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Abstract

A major conjecture on the existence of abelian skew Hadamard difference sets
is: if an abelian group G contains a skew Hadamard difference set, then G must be
elementary abelian. This conjecture remains open in general.

In this paper, we give a recursive construction for skew Hadamard difference
sets in abelian (not necessarily elementary abelian) groups. The new construction
can be considered as a result on the aforementioned conjecture: if there exists a
counterexample to the conjecture, then there exist infinitely many counterexamples
to it.

Mathematics Subject Classifications: 05B10, 05E30, 11122

1 Introduction

Let G be an additively written group, let G* = G\ {O¢}, and let D be a subset of G. We
say that D is a difference set if the list of differences “x —y,z,y € D,z # y” represents
every element of G* exactly A times. In this paper, we are concerned with difference sets
in abelian groups. We say that a difference set is skew Hadamard if D is a skew-symmetric
(|G| —1)/2-subset of G, i.e., DU—D = G* and DN—D = &, where —D = {—z : z € D}.
Two difference sets D7 and D5 in an abelian group G are said to be equivalent if there is
a group automorphism ¢ of G and an element b € G such that o(D;) = Dy + b.

Let D be a skew Hadamard difference set in G, and let D+ 2 = {y+x :y € D} for
xr € G. It is known that the collection Dev(D) = {D + x : x € G} forms a symmetric
2-design, called a Hadamard design, which gives rise to a skew Hadamard matrix of order
|G|+1. Thus, the problems on the existence and classification of skew Hadamard difference
sets are well-rooted in design theory.

We will use the following well-known property of skew Hadamard difference sets later.
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Lemma 1. Let G be an abelian group of order v. A subset D of G is a skew Hadamard
difference set if and only if (D) € {—1+2\/—7’ —1—2\/—7} for any nontrivial character 1 of
G.

For a skew Hadamard difference set D, we call —D the inverse of D, which is also
a skew Hadamard difference set in G. It is clear that ¢(D) = % if and only if
b(=D) = =H=

The primary example of skew Hadamard difference sets is the classical Paley differ-
ence set in the additive group of the finite field F, (¢ = 3 (mod 4)), which consists of all
nonzero squares of F,. The automorphism group of the design developed from the Paley
difference set was determined by Carlitz [1] and Kantor [10]. The Paley difference set was
the only known example in abelian groups for many years. Therefore, many researchers
had believed that up to equivalence the Paley difference sets are the only skew Hadamard
difference sets in elementary abelian groups. In 2006, Ding and Yuan [5] disproved this
conjecture by giving counterexamples of skew Hadamard difference sets in (Fss, +) in-
equivalent to the Paley difference set. This discovery re-energized the research on skew
Hadamard difference sets. On the other hand, the following conjecture is also known.

Conjecture 2. If an abelian group contains a skew Hadamard difference set, then the
group is necessarily elementary abelian.

This conjecture is still open in general while an exponent bound on groups containing
skew Hadamard difference sets was studied in [4]. In this paper, we make some progress
on this conjecture.

Many constructions for skew Hadamard difference sets in (F,, +) have been known
in the past two decades as listed in Table 1. They are classified into three types: (1)
Constructions as images of polynomials over Fs; (2) product constructions in F 2; (3)
constructions based on cyclotomy. In particular, the construction by Muzychuk [14] and
its generalization by Chen-Feng [2] are very powerful; indeed their constructions yield
many inequivalent skew Hadamard difference sets but the group is limited to (IFy, +) with
n = 3. For large n > 3, Feng-Xiang’s skew Hadamard difference sets [8, 13| are the only
known class containing infinitely many examples inequivalent to the Paley difference sets.
Thus, the problem on whether there exists a skew Hadamard difference set inequivalent
to the Paley difference set in (F,,+) for every odd prime power ¢ = 3 (mod 4) is still
unsolved.

The purpose of this paper is to give a recursive construction for skew Hadamard
difference sets in abelian groups. As far as the author knows, no recursive construction
was known while “recursive-like” product constructions were known. The construction
given by Muzychuk [14] and its generalization by Chen-Feng [2] needs one skew Hadamard
difference set in I, and one “vertically balanced” Paley type partial difference set in Fg
to construct a skew Hadamard difference set in (Fg, +). On the other hand, Chen-Feng’s
construction [3] needs an “Arasu-Dillon-Player” difference set in F./F; to construct a
skew Hadamard difference set in (F,n,+).

Our construction needs many (not necessarily distinct) abelian skew Hadamard dif-
ference sets as input, where the exact number of skew Hadamard difference sets needed
represents the “flexibility” of the construction. For example, we assume the existence
of 25 skew Hadamard difference sets in abelian groups of order ¢ to construct a skew
Hadamard difference set in an abelian group of order ¢°. Thus, our construction seems
to be very flexible. In fact, the construction can give rise to some inequivalent skew
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Table 1: Known constructions for skew Hadamard difference sets except for the classical
Paley difference sets
’ Groups \ Construction — Tools \ Ref ‘

(F%,+) | Polynomial construction

— Dickson polynomial of degree 5 5]
— Dickson polynomial of degree 7 7]
— the Ree-Tits slice symplectic spread 6]
— Squares in presemifields [16]

(F2,+) | Product construction

— A skew Hadamard difference set in (F,, +) and (14, 2]
and a Paley type partial difference set in (IFZ, +)
(F?,4) | Cyclotomic construction

— Arasu-Dillon-Player difference sets 3]
— Cyclotomic strongly regular graphs [12]
— Cyclotomy associated with index 2 Gauss sums 8]

(There are some restrictions for the group order.)

Hadamard difference sets when the group order is small. For example, Chen-Feng [3,
Table 2] found by computer two inequivalent skew Hadamard difference sets D in (F2, +)
with #Aut(Dev(D)) = 3*-73, where Aut(Dev(D)) stands for the full automorphism group
of the design Dev (D). On the other hand, no general construction covering these examples
have been known. Our construction covers these examples as explained below.

Example 3. Let H;(, 1 < i < 6, be six skew Hadamard difference sets in (F,, +), and
H; 1,1 <1 <6,be the inverses of H; o, 1 <7 < 6, respectively. Furthermore, let D be the
union of the following subsets of F:

H1,o X H2,0 X H3,07 H1,0 X H2,1 X H3,1, H1,1 X H2,1 X H3,0> H1,1 X H2,0 X H3,17
{0} X Fq X H47Q, H57() X {0} X Fq, Fq X H(;’() X {0}

Then, our main theorem implies that D is a skew Hadamard difference set in (Fg, +). In
particular, in the case where ¢ = 7, the sets D with Hyg = Hyg = -+ = Hgo = {z :
x is a nonzero square in F,} and Hyg = Hyg = -+ = Hgp = {x :  is a nonsquare in F,}
give rise to two inequivalent difference sets in (2, +) with #Aut(Dev(D)) = 3*-7%. Thus,
this construction covers the aforementioned two inequivalent skew Hadamard difference
sets in (F2, +).

In this paper, we give a recursive construction for skew Hadamard difference sets, which
is a generalization of the construction in Example 3. We briefly explain the construction.
Let n > 1 be an odd integer and G;, ¢ = 0,1,...,n — 1, be abelian (not necessarily
elementary abelian) groups of order q. We assume that each G; contains some (not
necessarily distinct) skew Hadamard difference sets H;. We construct a skew Hadamard
difference set D in G = Gy X G1 X --- X (G,_1 so that D is a union of direct products
of either {0g,}, Gi, H; or —H; for 0 < @ < n — 1 as in Example 3. We will study
how to choose such direct products in relation to an identity for coefficients of the Lucas
polynomial and binomial coefficients. The main point of our recursive construction is that
the assumed abelian groups containing skew Hadamard difference sets are not necessarily
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elementary abelian. Hence, if one finds a skew Hadamard difference set in a nonelementary
abelian group, by plugging it into the construction, we obtain skew Hadamard difference
sets in other nonelementary abelian groups. Therefore, we claim that if there exists a
counterexample for Conjecture 2, then there exist infinitely many counterexamples for it.

The paper is organized as follows. In Section 2, we give an identity for coefficients
of the Lucas polynomial and binomial coefficients, which is behind our construction. In
particular, we need a constructive proof for the identity. In Section 3, we give our main
construction for skew Hadamard difference sets based on the identity, and prove that the
construction works well. In the final section, we apply our construction for small ¢’s and
discuss about the inequivalence of resulting skew Hadamard difference sets.

2 An identity for coefficients of Lucas polynomials and binomial
coefficients

In this section, we study a relationship between coefficients of the Lucas polynomial and
the binomial coefficients, which will be used to construct skew Hadamard difference sets.
The Lucas polynomial L,(x) € Z|x] of degree n is defined by the following recurrence
relation:
2, if n=0,
L,(z) =Xz, ifn=1,
Lypy(x)x+ Lyo(x), ifn>2.

Remark 4. The following facts on Lucas polynomials are classically well-known. See, e.g.,
[11].

(1) L,(z) can be explicitly written as

(2) Let byn, 0 < h < n, denote the coefficient of " in L,(x). Then, b,, o is the
number of k-subsets without consecutive points of a set of n points on a circle.

The key part of this paper is to give a “constructive” proof for the following identity.

Proposition 5. For positive integers n and 0 < k < n, it holds that

15)

()3

=0

Proof. Let V. ={0,1,...,n— 1} be a set of n points on a circle in the ordering 0 — 1 —
... > n—1—=0. Define S, to be the set of k-subsets without neighbors of V. Then,
by Remark 4 (2), |Sp x| = bppn—ok. For any S € S, let ST = {z + 1 (mod n) : z € S}.
Note that [SUT| =k + ¢ for any T € (S;) with 0 < ¢ < k since SN ST = &. Define

S-i-

7;48%:{SU1”:T65(€

y

)}OgﬁghSe&m
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We now consider the following process to make a k-subset of V: choose 0 < i < k,
SeS,iand T € (S:). Then, we have (X :=)SUT € (Z)

Conversely, let X be any k-subset of V', and let S = ST = @. For all A = {a,a +
I,...,a+d} C X suchthatd >0and a—1,a+d+1¢ X, weadd a,a+2,a+4,... € A
into S and add their neighbors a+1,a+3,a+5, ... into ST. In this way, we can determine
unique 1 <1<k, S € S, and T € (S;) such that X = SUT € 7,,(5). It is not
difficult to see that this is the reverse process of the above. This implies that

(Z):U U 7l 2)

=0 SESn’k_i
Then,
5]
n V
() -1()l-IU Y 7
=0 S€S,, ki
L5 15] .
k—1
= Z |77’L,Z(S)| = ( i )bn,nZ(ki)a
= SESn,k_i i=0
which proves the proposition. O

Remark 6. We should mention that the identity in Proposition 5 is a special case of the
following more general formula:

th+r+s tk+7r\ [tn —tk + s t
( n )_Z( k )( n—k )tk+r’ (3)

k

which is given in [9, Eq. (5.62)]. In fact, we obtain (1) by putting n, k,r,s,t in (3) as
k,k —i,n,k,—1, respectively. This was pointed out by one of the reviewers. However,
we could not find our constructive proof in the literature, and we particularly need the
structural identity (2) in our construction for skew Hadamard difference sets.

3 Construction of skew Hadamard difference sets

In this section, we use the following notation:

e n: an odd positive integer;

Go, G4, ..., G,_1: not necessarily distinct abelian groups of order ¢ = 3 (mod 4);

o G::G[)XGlX“'Xanl;

V:={0,1,...,n — 1} with the ordering0 -1 — -+ —>n—-1—0;

Rg:=V\ (SUST) for S € S, x;

For each S € Sy, let Hgy,0 € Gy, 1 < j < |Rsl, be skew Hadamard difference
sets, where the subscripts i; are labeled by the elements in Rg.

Hs;,1 € Gy, 1 < j < |Rgl: the inverses of Hg;, 0, 1 < j < |Rg|, respectively;
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e For each S € S, 1, define Dg as a union of all subsets Ay x A; x ---x 4,1 C G
such that

1. A; ={0g,} for all i € S
2. A;, =G, forallie ST;
3. A, € {Hg,;0,Hs;q1} for i € Rg so that the number of i € Rg such that A; =

Hg ;1 is even.

Example 7. If S = {0,2} € S52, we have Dg = {0, } X G1 x {0g,} x G3 x Hg4p. If
S = {0} € 8571, DS is the union of {OGO} X G1 X HS72?0 X HS73’0 X HS,4,Oa {OGO} X G1 X HS,Q,I X
Hgs1X Hgu0, {06, } X G1 x HgooxX Hg31X Hgs1 and {Og,} X G1 X Hgo1 X Hg 30X Hg 4 1.

The following is our main theorem.
Theorem 8. Define

D:O U Ds. (4)

k=0 Sesn,k

Then, D forms a skew Hadamard difference set in G.

n—1
Remark 9. We need >, 2, |Snx|(n — 2k) skew Hadamard difference sets in abelian groups
of order ¢ to define the set D. Note that by Remark 4 we have

S

k=0

> [Snkl(n — 2k)
k=0

This number represents the “flexibility” of this construction of skew Hadamard difference
sets.

Example 10. In the case where n = 5, the set D is the union of the sets in Table 2. We

need ZZ:O 5(§:ik) (Sj) = 25 skew Hadamard difference sets.

3.1 Collection of auxiliary lemmas
We now collect some auxiliary and elementary lemmas for proving Theorem 8.
Lemma 11. Let m = 2h + 1 be an odd positive integer, and let

" im

Fe) =3 () o+ 0" 2o ) € 2o,

i=0
Then, f(x,y) = 2" 2™+ y™).
Proof. Since f(z,~y) = S0y (2)(z — y)™ % (z + y)¥, we have

flay) + fz, —y) = (22)™. (6)

Since the coefficient of ™ 2/y% in f(x,y) is equal to that in f(x, —y) for each 1 < j < h,
(6) implies that it is equal to 0. On the other hand, by f(x,y) = f(y,x), we conclude
that the coefficient of y™ 2/2% 1 < j < h, in f(x,y) is also equal to 0. This completes
the proof. n
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Table 2: S € S5, and its corresponding Dg
F SeSm | Ds |

0 S=0 Hgpo X Hg10 X Hgo0 X Hgs0 X Hga0, Hso0 X Hg10 X Hso0 X Hgg1 X Hga1
Hgoo X Hgp0 %X Hso1 X Hgg0 X Hga1, Hsoo X Hg11 X Hgoo X Hggo X Hga1
Hgo1 X Hg10 X Hgoo X Hgs0 X Hga1, Hsoo X Hg10 X Hgo1 X Hgs1 X Hgag
Hspoo % Hsp1 X Hgp0 X Hsz1 X Hsap, Hso1 X Hs10 X Hsp0 X Hgz1 X Hgap
Hspoo % Hsp1 X Hgp1 X Hsz0 X Heap, Hso1 X Hs10 X Hsp1 X Hgz0 X Hsap
Hsp1 x Hsy1 X Hgp0 X Hg30 X Hga0, Hsoo X Hg11 X Hso1 X Hggz1 X Hgy
Hgp1 X Hg10X Hgp1 X Hg31 X Hga1, Hgo1 X Hg11 X Hgoo X Hgs1 X Hgy
Hgo1 X Hgp1 X Hgo1 X Hggo X Hga1, Hson X Hg11 X Hgo1 X Hgz1 X Hgap
1] S={0} {0¢,} X G1 X Hgp0 X Hs30 X Hsa0, {0c,} X G1 X Hs0 X Hgz1 X Hga1
{0y} x G1 X Hsa1 X Hgs0 % Hga1, {0c,} X G1 X Hgp1 x Hgz1 X Hgay
1| S={1} Hgoo0 % {0¢, } X G2 X Hg30 X Hgu0, Hs0 X {06, } X G2 x Hg31 X Hga1
Hgo1 % {0¢, } X G2 x Hg30 X Hgu1, Hso1 X {0¢,} X G X Hgs1 X Hgap
1] S=1{2} Hgo0 % Hg1 % {0a,} x Gs x Hgap, Hsoo x Hs11 X {0¢,} X G3 X Hg 4,
Hgo1 % Hs10 % {0¢,} x Gs x Hgu1, Hgp1 X Hg11 X {06, } X G3 X Hgap
1| S={3} Hgo0 % Hs1 % Hgp0 X {06, } X G, Hspo X Hs11 X Hso1 X {0a,} X G4
Hgo1 X Hg10 %X Hgo1 X {0g,} X Gy, Hsp1 X Hs11 X Hso0 X {0a,} X Gy
1 S={4} Go x Hg10 X% Hg20 X Hg30 %X {0¢,}, Go X Hs10 X Hgo1 %X Hss1 x {0c,}
Go x Hg11 X Hg20 x Hg31 % {0¢,}, Go X Hs11 X Hgo1 %X Hsz0 x {0c,}
2 S = {0.2} {OGO} X Gl X {OGQ} X G3 X HSAA,O
21 8= {1,3} HS,O,O X {OGl} X G2 X {003} X G4
2| S=42,4} Go x Hg10 X {06, } x G3 x {0¢,}
21 8= {3,0} {OGO} X G1 X H57270 X {0G3} X G4
2| S={4,1} Go x {0, } x G2 x Hgz0 % {0¢,}

Lemma 12. ([15]) For any monic polynomial f(x) of degree k of Zlx] and any integer
m, it holds that

Zk:(—1)h(z)f(m+k—h) =kl (7)

h=

[e=]

Lemma 13. For any positive integer £, let

15) i_h
Pi(z) =Y a"(—x+ 1)“h( ) > Z[x]
h=0
Then, Pri(z) =1—x+ 2% — -+ (=1)2"

Proof. 1t is clear that

Ppi(x) = :SJ Zih(_l)ix”h (é y 2h> (e ] h)

0 =0

:Z o (N (1) ®)

Since (Zkf: ) (ﬁh) = (fL) (Z;h), continuing from (8), we have

Pu =Yt (F) (1) )

k=0 h=0
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By applying (7) in Lemma 12 as f(z) =z(x — 1) - (x — k+ 1) and m = ¢ — k, we have

2o ()3 -

Hence, continuing from (9), it follows that P ;(z) = 2220(—1)"“1"“. O
Lemma 14. For any positive integer €, let

[51 i_n
P&Q(.T) _ Zx}hl(_x + 1)272h+1 (h - 1).

h=1
Then, Ppo(z) =1 —a + 22 — - 4 (=1) 1zl

One can prove this lemma similarly to Lemma 13. Hence, we omit the proof.

3.2 Proof of Theorem 8

In this subsection, we prove Theorem 8 by a series of lemmas.
Lemma 15. The set D defined in (4) satisfies that DN —D = @& and DU —D = G*.

Proof. Recall that G = Gy x G X --- X G,_1. We first see that for any = € G*, the set
D contains either x or —z. Let I, C V be the set of zero-coordinates of z. By (2) in

k
the proof of Proposition 5, we have (Z) = U}ié Uses, ,_, Tni(S). This implies that there

exists a unique S € S, 1,|—; such that I, € 7,;(S). For this S, Dg contains either z or
—.
We next see that |D| = £-1. Noting that |Ds| = ¢//(g — 1)""251/2 and [S,4| =

2
bn—2k = ﬁ(”;k) = 2(”;:]“) + (”_li_k), by applying Lemmas 13 and 14, we have

n—1
1< qg—1 q" —1
D=2 bonowd(¢g—1)"*="—-P,_ —qP,_ = :
D] =3 ; 20 (q — 1) 5 Pacra(0) = ¢Pac12(0) =
This completes the proof of the lemma. O

We next evaluate the character values of D. To do so, we first fix some notation:
e G, 0 <i<n—1: the character group of G;, 0 < i < n — 1, respectively;
o Gt =Gy x G} x--xGL

e For fixed ¢ = (Yo, ¥1,..., Y1) € G+, let I, CV be the set of indices i such that
1y is trivial, and let J, = V' \ 1.

e For a subset X = Xox X; x---x X, jof Gandfor A={i; : 1 <j<s} CV
Withi1<i2<"'<is, let HiGAXi ::Xz'l XXiQX"'XXiS.

e For £ C G and A CV, let E|4 denote the multi-subset of [],_, G; obtained from
E by restricting its coordinates to A. For example, if n =3, F = Ey x F; X Ey and
A = {2}, the multiset E|, contains each element of E, exactly |Ep| - |E;| times.
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e For A C V, let 14 denote the character of J],., G; obtained from v € Gt by
restricting its coordinates to A.

We first evaluate the character values of Dg, S € S, .

Lemma 16. Let ) = (o, %1, ..., ¥yu_1) € G+ be nontrivial, and let S € S, .. If STNJ, #

a, then
> d@)=0.

x€Dg

Proof. It ST N Jy # &, there is i € ST such that 1); is nontrivial. On the other hand,
by the definition of Dg, there exists A C Gg X --- X G;_1 X G311 X -+ X G,_1 such that
DS = {((lo, e,y b, Aig1y- - - 7an_1) . (CL(), P ¢ i ¢ TR 7(ln_1) S A, b e Gz} Then,
since ), 1i(b) = 0, we obtain

Sew=( X Iw@)(Zem)=o
z€Dg (@1 ey @i — 1, @it 15eesGn—1)EA JF beG;

This completes the proof of the lemma. O

Next, we treat the case where S* N Jy, = @. Define

Eg = U ( H HS,i,ﬁ) C H Gi. (10)

ZieRS Ji=0(mod 2) i€Rs i€Rg

Since S* N Jy = @, we have

> @) =( TT X v@) (T1w:006)) (X vinew) = 3 wmel). (1)

xEDg €St zeG; yEEs yEEs

Lemma 17. Let ) = (o, %1, ..., %¥n_1) € G be nontrivial, and let S € S, 1. If StTNJ, =
& and ; is nontrivial for any i € Rg, it holds that

e

Y(Dg) 5

Proof. By (11), we need to show that »_ , ¥rs(y) = “Ev e ~2_qIRs\' By the definition of
Es and Lemma 1,

[Rg|—1

> irs(y) = 0 <|f23;9|) (—1+T\/—_61)Rsl—2i <_1_T\/_—q>2

2

[n

N

[Rg|—1

[n

o
=
(]

i=0
Then, by Lemma 11, we have

5 igly) = Y Lo Vg

2 2

S

This completes the proof of the lemma. n
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Lemma 18. Let ) = (o, %1, ..., %¥n_1) € G+ be nontrivial, and let S € S, 1. If STNJ, =
& and ; s trivial for some 1 € Rg, it holds that

_ n—2|S|—t
Y(Ds) = _qIS\( t 12) :

where t is the number of i € Rg such that 1; is nontrivial, i.e., t = |Rg N Jy].

Proof. By (11), we need to show that > o ¥rs(y) = —(—¢ + 1)I%s1=t /2. We consider
Es|rgny,, Which is the multi-subset of [],. RsnJ G, obtained from FEg by restricting its

coordinates to Rg M Jy. The multiset Egpyqy, contains every element of L RsnJy G;
exactly (¢ — 1)I%s!=t/2 times. Since Y, .- ¢;(x) = —1 for any nontrivial ¢;, we have
> Uine() = Yirgns, (Bsirgns,) = (—1)' (g — 1)1 /2,
yeELs
This completes the proof of the lemma. O

We are now ready for proving Theorem 8.

Proof of Theorem 8. Let ¢ = (¢, 11, ...,1,_1) be a nontrivial character of G. We show
n-1 —
that (D) = 32,20 Y ses, , ¥(Ds) € {_HET_(I} Let Iy, @ =1,2,...,7, be the subsets
of I, partitioning I, so that each I ; consists of consecutive numbers with respect to
the ordering 0 -+ 1 = -+ =+ n —1 — 0 and any two elements from distinct I, ; and
I, ; are not consecutive. Denote the size of each Iy; by ;. Then, we can write I,,; =
{ei,e; +1,...,e;+t; — 1} for some integer e;.
n—1
We consider only subsets S € |J,.2, Snx such that St contained in I,; otherwise we
n—1

have ST N .Jy # @; then ¢(Dg) = 0 by Lemma 16. Let Sy, = {S € U2, Sk : ST C I}

Let Sl = Sf_ = @. For all ]¢1i7 we add 61+t1 — 1aei+ti_37€i+ti —5,...76 L/J’Z' into
S and their neighbors e; +t; —2,e; +t; —4,e; +t; — 6,... into S;. Then, S; € Sy is the
unique element satisfying that S;” N J, = @ and v; is nontrivial for any i € Rg,. Then,

by Lemma 17, we have
_ oISl + —an
¢ =V 9 (12)

We now evaluate (D \ Dg,) = ZSG%\{SI} (Dg). By Lemma 18, we have
1 1
Do UDs) = =5 > a4 S (g 1)L (1)
SGSw\{Sl} S€S¢

Here, $¢/51(—g + 1)/NBsil = 1191 since I, N Rg,| = 0. Furthermore, > ses, ¢(—q +

1)l1eNBsl s factorized into

r [1%]

T3 (" ") tas s

i=1 h=0

s

r41

(tz - h) qh(_q + 1)ti72h+1 7 (14)
1

w|

h—1

h=

where (ti;h) (resp. (thj)) means the number of choices of a subset of size h of ST from

I, so that e; ¢ ST (resp. e; € ST). By applying Lemmas 13 and 14 as x = ¢, we have

5

2 L
( " )qh(—q + 1)+ ( z >qh<—q +1)57 = Pa(q) + qPa(q) = 1.
0 1

vl

h—1

h= h=
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Hence, continuing from (14), we have ZSeSw ¢"%1(—q + 1)I7eNEsl = 1. Finally, by (12) and
(13), we obtain

(D) =¢(Ds,)+ D, ¥(Ds,)

SeSy\{51}
I GV L Y e 2
2 2 2 2 '
This completes the proof of the theorem. n

4 Concluding Remarks

We checked by a computer to see how many inequivalent skew Hadamard difference sets
in (I}, +) can be obtained from our construction with G; = F, in the cases where

(¢,n) =(7,3),(11,3), (19, 3), (23,3),(3,5).

Example 19. We consider the case where n = 3. In this case, we need six skew Hadamard
difference sets in (IF,, +) to apply Theorem 8. We choose either the Paley difference set
or its inverse in [F, as the six skew Hadamard difference sets in (F,, +). Then, there are
26 possible choices. In the cases where ¢ = 7,11,19 and 23, we obtained exactly two
inequivalent skew Hadamard difference sets D in (Fg, +) from the 2° candidates, both of

which satisfy #Aut(Dev(D)) =3 (51)% - ¢*.
From Example 19, the following problem naturally arises.

Problem 20. If ¢ > 3 is a prime and n = 3, does the construction give rise to at least
two inequivalent skew Hadamard difference sets with #Aut(Dev(D)) = 3 - (453)3 - ¢3?

Example 21. We next consider the case where n = 5. In this case, we need 25 skew
Hadamard difference sets in (IF,, +) to apply Theorem 8. As in Example 19, we take either
the Paley difference set or its inverse in F, as the 25 skew Hadamard difference sets in
(F,,+). Then, there are 2?° possible choices. In the cases where ¢ = 3, we obtained exactly

nine inequivalent skew Hadamard difference sets D in (IFS, +) from the 2?° candidates,
four of which satisfy #Aut(Dev(D)) = 5-¢° and five of which satisfy #Aut(Dev(D)) = ¢°.

The number of skew Hadamard difference sets as input for our construction increases
according to the growth of n. Hence, the following question naturally arises.

Problem 22. We apply the recursive construction as G; = F, and Hg; ; either the Paley
difference set in (F,,+) or its inverse. Does the number of inequivalent skew Hadamard
difference sets in (I, 4) obtained from the construction increase according to the growth
of n?

The fact that we could have a recursive construction implies that there exist skew
Hadamard difference sets in abundance. In fact, as already mentioned, if one finds a skew
Hadamard difference set in a nonelementary abelian group, we obtain infinite families of
skew Hadamard difference sets in nonelementary abelian groups by applying our recursive
construction. Therefore, the author feels that Conjecture 2 is doubtful. Hence, we close
this paper with the following important problem.

Problem 23. Can one find a skew Hadamard difference set in a nonelementary abelian
group?
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Corrigendum — Added June 9, 2021

In [2], the author gave a recursive construction for skew Hadamard difference sets.
However, the author recently realized that the construction method given in [2] is essen-
tially covered by Turyn’s product theorem [3] for skew or symmetric C-matrices though
not all of the results in [2]| are covered. Here, note that no researcher working in the area
of skew Hadamard difference sets has mentioned that Turyn’s construction is applicable
to skew Hadamard difference sets though many papers on skew Hadamard difference sets
were published in recent years. This may have happened because the condition for the ex-
istence of skew Hadamard difference sets is stronger than that of ordinary skew Hadamard
matrices in general. However, it is not difficult to see that Turyn’s product theorem for
C-matrices is also applicable to skew Hadamard difference sets and Paley type partial
difference sets since the construction is based on Kronecker products of matrices. In fact,
one can use group-invariant matrices as the initial input of the construction, and then the
resulting matrix is again group-invariant with respect to the direct product of the groups
involved. More detailed comparisons between the results in [2] and [3] are given below.

(1) General skew or symmetric C-matrices were treated in [3] while only group-invariant
skew C-matrices, that is, skew Hadamard difference sets, were treated in [2].

(2) The matrix notation was used for the construction in [3] while the set notation was
used in [2].

(3) The proofs in [3] and [2] are completely different; WWT for the core W of a C-
matrix was directly calculated in [3] while the character values of a skew Hadamard
difference set (that is, the eigenvalues of (J —1+4W)/2) were computed in [2]. There
is a nontrivial contribution of our proof for generalizing the construction to that for
partial difference sets, see [1].

(4) The flexibility of the construction was discussed in more details in [2]. In fact,
the variation of the construction using different designs as initial input was treated
only in the case where the number of products is three in [3] while the general case
was treated in [2]. In this sense, the construction given in [2] can be viewed as a
generalization of that given in [3] for skew C-matrices. For example, Example 1.3
in [2] allows six different skew Hadamard difference sets as the initial input for
the recursion but the example given soon after corollary in [3, P. 534] allows only
three different C-matrices as the initial input. Thus, the construction in [2] is a
generalization of that in [3] even in the case where the number of products is three.

(5) The inequivalence and the automorphism groups of skew Hadamard difference sets
obtained from the construction were also discussed in [2].
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