

Construction. For T ∈ APn−1, take Ψ(T ) = (t′p,q)1≤p<q≤n to be the arrow pattern defined
by

t′p,q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tp,q if p < q < i

tp,q−1 if p < i < q

tp−1,q−1 if i < p < q

↘ if p < q = i

↙ if i = p < q

.

An example for n = 6 and i = 4 is

↘

↙ ↙↘

↙↘ ↙ ↙

↘ ↙↘ ↘ ↙

Ψ
Ô⇒

↘

↙ ↙↘

↘ ↙ ↙

↙↘ ↘ ↘ ↙

↙ ↙↘ ↘ ↙ ↙

,

where the new arrows are indicated in red. If T ∈ APn, tp,i =↘ for p = 1, . . . , i − 1, ti,q =↙
for q = i + 1, . . . , n, take Ψ(T ) = (t′p,q)1≤p<q≤n−1, where

t′p,q =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

tp,q if p < q < i

tp,q+1 if p < i ≤ q

tp+1,q+1 if i ≤ p < q

.

Otherwise, there either exists p so that tp,i ≠↘, or there exists q so that ti,q ≠↙. In the
first case, define Ψ(T ) = (t′p,q)1≤p<q≤n, where t′p,i =↙ if tp,i =↙↘ and t′p,i =↙↘ if tp,i =↙, and
all other array elements are equal. In the second case, define Ψ(T ) = (t′p,q)1≤p<q≤n, where
t′i,q =↘ if ti,q =↙↘ and t′i,q =↙↘ if ti,q =↘, and all other array elements are equal. It is easy
to see that this is a sijection.
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The relation between monotone triangles and shifted Gelfand–Tsetlin patterns

The difficult part of this paper is to prove that SGT satisfies the same “recursion” as MT.
While the proof of the recursion was easy for monotone triangles, it is very involved for
shifted GT patterns, and needs almost all the sijections we have constructed in this and
previous sections.

Problem 9. Given k = (k1, . . . , kn) ∈ Zn and x ∈ Z, construct a sijection

Φ = Φk,x∶ ⊔
µ∈ARn

⊔
l∈e(k,µ)

SGT(l)Ô⇒ SGT(k).

Construction. To make the construction of Φ a little easier, we will define it as the com-
position of several sijections. The first one will reduce the indexing sets (from a signed
box to its “corners”) using Problem 4. The second one increases the order of the arrow
patterns using the sijection from Problem 8. The third one further reduces the indexing
set (from a signed set with 2n−1 elements to [1, n]). The last one gets rid of the arrow
row and then uses Problem 6.
For µ ∈ ARn, define Si = ({ki + δ↗(µi)},∅) ⊔ (∅,{ki+1 − δ↖(µi+1) + 1}). Then Φ is the
composition of sijections

⊔
µ∈ARn

⊔
l∈e(k,µ)

SGT(l)

Φ1
Ô⇒ ⊔

µ∈ARn

⊔
T ∈APn−1

⊔
m∈S1×⋅⋅⋅×Sn−1

GT(m1 + c1(T ), . . . ,mn−1 + cn−1(T ), x)

Φ2
Ô⇒ ⊔

µ∈ARn

⊔
T ∈APn

⊔
m∈S1×⋅⋅⋅×Sn−1

GT(m1 + c1(T ), . . . ,mn−1 + cn−1(T ), x)

Φ3
Ô⇒ ⊔

µ∈ARn

⊔
T ∈APn

n

⊔
i=1

GT(. . . , ki−1 + δ↗(µi−1) + ci−1(T ), x + n − i, ki+1 − δ↖(µi+1) + ci(T ), . . . )

Φ4
Ô⇒ SGT(k),

where Φ1, Φ2, Φ3, and Φ4 are constructed as follows.
Construction of Φ1. By definition of SGT, we have

⊔
µ∈ARn

⊔
l∈e(k,µ)

SGT(l) = ⊔
µ∈ARn

⊔
l∈e(k,µ)

⊔
T ∈APn−1

GT(d(l, T )).

By switching the inner disjoint unions, we get a sijection to

⊔
µ∈ARn

⊔
T ∈APn−1

⊔
l∈e(k,µ)

GT(d(l, T )).

There is an obvious sijection from this signed set to

⊔
µ∈ARn

⊔
T ∈APn−1

⊔
l∈d(e(k,µ),T )

GT(l),
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by abuse of notation setting

d([x1, y1] × . . . [xn−1, yn−1], T )

= [x1 + c1(T ), y1 + c1(T )] × ⋅ ⋅ ⋅ × [xn−1 + cn−1(T ), yn−1 + cn−1(T )].

Now for each µ and T , use the map ρ from Problem 4 for ai = ki + δ↗(µi) + ci(T ),
bi = ki+1 − δ↖(µi+1) + ci(T ), and x. We get a sijection to

⊔
µ∈ARn

⊔
T ∈APn−1

⊔
m∈S′1×...S

′
n−1

GT(m1, . . . ,mn−1, x),

where S′i = ({ki + δ↗(µi) + ci(T )},∅) ⊔ (∅,{ki+1 − δ↖(µi+1) + ci(T ) + 1}). Finally, there is
an obvious sijection from this signed set to

⊔
µ∈ARn

⊔
T ∈APn−1

⊔
m∈S1×...Sn−1

GT(m1 + c1(T ), . . . ,mn−1 + cn−1(T ), x).

Construction of Φ2. In Problem 8, we constructed sijections Ψn,i∶APn−1 ⇒ APn. We
construct Φ2 by using Proposition 1 (3) for ψ = Ψn,n, T = APn−1, T̃ = APn,

ST = ⊔
m∈S1×...Sn−1

GT(m1 + c1(T ), . . . ,mn−1 + cn−1(T ), x) for T ∈ APn−1 ⊔APn

and ϕT = id. This is well defined because ci(T ) = ci(Ψn,n(T )) for T ∈ APn−1 ⊔APn and
i = 1, . . . , n − 1.
Construction of Φ3. Let η be the involution that maps ↙↔↗,↘↔↖,↙↘↔↖↗. The
elements of the signed set S = S1 × ⋅ ⋅ ⋅ ×Sn−1 are (n− 1)-tuples of elements that are either
(ki + δ↗(µi),0) or (ki+1 − δ↖(µi+1) + 1,1). Define S′ as the subset of S containing tuples
of the form (. . . , (mi,1), (mi+1,0), . . . ), i.e. the ones where we choose ki+1 − δ↖(µi+1)+1 in
position i and ki+1 + δ↗(µi+1) in position i + 1 for some i. Then we can define a sijection

⊔
µ∈ARn

⊔
T ∈APn

⊔
m∈S′

GT(m1 + c1(T ), . . . ,mn−1 + cn−1(T ), x)Ô⇒ ∅

as follows: given µ ∈ ARn, T ∈ APn, m = (. . . , ki+1 − δ↖(µi+1) + 1, ki+1 + δ↗(µi+1), . . . ) (and
i is the smallest index where this happens), A ∈ GT(m1 + c1(T ), . . . ,mn−1 + cn−1(T ), x),
map (((A,m), T ), µ) to (((A′,m′), T ′), µ′), where:

• A′ = πi,n(A);

• T ′ is T if A′ has the same bottom row as A; otherwise, T ′ is obtained from T by
interchanging ti,j and ti+1,j for j > i + 1 as well as tj,i and tj,i+1 for j < i, and setting
t′i,i+1 = η(µi+1);

• µ′ is µ if A′ has the same bottom row as A; otherwise, µ′ is obtained from µ by
replacing µi+1 with η(ti,i+1);

• m′ = (. . . , ki+1 − δ↖(µ′i+1) + 1, ki+1 + δ↗(µ′i+1), . . . ).
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What remains is

⊔
µ∈ARn

⊔
T ∈APn

n

⊔
i=1

(−1)n−i GT(. . . , ki−1 + δ↗(µi−1) + ci−1(T ), ki+1 − δ↖(µi+1) + ci(T ) + 1, . . . , x),

and we can now apply πi,n ○ πi,n ○ ⋅ ⋅ ⋅ ○ πn−1,n to obtain what is claimed.
Construction of Φ4. By switching the order in which we do disjoint unions, we arrive

at

⊔
T ∈APn

n

⊔
i=1

⊔
µ∈ARn

GT(. . . , ki−1 + δ↗(µi−1) + ci−1(T ), x + n − i, ki+1 − δ↖(µi+1) + ci(T ), . . . ).

Let us define a sijection Λn,i∶ARn⇒ ({⋅},{}). For µ′ = (↖, . . . ,↖,↗, . . . ,↗) (with i ↖’s),
take Λn,i(µ′) = ⋅ and Λn,i(⋅) = µ′. For every other µ, take the smallest p so that µp ≠ µ′p.
If p ≤ i, replace ↗ with ↖↗ and vice versa in position p to get Λn,i(µ) from µ, and if
p > i, replace ↖ with ↖↗ and vice versa in position p to get Λn,i(µ) from µ. If µ ≠ µ′,
(δ↗(µ1), . . . , δ↗(µi−1), δ↖(µi+1), . . . , δ↖(µn)) are unaffected by this sijection, so it induces
a sijection

⊔
µ∈ARn

GT(. . . , ki−1 + δ↗(µi−1) + ci−1(T ), x + n − i, ki+1 − δ↖(µi+1) + ci(T ), . . . )

Ô⇒ GT(. . . , ki−1 + ci−1(T ), x + n − i, ki+1 + ci(T ), . . . ).

We switch disjoint unions again, and we get

n

⊔
i=1

⊔
T ∈APn

GT(k1 + c1(T ), . . . , ki−1 + ci−1(T ), x + n − i, ki+1 + ci(T ), . . . , kn + cn−1(T )).

For chosen i, use Proposition 1 (3) for ψ = Ψn,i ○Ψ−1
n,n and ϕt = id. We get a sijection to

n

⊔
i=1

⊔
T ∈APn

GT(k1 + c1(T ), . . . , ki−1 + ci−1(T ), x + n − i, ki+1 + ci+1(T ), . . . , kn + cn(T )).

If we switch disjoint unions one last time, we can use the sijection τ−1 (see Problem 6),
and we get

⊔
T ∈APn

GT(d(k, T )) = SGT(k).

This completes the construction of Φ4 and therefore of Φ.

Problem 10. Given k = (k1, . . . , kn) ∈ Zn and x ∈ Z, construct a sijection

Γ = Γk,x∶MT(k)Ô⇒ SGT(k).

Construction. The proof is by induction on n. For n = 1, both sides consist of one
(positive) element, and the sijection is obvious. Once we have constructed Γ for all lists
of length less than n, we can construct Γk,x as the composition of sijections

MT(k)
Ξk
Ô⇒ ⊔

µ∈ARn

⊔
l∈e(k,µ)

MT(l)
⊔⊔Γ
Ô⇒ ⊔

µ∈ARn

⊔
l∈e(k,µ)

SGT(l)
Φk,x

Ô⇒ SGT(k),

where ⊔ ⊔ Γ means ⊔µ∈ARn
⊔l∈e(k,µ) Γl,x.
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The main sijection Γ indeed depends on the choice x. As an example, take k = (1,2,3).
In this case, MT(k) has 7 positive elements, and SGT(k) has 10 positive and 3 negative
elements. For x = 0, the sijection is given by

1
1 2

1 2 3
↔

⎛
⎜
⎝

1
1 1

1 1 1
,
↘

↘↘

⎞
⎟
⎠

2
1 2

1 2 3
↔

⎛
⎜
⎝

2
1 2

1 2 2
,
↘

↘↙

⎞
⎟
⎠

1
1 3

1 2 3
↔

⎛
⎜
⎝

1
1 2

1 2 2
,
↘

↘↙

⎞
⎟
⎠

2
1 3

1 2 3
↔

⎛
⎜
⎝

2
2 3

2 2 3
,
↙

↘↙

⎞
⎟
⎠

3
1 3

1 2 3
↔

⎛
⎜
⎝

3
2 3

2 2 3
,
↙

↘↙

⎞
⎟
⎠

2
2 3

1 2 3
↔

⎛
⎜
⎝

2
2 2

3 1 2
,
↙

↙↘↘

⎞
⎟
⎠

3
2 3

1 2 3
↔

⎛
⎜
⎝

3
3 3

3 3 3
,
↙

↙↙

⎞
⎟
⎠

⎛
⎜
⎝

2
2 2

2 2 3
,
↙

↘↙

⎞
⎟
⎠
↔

⎛
⎜
⎝

2
2 2

2 2 2
,
↙↘

↘↙

⎞
⎟
⎠

⎛
⎜
⎝

2
2 2

2 3 1
,
↘

↙↙↘

⎞
⎟
⎠
↔

⎛
⎜
⎝

2
2 2

2 2 2
,
↙

↘↙↘

⎞
⎟
⎠

⎛
⎜
⎝

2
2 2

1 2 2
,
↘

↘↙

⎞
⎟
⎠
↔

⎛
⎜
⎝

2
2 2

2 2 2
,
↘

↙↘↙

⎞
⎟
⎠

while for x = 1, it is given by

1
1 2

1 2 3
↔

⎛
⎜
⎝

1
1 1

1 1 1
,
↘

↘↘

⎞
⎟
⎠

2
1 2

1 2 3
↔

⎛
⎜
⎝

2
2 2

2 2 3
,
↙

↘↙

⎞
⎟
⎠

1
1 3

1 2 3
↔

⎛
⎜
⎝

1
1 2

1 2 2
,
↘

↘↙

⎞
⎟
⎠

2
1 3

1 2 3
↔

⎛
⎜
⎝

2
2 3

2 2 3
,
↙

↘↙

⎞
⎟
⎠

3
1 3

1 2 3
↔

⎛
⎜
⎝

3
2 3

2 2 3
,
↙

↘↙

⎞
⎟
⎠

2
2 3

1 2 3
↔

⎛
⎜
⎝

2
2 2

1 2 2
,
↘

↘↙

⎞
⎟
⎠

3
2 3

1 2 3
↔

⎛
⎜
⎝

3
3 3

3 3 3
,
↙

↙↙

⎞
⎟
⎠

⎛
⎜
⎝

2
1 2

1 2 2
,
↘

↘↙

⎞
⎟
⎠
↔

⎛
⎜
⎝

2
2 2

2 2 2
,
↙↘

↘↙

⎞
⎟
⎠

⎛
⎜
⎝

2
2 2

3 1 2
,
↙

↙↘↘

⎞
⎟
⎠
↔

⎛
⎜
⎝

2
2 2

2 2 2
,
↙

↘↙↘

⎞
⎟
⎠

⎛
⎜
⎝

2
2 2

2 3 1
,
↘

↙↙↘

⎞
⎟
⎠
↔

⎛
⎜
⎝

2
2 2

2 2 2
,
↘

↙↘↙

⎞
⎟
⎠

6 Concluding remarks

Future work

In this article, we have presented the first bijective proof of the operator formula. The
operator formula is the main tool for non-combinatorial proofs of several results where
alternating sign matrix objects are related to plane partition objects, or simply for showing
that n × n ASMs are enumerated by (1).
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• The operator formula was used in [Fis07] to show that n × n ASMs are counted by
(1) and, more generally, to count ASMs with respect to the position of the unique
1 in the top row.

• While working on this project, we actually realized that the final calculation in
[Fis07] also implies that ASMs are equinumerous with DPPs without having to use
Andrews’ result [And79] on the number of DPPs; more generally, we can even prove
that the refined count of n × n ASMs with respect to the position of the unique 1
in the top row agrees with the refined count of DPPs with parts no greater than n
with respect to the number of parts equal to n. This was conjectured in [MRR83]
and first proved in [BDFZJ12].

• In [Fis19b], the operator formula was used to show that ASTs with n rows are
equinumerous with TSSCPPs in a 2n × 2n × 2n-box. Again we do not rely on
Andrews’ result [And94] on the number of TSSCPPs and we were actually able to
deal with a refined count again (which has also the same distribution as the position
of the unique 1 in the top row of an ASM).

• In [Fis19a], we have considered alternating sign trapezoids (which generalize ASTs)
and, using the operator formula, we have shown that they are equinumerous with
objects generalizing DPPs. These objects were already known to Andrews and he
actually enumerated them in [And79]. Later Krattenthaler [Kra06] realized that
these more general objects are (almost trivially) equivalent to cyclically symmetric
lozenge tilings of a hexagon with a triangular hole in the center. Again we do not
rely on Andrews’ enumeration of these generalized DPPs, and in this case we were
able to include three statistics.

We plan to work on converting the proofs just mentioned into bijective proofs. For
those mentioned in the first and second bullet point, this has already been worked out.
The attentive reader will have noticed that working out all of them will link all four known
classes of objects that are enumerated by (1).

Computer code

As mentioned before, we consider computer code [FKb] for the constructed sijections an
essential part of this project. All the constructed sijections are quite efficient. If run with
pypy, checking that Γ(1,2,3,4,5),0 is a sijection between MT(1,2,3,4,5) (with 429 positive
elements and no negative elements) and SGT(1,2,3,4,5) (with 18913 positive elements
and 18484 negative elements) takes less than a minute. Of course, the sets involved
can be huge, so checking that Γ(1,2,3,4,5,6),0 is a sijection between MT(1,2,3,4,5,6) (with
7436 positive elements and no negative elements) and SGT(1,2,3,4,5,6) (with 11167588
positive elements and 11160152 negative elements) took almost 20 hours.
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