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Abstract

The problem of finding the largest number of points in the unit cross-polytope
such that the l1-distance between any two distinct points is at least 2r is investigated
for r ∈

(
1− 1

n , 1
]

in dimensions n > 2 and for r ∈
(
1
2 , 1
]

in dimension 3. For the
n-dimensional cross-polytope, 2n points can be placed when r ∈

(
1− 1

n , 1
]
. For

the three-dimensional cross-polytope, 10 and 12 points can be placed if and only if
r ∈

(
3
5 ,

2
3

]
and r ∈

(
4
7 ,

3
5

]
respectively, and no more than 14 points can be placed

when r ∈
(
1
2 ,

4
7

]
. Also, constructive arrangements of points that attain the upper

bounds of 2n, 10, and 12 are provided, as well as 13 points for dimension 3 when
r ∈

(
1
2 ,

6
11

]
.

Mathematics Subject Classifications: 05B40, 52C17

1 Introduction

Let K and L be origin-symmetric convex sets in Rn with nonempty interiors. A set
D ⊂ Rn is a (translative) packing set for K if, for all distinct x,y ∈ D,

(x + int (K)) ∩ (y + int (K)) = ∅,

where int (K) is the interior of K. For r > 0, we consider the problem of finding the
maximum number of points in a packing set D of rK that is contained in L. This
quantity will be denoted by

γ (L,K, r) := max {|D| | D ⊂ L and ||x− y||K > 2r for any x,y ∈ D,x 6= y} ,
∗Supported by the Deutsche Forschungsgemeinschaft (DFG) Graduiertenkolleg “Facets of Complex-

ity/Facetten der Komplexität” (GRK 2434).

the electronic journal of combinatorics 27(3) (2020), #3.38 https://doi.org/10.37236/8990

https://doi.org/10.37236/8990


where ||x||K = min {λ | λ > 0 and x ∈ λK} and for a set S, its cardinality is denoted
by |S|. If K = L then we use the notation γ (K, r) as a shorthand for γ (L,K, r).
We will only deal with the situation where both K and L are the unit cross-polytope
C∗n = {x ∈ Rn |

∑n
i=1 |xi| 6 1}.

A set D in C∗n with k points such that the l1-distance between any two distinct points
is greater than or equal to 2r is equivalent to a packing set for rC∗n such that each set
x = rC∗n, x ∈ D, is contained inside the set (1 + r)C∗n. Unless otherwise specified, we
will use “distance” to mean the l1-distance. The vertices of C∗n are the 2n unit vectors
{±ei | i ∈ {1, . . . , n}}, so the distance between any two distinct vertices is 2, which implies
that γ (C∗n, r) = 1 for any r > 1 and γ (C∗n, r) > 2n for r 6 1.

The case r = 1
2

is related to the topic of kissing numbers. Let K ⊂ Rn be a convex
body, that is, both compact and convex. The (translative) kissing number k (K) is the
maximum number of translates of K such that no two translates overlap each other and
each translate touches but does not overlap with K. In the case of 1

2
C∗n, we have

k

(
1

2
C∗n

)
= max

|D|
∣∣∣∣∣∣∣
D ∪ {0} is a packing set for

1

2
C∗n and(

x +
1

2
C∗n

)
∩ 1

2
C∗n 6= ∅ for any x ∈ D

 ,

and since k (K) is invariant under the scaling of K,

k (C∗n) + 1 = k

(
1

2
C∗n

)
+ 1 6 γ

(
C∗n,

1

2

)
.

For the cross-polytope, it is known that k (C∗3) = 18 [13, 18]. This result implies that
γ
(
C∗3 ,

1
2

)
> 19, however, due to the requirement that one point is the origin, it does not

a priori provide an upper bound for any packing set for 1
2
C∗3 . An upper bound for the

kissing number of any convex body K is obtained from a result of Hadwiger [11],

k (K) 6 3n − 1,

where this inequality is an equality iff K is a parallelepiped. The cross-polytope is not a
parallelepiped, so k (C∗3) 6 25, which results in an upper bound of γ

(
C∗3 ,

1
2

)
6 26. In the

other direction, a well-known result by Swinnerton-Dyer [17] says that

k (K) > n2 + n,

and in the case when K is a cross-polytope the lower bound has been considerably im-
proved to

k (C∗n) >

(
9

8

)(1−o(1))n

by [13] and to
k (C∗n) > 1.13488(1−o(1))n

by [19], which is the best known asymptotic lower bound for the cross-polytope.
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We will work with values of r only in the interval
(
1
2
, 1
]

unless otherwise stated. For
dimension n and r ∈

(
1− 1

n
, 1
]
, the upper bound for the number of points in the cross-

polytope such that the distance between any two distinct points is at least 2r is linear in
the dimension of the cross-polytope.

Theorem 1. Let n > 2, then γ (C∗n, r) = 2n for any r ∈
(
1− 1

n
, 1
]
. Additionally,(

1− 1
n
, 1
]

is the largest possible interval such that γ (C∗n, r) = 2n for all r in the interval.

In particular, γ (C∗3 , r) = 6 for r ∈
(
2
3
, 1
]
. The next theorem is specific to the three-

dimensional case.

Theorem 2. In dimension 3,

(a) γ (C∗3 , r) = 10 for any r ∈
(
3
5
, 2
3

]
,

(b) γ (C∗3 , r) = 12 for any r ∈
(
4
7
, 3
5

]
, and

(c) γ (C∗3 , r) 6 14 for r ∈
(
1
2
, 4
7

]
.

For the case n = 3 and r ∈
(
1
2
, 4
7

]
, we could not find exact values of γ (C∗3 , r), but we

do have lower bounds. Since γ (C∗3 , r
′) > γ (C∗3 , r) for r′ < r, it follows immediately from

Theorem 2 (b) is γ (C∗3 , r) > 12 for r ∈
(
1
2
, 4
7

]
. It is possible to improve this lower bound

for a smaller interval of r.

Proposition 3. In dimension 3, γ (C∗3 , r) > 13 for r ∈
(
1
2
, 6
11

]
.

These lower bounds are obtained by explicit constructions. It follows from Theorems
1 and 2, Proposition 3, and the above discussion that

γ (C∗n, r) = 1 for r ∈ (1,∞) ,

γ (C∗n, r) = 2n for r ∈
(

1− 1

n
, 1

]
,

γ (C∗3 , r) = 10 for r ∈
(

3

5
,
2

3

]
,

γ (C∗3 , r) = 12 for r ∈
(

4

7
,
3

5

]
,

12 6 γ (C∗3 , r) 6 14 for r ∈
(

6

11
,
4

7

]
,

12 6 γ (C∗3 , r) 6 14 for r ∈
(

1

2
,

6

11

]
, and

19 6 γ (C∗3 , r) 6 26 for r =
1

2
.

Below is a chart of the results for dimension 3 in addition to the upper and lower bounds
for r = 1

2
mentioned above.
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For the n-dimensional ball Bn, Hajós and Davenport showed that γ (Bn, r) 6 n + 1
for r > 1√

2
, as noted by [6].

A closely related topic is the problem of packing a set with copies of another set. This
problem has been explored mainly in dimension 2. Let K and L be origin-symmetric
convex sets with nonempty interior, then let

M (L,K,m) := sup {r | |D| = m, D ⊂ L, and ||x− y||K > 2r for any x,y ∈ D,x 6= y} .

From this definition, M (L,K,m) and γ (L,K, r) are related by the equation

γ (L,K,M (L,K,m)) = m.

The compendium of Goodman, O’Rourke, and Tóth [8] lists known quantities of
M (L,B2,m) for when L is a square, a circle, and an equilateral triangle and various
values of m, usually small. In three dimensions, M (L,B3,m) is known for small m and
when L is a cube, a cross-polytope, and a tetrahedron [8]. A related problem of packings
of squares and rectangles in squares is described in [4]. Let Bn be the unit Euclidean ball
in n dimensions. Böröczky Jr. and Wintsche have obtained M (C∗n, Bn,m) for n > 3 and
m = {3, . . . , 2n+ 1} [1].

Let K and B be convex bodies, s > 0, and let D (s,K,B) be a packing set of C∗n such
that
|{x ∈ D (s,K,B) | K + x ⊆ sB}| is maximal among all packing sets of C∗n. The density
of the densest packing of K, or the packing density of K, is defined to be

δ (K) := lim
s→∞

|{x ∈ D (s,K,B) | K + x ⊆ sB}|Vol (K)

Vol (sB)
,

the electronic journal of combinatorics 27(3) (2020), #3.38 4



see Definition 4 in Section 20 of [10] (page 225), and it is independent of B. Then we
can set B = C∗n and also suppose that K = C∗n. For s > 1, since C∗n + x ⊆ sC∗n iff
x ∈ (s− 1)C∗n, we have

|{x ∈ D (s,K,B) | C∗n + x ⊆ sC∗n}| = |{x ∈ D (s,K,B) | x ∈ (s− 1)C∗n}| .

Next, scale this set by a factor of 1
s−1 to get

|{x ∈ D (s,K,B) | x ∈ (s− 1)C∗n}| =

∣∣∣∣{x ∈ 1

s− 1
D (s,K,B)

∣∣∣∣x ∈ C∗n}∣∣∣∣
= γ

(
C∗n,

1

s− 1

)
.

Now let r = 1
s−1 . It follows from the definition of the packing density that

δ (C∗n) = lim
s→∞

γ
(
C∗n,

1
s−1

)
Vol (C∗n)

Vol (sC∗n)
= lim

r→0
γ (C∗n, r)

(
1− 1

1 + r

)n
.

Hence the packing density of C∗n is related to γ (C∗n, r) in the sense that
γ (C∗n, r)

(
1− 1

1+r

)n ∼ δ (C∗n) as r → 0.
We now mention some related results involving circle packings in a circle and sphere

packings in a cylinder. For the problem of sphere packing inside a cylinder of fixed width
in three dimensions, Fu et al. [7] predict that as the radius of the spheres approach zero,
densest packings resemble the face-centered cubic lattice—a densest sphere packing in
three dimensions [2]—except for the spheres that are near the walls of the cylinder. In
the case of dimension two the densest circle packing is generated by the hexagonal lattice
[2]. Hopkins, Stillinger, and Torquato [12] provide examples of this phenomenon for dense
packings of circles inside a large circle under the condition that the large circle has the
same center as one of the small circles. Schürmann [15, 16] has shown that under certain
conditions the best finite packings of strictly convex bodies can only be obtained using
nonlattice packings. Other dense arrangements of k circles within a large circle include
modified wedge hexagonal packings and curved hexagonal packings [12], which are the
best known packings for some values of k [14].

The density of an infinite packing of a convex set is the fraction of space taken up by
congruent copies of the set. Fejes Tóth, Fodor, and Vı́gh [5] describe some upper bounds
for the packing density of C∗n, including an asymptotic δ (C∗n) 6 C · 0.86850n for n > 7
and a fixed constant C. Furthermore, they conjecture that δ (C∗n) 6 C · 0.82886n.

Basic facts about convexity and the cross-polytope can be found in books such as the
ones from Gruber [9], Ziegler [20], and Coxeter [3], and about packings are in Conway
and Sloane [2], Gruber [9], and Zong [21]. Additional details on the kissing number are
also in Zong [21].

Section 2 of this paper provides the notation and preliminaries that will be used for
the rest of the text. Section 3 contains the proof of the n-dimensional case, Theorem
1. Section 4 proves the equalities and upper bound present in the three parts of the
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3-dimensional case, Theorem 2, introducing additional notation as needed. Theorem 3 is
proved in Section 5, and finally Section 6 presents a gallery of diagrams related to these
lower bounds.

2 General notation and preliminaries

Here we introduce notation that will be used over the course of this paper. For a given
r > 0, let Pn (r) ⊂ C∗n be a packing set of rC∗n. For any polytope K, let vert (K) be the
set of its vertices. For a fixed n ∈ N, define sets Vn and Sn (r) as follows:

Vn := vert (C∗n) = {±ei | i ∈ {1, . . . , n}}

and
Sn (r) := (Vn + 2r int (C∗n)) ∩ C∗n.

Therefore Sn (r) is the set of all points in C∗n that are of distance < 2r from some vertex
of C∗n.

For p ∈ Rn and r > 0, we use the notation

C (p, r) := {x ∈ Rn | ||x− p||1 < r}

to denote the interior of the cross-polytope centered at p and scaled by the factor r.
The following lemma is necessary for the general n-dimensional case.

Lemma 4. Let r ∈ (0, 1]. For each j ∈ {1, . . . , n},

C∗n ∩ C (ej, 2r) ⊆ C ((1− r) ej, r),

where X is the closure of X, and similarly for −ej instead of ej.

Proof. Without loss of generality we take the ej case. Let y =
∑n

i=1 yiei ∈ C∗n∩C (ej, 2r),
then ||y||1 6 1 and ||y − ej||1 6 2r. Then the distance from y to (1− r) ej is

||y − (1− r) ej||1 =
∑
i 6=j

|yi|+ |yj + r − 1| .

If yj + r − 1 > 0 then since
∑n

i=1 |yi| 6 1,

∑
i 6=j

|yi|+ |yj + r − 1| 6 (1− yj) + yj + r − 1

= r.

Similarly, if yj + r − 1 < 0 then since ||y − ej||1 6 2r,∑
i 6=j

|yi|+ |yj + r − 1| =
∑
i 6=j

|yi| − yj − r + 1
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=
∑
i 6=j

|yi|+ |yj − 1| − r

6 2r − r
= r.

So ||y − (1− r) ej||1 6 r, or in other words, y ∈
{
x ∈ Rn | ||x− (1− r) ej||1 6 r

}
=

C ((1− r) ej, r).

3 Proof of Theorem 1: the n-dimensional case

In this section we assume that n > 2. We will show that for any r ∈
(
1− 1

n
, 1
]

and
any packing set Pn (r), the number of points in Pn (r) ∩ Sn (r) is bounded above by the
number of vertices of C∗n. Then |Pn (r)| 6 2n and this inequality is true for all Pn (r), so
γ (C∗n, r) 6 2n. As mentioned in the introduction, the set of vertices Vn ⊂ C∗n is a packing
set of rC∗n, which means that 2n is also a lower bound, and so γ (C∗n, r) = 2n.

Lemma 5. Let r ∈
(
1− 1

n
, 1
]
, then C∗n = Sn (r).

Proof. By definition, Sn (r) ⊆ C∗n, and so it remains to show the reverse inclusion. Let
x ∈ C∗n and without loss of generality it can be assumed that x is in the convex hull of
0, e1, . . . , en. Then x =

∑n
i=1 xiei with 0 6 xi 6 1 and

∑n
i=1 xi 6 1. Then there exists

some j ∈ {1, . . . , n} such that xj > 1
n

∑n
i=1 xi, so

||x− ej||1 =
n∑
i=1

xi − 2xj + 1

6

(
1− 2

n

) n∑
i=1

xi + 1

< 2r.

So every point in C∗n is within distance 2r from some vertex of C∗n.

The next lemma will be crucial for showing that the number of points in Pn (r)∩Sn (r)
is bounded above by the number of vertices of C∗n. It is a uniqueness condition which shows
that if a point p ∈ Pn (r)∩ Sn (r) is close to a vertex v of C∗n, specifically ||p− v||1 < 2r,
then no other point in Pn (r) can be close to v.

Lemma 6. Let r ∈ (0, 1]. If a vertex v of C∗n has the property that v ∈ C (p, 2r)∩C (q, 2r)
for some p,q ∈ Pn (r) ∩ Sn (r), then p = q.

Proof. Without loss of generality, let v = ej for some j ∈ {1, . . . , n}, then by hypothesis
ej ∈ C (p, 2r)∩C (q, 2r). It suffices to show that ||p− q||1 < 2r since the distance between
two distinct points in Pn,r must be 2r or greater.. Then in turn, p,q ∈ C (ej, 2r). Since
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C (ej, 2r) is open there exists a r′ < r (r′ depends on p and q) such that p,q ∈ C (ej, 2r
′).

Then it follows from Lemma 4 applied to C∗n ∩ C (ej, 2r
′) that

C∗n ∩ C (ej, 2r
′) ⊆ C ((1− r′) ej, r′) ⊆ C ((1− r′) ej, r) ,

so ||p− q||1 < 2r.

The following lemma will be used both here and in the 3-dimensional cases in the next
section.

Lemma 7. Let r ∈ (0, 1], then

|Pn (r) ∩ Sn (r)| 6 2n.

Proof. Define Vn (r) by

Vn (r) = {v ∈ Vn | there exists a p ∈ Pn (r) ∩ Sn (r) such that ||v − p||1 < 2r}
(this set may be empty) and a map f : Vn (r) → Pn (r) ∩ Sn (r) where f (v) is the point
p ∈ Pn (r) ∩ Sn (r) such that ||v − p||1 < 2r.

First we need to show that f is well-defined. Let p,q ∈ Pn (r)∩ Sn (r) be points such
that v ∈ C (p, 2r) ∩ C (q, 2r) for some v ∈ Vn, then p = q by Lemma 6, which justifies
the use of the words “the point” in the definition of f . From the definition of Sn (r),
every point p ∈ Pn (r) ∩ Sn (r) has the property that there is some v ∈ Vn such that
||p− v||1 < 2r, so f is surjective. Both the domain and range of f are finite sets, so the
cardinality of the range can be bounded above by

|Pn (r) ∩ Sn (r)| = |Ran (f)| 6 |Dom (f)| 6 |Vn (r)| = 2n,

completing the proof.

Now we prove Theorem 1. With the preparation above, the proof is mostly a matter
of putting together earlier lemmas.

Proof of Theorem 1. Assume that Pn (r) is nonempty, otherwise |Pn (r)| = 0 and there
is nothing to prove. Since r ∈

(
1− 1

n
, 1
]
, it follows from Lemma 5 that C∗n = Sn, so

|Pn (r) ∩ Sn (r)| is nonempty. Then Lemma 7 shows that |Pn (r)| = |Pn (r) ∩ Sn (r)| 6 2n.
This inequality holds for any Pn (r), so

γ (C∗n, r) 6 2n for n > 2 and r ∈
(

1− 1

n
, 1

]
.

The upper bound of 2n is achieved by Vn = {±ei | i ∈ {1, . . . , n}} as a packing set of rC∗n,
so

γ (C∗n, r) = 2n for n > 2 and r ∈
(

1− 1

n
, 1

]
.

The interval r ∈
(
1− 1

n
, 1
]

cannot be extended in either direction, because γ (C∗n, r) = 1
for r > 1 and in Proposition 15 we construct a packing set of rC∗n, for r 6 1 − 1

n
, with

2n+ 2 points in C∗n. For such r, Sn (r) ( C∗n and specifically the centroid of each facet is
not in Sn (r) (cf. Subsection 4.1), so the set consisting of the 2n vertices of C∗n and the
two centroids on opposing facets of C∗n is a packing set of rC∗n. Therefore, r ∈

(
1− 1

n
, 1
]

is the largest possible interval such that γ (C∗n, r) = 2n is true.
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4 Proof of Theorem 2 (the 3-dimensional case)

When r 6 2
3

the set S3 (r) no longer covers all of C∗3 , so unlike the n-dimensional case
above, the proofs for the three-dimensional cases require consideration of the remainder
C∗3\S3 (r).

4.1 Notation and preliminaries for dimension 3

Here we collect some lemmas and notation for the three-dimensional cases. Let r ∈
[
1
2
, 2
3

]
.

Recall that
V3 = vert (C∗3) = {±e1,±e2,±e3}

and

S3 (r) = (V3 + 2r int (C∗n)) ∩ C∗n

=
3⋃
i=1

(C (ei, 2r) ∪ C (−ei, 2r)) .

For any σ1, σ2, σ3 ∈ {−1, 1}, define the following subsets of R3:

V (r, (σ1, σ2, σ3)) :=


σ1 (2r − 1)
σ2 (2r − 1)
σ3 (2r − 1)

 ,

 σ1 (1− r)
σ2 (1− r)
σ3 (2r − 1)

 ,

 σ1 (1− r)
σ2 (2r − 1)
σ3 (1− r)

 ,

σ1 (2r − 1)
σ2 (1− r)
σ3 (1− r)

 .

Figure 1: The grey cross-polytope is the set C∗3 , the blue spheres are the points of
V
(
11
20
, (1, 1, 1)

)
, and the purple spheres are the points of V

(
11
20
, (σ1, σ2, σ3)

)
for σ1, σ2, σ3 ∈

{−1, 1} and not all equal to 1.
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The endpoints of the range r ∈
[
1
2
, 2
3

]
are 2

3
and 1

2
. For r = 2

3
the set reduces to

V

(
2

3
, (1, 1, 1)

)
=


1

3
1
3
1
3

 ,

the centroid of the facet conv {e1, e2, e3}, and when r = 1
2

the set is

V

(
1

2
, (1, 1, 1)

)
=


0

0
0

 ,

1
2
1
2

0

 ,

1
2

0
1
2

 ,

0
1
2
1
2

 ,

which contains the midpoints of the edges of the facet conv {e1, e2, e3}.
Subsets defined using midpoints of edges are used to solve the related problems of

finding upper bounds for k (C∗3) and M (C∗n, Bn,m) for some values of n and m. To find
the kissing number of the cross-polytope, Larman and Zong [13] divided the boundary of
the cross-polytope into the union of 18 subsets including sets of the form

relint

((
1

2
m +

1

2
C∗3

)
∩ C∗3

)
,

where m is a midpoint of an edge in V3, and showed that each subset could contain the
center of at most one cross-polytope, resulting in k (C∗3) 6 18. Another method to prove
that k (C∗3) 6 18 was used by Talata [18], who showed that any packing set achieving a
kissing number of 18 must consist of six points on the vertices, six points on the midpoints
of the edges of two opposing facets, and the remaining points on the hexagon passing
through the midpoints of the other edges. Böröczky and Wintsche [1] use sets defined by
vertices and midpoints of edges to determine an upper bound for M (C∗n, Bn,m) where
n > 3 and m ∈ {4, . . . , 2n}.

For a packing set P3 (r) and a set conv (V (r, (σ1, σ2, σ3))), σ1, σ2, σ3 ∈ {−1, 1}, call
conv (V ) a blocked set of P3 (r) if conv (V (r, (σ1, σ2, σ3))) does not contain any points of
P3 (r).

First we show that C∗3\S3 (r) can be written in terms of V (r, (σ1, σ2, σ3)).

Lemma 8. Let r ∈
(
1
2
, 2
3

]
. For any σ1, σ2, σ3 ∈ {−1, 1}, define the following subsets of

C∗3 :
R (r, (σ1, σ2, σ3)) := (C∗3\S3 (r)) ∩

{
x ∈ R3 | σ1x1, σ2x2, σ3x3 > 0

}
.

Then R (r, (σ1, σ2, σ3)) = conv (V (r, (σ1, σ2, σ3))) and

C∗3\S3 (r) =
⋃

σ1,σ2,σ3∈{−1,1}

conv (V (r, (σ1, σ2, σ3))) .

Proof. Without loss of generality, assume that σ1 = σ2 = σ3 = 1, and we will show
that R (r, (1, 1, 1)) = conv (V (r, (1, 1, 1))). The set R (r, (1, 1, 1)) is the subset of the
unit cross-polytope with all nonnegative coordinates and excluding the sets C (ei, 2r)
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for i ∈ {1, 2, 3}, and the set conv (V (r, (1, 1, 1))) is the intersection of the inequalities
−x1 − x2 + x3 > − (2r − 1), x1 − x2 − x3 6 − (2r − 1), −x1 + x2 − x3 6 − (2r − 1), and
x1 + x2 + x3 6 1, since the four points in V (r, (1, 1, 1)) satisfy each inequality. We will
show that R (r, (1, 1, 1)) is also the intersection of these inequalities.

Figure 2: The grey cross-polytope is the set C∗3 , the green cross-polytopes are the sets

C
(
x, 11

20

)
for x ∈ V3, and the blue spheres are the points of V

(
11
20
, (1, 1, 1)

)
.

Let x ∈ R (r, (1, 1, 1)). Then x ∈ C∗3 so x1+x2+x3 6 1, and in addition, x /∈ C (e1, 2r)
so |x1 − 1|+|x2|+|x3| > 2r implies that x1−x2−x3 6 − (2r − 1). Similarly, x /∈ C (e2, 2r)
and x /∈ C (e3, 2r) so −x1 + x2− x3 6 − (2r − 1) and x1 + x2− x3 > 2r− 1. That proves
R (r, (1, 1, 1)) ⊆ conv (V (r, (1, 1, 1))).

For the converse, let x ∈ conv (V (r, (1, 1, 1))). Since 1
2
6 r 6 2

3
, both 2r − 1 > 0 and

1 − r > 0, so the four points in V (r, (1, 1, 1)) all have nonnegative coordinates. Also,
||v||1 6 1 for all v ∈ V (r, (1, 1, 1)), and since x is in the convex hull of V (r, (1, 1, 1)), it is
also true that x1+x2+x3 6 1. Then x1, x2, x3 > 0 and x1+x2+x3 6 1 imply that x ∈ C∗n.
Also, x satisfies x1 − x2 − x3 6 − (2r − 1), then |x1 − 1| + |x2| + |x3| > 2r, which holds
because x2, x3 > 0 and 0 6 x1 6 1

2
, so x /∈ C (e1, 2r). Similarly, −x1+x2−x3 6 − (2r − 1)

and −x1 + x2 − x3 6 − (2r − 1) so x /∈ C (e2, 2r) and x /∈ C (e3, 2r). Hence

x ∈ (C∗3 ∩ {x1, x2, x3 > 0})

∖(
3⋃
i=1

C (ei, 2r)

)
= R (r, (1, 1, 1)) .

To complete the proof of the lemma, note that for any x ∈ R3, let σi = xi
|xi| if xi 6= 0

and σi = 1 if xi = 0, then σ1x1, σ2x2, σ3x3 > 0, so C∗3\S3 (r) is indeed covered by all the
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R (r, (σ1, σ2, σ3)), σ1, σ2, σ3 ∈ {−1, 1}, resulting in

C∗3\S3 (r) =
⋃

σ1,σ2,σ3∈{−1,1}

R (r, (σ1, σ2, σ3)) =
⋃

σ1,σ2,σ3∈{−1,1}

conv (V (r, (σ1, σ2, σ3))) .

From this lemma, the cross-polytope C∗3 is the union of S3 (r) and the eight regions
conv (V (r, (σ1, σ2, σ3))). By Lemma 7,

|P3 (r) ∩ S3 (r)| 6 6,

but for r ∈
(
0, 2

3

]
, some points of P3 (r) may be contained in one or more of the sets

conv (V (r, (σ1, σ2, σ3))).
We will use an approach that has similarities to Larman and Zong [13] and Böröczky

and Wintsche [1] in that the maximum distance between any two points in
conv (V (r, (σ1, σ2, σ3))) is less than 2r. Then each conv (V (r, (σ1, σ2, σ3))) can contain at
most one point of P3 (r), and the number of points of P3 (r) in S∗3\S3 (r) is bounded above
by 8 (see Subsection 4.4).

Lemma 9. Let r ∈
(
1
2
, 2
3

]
and σ1, σ2, σ3 ∈ {−1, 1}. For any two points

x,y ∈ conv (V (r, (σ1, σ2, σ3))), ||x− y||1 < 2r.

Proof. Without loss of generality, let σ1 = σ2 = σ3 = 1, then x,y ∈ conv (V (r, (1, 1, 1))).
It suffices to show that the distance between any two points in V (r, (1, 1, 1)) is less than
2r, then the conclusion for all points in conv (V (r, (1, 1, 1))) follows by the convexity of
conv (V (r, (1, 1, 1))). We also assume that the two points are distinct. Suppose that
neither point is (2r − 1, 2r − 1, 2r − 1)T, where vT is the transpose of v, then both points
are permutations of (1− r, 1− r, 2r − 1)T, so the distance between the two points is

||x− y||1 = 4− 6r < 2r.

If one of the points is (2r − 1, 2r − 1, 2r − 1)T, then the other point must be a permutation
of (1− r, 1− r, 2r − 1)T, so the distance between the two points is also

||x− y||1 = 4− 6r < 2r.

When r ∈
(
4
7
, 2
3

]
, the required minimum distance between points of P3 (r) is large

enough so that the presence of a point of P3 (r) in one set conv (V (r (σ1, σ2, σ3))) may
imply that another set conv (V (r (σ′1, σ

′
2, σ

′
3))), (σ1, σ2, σ3) 6= (σ′1, σ

′
2, σ

′
3), cannot con-

tain any points in P3 (r). Then it is possible to obtain an upper bound of 12, and the
proof in Subsection 4.3 uses a more complicated argument involving the position of p
in V (r, (σ1, σ2, σ3)). In Subsection 4.2 we prove that when r ∈

(
3
5
, 2
3

]
, a point p ∈

P3 (r)∩ V (r, (σ1, σ2, σ3)) implies that three other sets of the form conv (V (r (σ1, σ2, σ3)))
cannot contain any points in P3 (r).
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4.2 Proof of Theorem 2 (a): the r ∈
(
3
5
, 2
3

]
case

Lemma 10. Let r ∈
(
3
5
, 2
3

]
and p ∈ P3 (r). If p ∈ conv (V (r, (σ1, σ2, σ3))) for any

σ1, σ2, σ3 ∈ {1, 1}, then conv (V (r, (−σ1, σ2, σ3))), conv (V (r, (σ1,−σ2, σ3))), and
conv (V (r, (σ1, σ2,−σ3))) are blocked sets of P3 (r).

Proof. Without loss of generality, assume that σ1 = σ2 = σ3 = 1. To show that
conv (V (r, (−σ1, σ2, σ3))) is a blocked set of P3 (r), it suffices to show that ||p− y′||1 < 2r
for all

y′ ∈ V (r, (−1, 1, 1)) =


− (2r − 1)

2r − 1
2r − 1

 ,

− (1− r)
1− r
2r − 1

 ,

− (1− r)
2r − 1
1− r

 ,

− (2r − 1)
1− r
1− r

 ,

then by the convexity of V (r, (−1, 1, 1)), the statement ||p− y||1 < 2r holds true for any
y ∈ conv (V (r, (−1, 1, 1))). Since − (1− r) 6 p1 6 − (2r − 1) and 2r−1 6 p2, p3 6 1−r,
we have ∣∣∣∣∣∣

∣∣∣∣∣∣p−
− (2r − 1)

2r − 1
2r − 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= −p1 + p2 + p3 − 6r + 3 6 6− 9r < 2r,

∣∣∣∣∣∣
∣∣∣∣∣∣p−

− (1− r)
1− r
2r − 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= p1 − p2 + p3 − 4r + 3 < 2r,

∣∣∣∣∣∣
∣∣∣∣∣∣p−

− (1− r)
2r − 1
1− r

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= p1 + p2 − p3 − 4r + 3 < 2r,

and ∣∣∣∣∣∣
∣∣∣∣∣∣p−

− (2r − 1)
1− r
1− r

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= −p1 − p2 − p3 − 4r + 3 < 2r.

By the symmetry of V (r, (−1, 1, 1)), V (r, (1,−1, 1)), and V (r, (1, 1,−1)), it follows that
||p− y||1 < 2r for any y ∈ V (r, (−1, 1, 1)) ∪ V (r, (1,−1, 1)) ∪ V (r, (1, 1,−1)), and so
these three sets are blocked sets of P3 (r).

If P3 (r)∩ (C∗3\S3 (r)) = ∅ then trivially every set of the form conv (V (r, (σ1, σ2, σ3))),
σ1, σ2, σ3 ∈ {−1, 1}, is a blocked set of P3 (r). Otherwise, the above lemma implies that
for any given P3 (r), three of the eight sets of the form conv (V (r, (σ1, σ2, σ3))) are blocked
sets of P3 (r). Therefore,

|P3 (r) ∩ (C∗3\S3 (r))| 6 5.

However, it is possible to lower the 5 to a 4 with the following argument.

Lemma 11. Let r ∈
(
3
5
, 2
3

]
. Then for any P3 (r), there exist at least four blocked sets of

P3 (r).
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Proof. Let p ∈ P3 (r)∩ (C∗3\S3 (r)). Without loss of generality assume that there is a p ∈
V (r, (1, 1, 1)). Then by Lemma 10, V (r, (−1, 1, 1)), V (r, (1,−1, 1)), and V (r, (1, 1,−1))
are blocked sets of P3 (r). Consider the set V (r, (−1,−1,−1)). If it is a blocked set, then
there is nothing more to prove. If it is not, then again by Lemma 10, V (r, (1,−1,−1)),
V (r, (−1, 1,−1)), and V (r, (−1,−1, 1)) are blocked sets of P3 (r), resulting in a total of
six blocked sets.

Lemma 12. Let r ∈
(
1
2
, 2
3

]
and suppose that |P3 (r) ∩ (C∗3\S3 (r))| 6 b for all P3 (r), then

γ (C∗3 , r) 6 6 + b.

Proof. Split up P3 (r) into P3 (r) ∩ S3 (r) and P3 (r) ∩ (C∗3\S3 (r)), then by Lemma 7,
|P3 (r) ∩ S3 (r)| 6 6. So

|P3 (r)| 6 |P3 (r) ∩ S3 (r)|+ |P3 (r) ∩ (C∗3\S3 (r))|
6 6 + b.

By hypothesis, this inequality holds for any P3 (r), so

γ (C∗3 , r) 6 6 + b.

With the lemma above we prove Theorem 2 (a), (b), and (c).

Proof of Theorem 2 (a). Let r ∈
(
3
5
, 2
3

]
. By Lemma 11 there are at least four blocked

sets of P3 (r), and from the definition of a blocked set at least four of the eight sets
conv (V (r, (σ1, σ2, σ3))), σ1, σ2, σ3 ∈ {−1, 1}, cannot contain points of P3 (r). Then
|P3 (r) ∩ (C∗3\S3 (r))| 6 4, so by Lemma 12,

γ (C∗3 , r) 6 10.

From Proposition 16 below, there is a 10-point packing set for rC∗3 contained in C∗3 , so in
fact

γ (C∗3 , r) = 10.

4.3 Proof of Theorem 2 (b): the r ∈
(
4
7
, 3
5

]
case

The following additional notation will be used in this section. For each r > 0 and
σ1, σ2, σ3 ∈ {−1, 1}, define the following sets V (r, (σ1, σ2, σ3)):

V (r, (σ1, σ2, σ3) , 1)

:=


σ1 (2r − 1)
σ2 (2r − 1)
σ3 (2r − 1)

 ,

σ1 (2r − 1)
σ2 (1− r)
σ3 (1− r)

 ,

 σ1
1
2
r

σ2 (1− r)
σ3

1
2
r

 ,

 σ1
1
2
r

σ2
1
2
r

σ3 (1− r)

 ,
1

3

σ1σ2
σ3

 ,

V (r, (σ1, σ2, σ3) , 2)

:=


σ1 (2r − 1)
σ2 (2r − 1)
σ3 (2r − 1)

 ,

 σ1 (1− r)
σ2 (2r − 1)
σ3 (1− r)

 ,

σ1 (1− r)
σ2

1
2
r

σ3
1
2
r

 ,

 σ1
1
2
r

σ2
1
2
r

σ3 (1− r)

 ,
1

3

σ1σ2
σ3

 ,
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V (r, (σ1, σ2, σ3) , 3)

:=


σ1 (2r − 1)
σ2 (2r − 1)
σ3 (2r − 1)

 ,

 σ1 (1− r)
σ2 (1− r)
σ3 (2r − 1)

 ,

σ1 (1− r)
σ2

1
2
r

σ3
1
2
r

 ,

 σ1
1
2
r

σ2 (1− r)
σ3

1
2
r

 ,
1

3

σ1σ2
σ3

 .

They have the property that

3⋃
i=1

conv (V (r, (σ1, σ2, σ3) , i)) = conv (V (r, (σ1, σ2, σ3))) ,

and the numbering of these subsets is so that the set V (r, (σ1, σ2, σ3) , i) contains the
point in the set

 σ1 (1− r)
σ2 (1− r)
σ3 (2r − 1)

 ,

 σ1 (1− r)
σ2 (2r − 1)
σ3 (1− r)

 ,

σ1 (2r − 1)
σ2 (1− r)
σ3 (1− r)

 ( V (r, (σ1, σ2, σ3))

that is furthest away from the vertex σiei.

Lemma 13. Let r ∈
(
4
7
, 3
5

]
and p ∈ P3 (r). If x ∈ conv (V (r, (σ1, σ2, σ3))) then there is a

blocked set conv (V (r, (σ′1, σ
′
2, σ

′
3))) of P3 (r), with (σ1, σ2, σ3) and (σ′1, σ

′
2, σ

′
3) differing by

exactly one coordinate.

Proof. Without loss of generality, assume that σ1 = σ2 = σ3 = 1, then p is in one of the
subsets conv (V (r, (1, 1, 1) , i)) for i ∈ {1, 2, 3}. Assume that p ∈ conv (V (r, (1, 1, 1) , 1))
and write p =

∑3
i=1 piei. We will show that ||x− y||1 < 2r for any x ∈ V (r, (1, 1, 1) , 1)

and y ∈ V (r, (−1, 1, 1)), and then by the convexity of conv (V (r, (1, 1, 1) , 1)) and
conv (V (r, (−1, 1, 1))), it follows that ||p− y||1 < 2r for any y ∈ conv (V (r, (−1, 1, 1))),
which shows that conv (V (r, (−1, 1, 1))) is a blocked set of P3 (r). This approach is similar
to the proof of the previous lemma, but the same approach cannot be used here as that
proof requires r > 3

5
.

There are 20 different combinations of points but not all of them need to be explicitly
checked. To keep track of the cases, we use the following grid:
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Elements of V (r, (−1, 1, 1))
−(2r−1)

2r−1

2r−1



−(1−r)

1−r

2r−1



−(1−r)

2r−1

1−r



−(2r−1)

1−r

1−r



2r−1

2r−1

2r−1

 Case 1 Case 2 Case 3 Case 4


2r−1

1−r

1−r

 Case 5 Case 6 Case 7 Case 8

Elements of
V (r, (1, 1, 1) , 1)


1
2
r

1−r
1
2
r

 Case 9 Case 10 Case 11 Case 12


1
2
r

1
2
r

1−r

 Case 13 Case 14 Case 15 Case 16


1
3

1
3

1
3

 Case 17 Case 18 Case 19 Case 20

For each k ∈ {1, . . . , 20}, case k corresponds to the calculation of ||x− y||1, where x is the
element of V (r, (1, 1, 1) , 1) in the same row as k and y is the element of V (r, (−1, 1, 1))
in the same column as k. For example,∣∣∣∣∣∣

∣∣∣∣∣∣
2r − 1

2r − 1
2r − 1

−
− (2r − 1)

2r − 1
2r − 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1

corresponds to case 1 below.

1. Cases 1 and 8: ∣∣∣∣∣∣
∣∣∣∣∣∣
2r − 1

2r − 1
2r − 1

−
− (2r − 1)

2r − 1
2r − 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 4r − 2 < 2r,

∣∣∣∣∣∣
∣∣∣∣∣∣
2r − 1

1− r
1− r

−
− (2r − 1)

1− r
1− r

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 4r − 2 < 2r.

2. Cases 2, 3, 4, 5, 6, 7, 9, 10, 13, 15, and 17:∣∣∣∣∣∣
∣∣∣∣∣∣
2r − 1

2r − 1
2r − 1

−
− (1− r)

1− r
2r − 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 2− 2r < 2r,
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∣∣∣∣∣∣
∣∣∣∣∣∣
2r − 1

2r − 1
2r − 1

−
− (1− r)

2r − 1
1− r

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 2− 2r < 2r,

∣∣∣∣∣∣
∣∣∣∣∣∣
2r − 1

2r − 1
2r − 1

−
− (2r − 1)

1− r
1− r

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 2− 2r < 2r,

∣∣∣∣∣∣
∣∣∣∣∣∣
2r − 1

1− r
1− r

−
− (2r − 1)

2r − 1
2r − 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 2− 2r < 2r,

∣∣∣∣∣∣
∣∣∣∣∣∣
2r − 1

1− r
1− r

−
− (1− r)

1− r
2r − 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 2− 2r < 2r,

∣∣∣∣∣∣
∣∣∣∣∣∣
2r − 1

1− r
1− r

−
− (1− r)

2r − 1
1− r

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 2− 2r < 2r,

∣∣∣∣∣∣
∣∣∣∣∣∣
 1

2
r

1− r
1
2
r

−
− (2r − 1)

2r − 1
2r − 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 2− 2r < 2r,

∣∣∣∣∣∣
∣∣∣∣∣∣
 1

2
r

1− r
1
2
r

−
− (1− r)

1− r
2r − 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 2− 2r < 2r,

∣∣∣∣∣∣
∣∣∣∣∣∣
 1

2
r

1
2
r

1− r

−
− (2r − 1)

2r − 1
2r − 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 2− 2r < 2r,

∣∣∣∣∣∣
∣∣∣∣∣∣
 1

2
r

1
2
r

1− r

−
− (1− r)

2r − 1
1− r

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 2− 2r < 2r,

∣∣∣∣∣∣
∣∣∣∣∣∣
1

3
1
3
1
3

−
− (2r − 1)

2r − 1
2r − 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 2− 2r < 2r.

3. Cases 11 and 14: ∣∣∣∣∣∣
∣∣∣∣∣∣
 1

2
r

1− r
1
2
r

−
− (1− r)

2r − 1
1− r

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 4− 5r < 2r,

∣∣∣∣∣∣
∣∣∣∣∣∣
 1

2
r

1
2
r

1− r

−
− (1− r)

1− r
2r − 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 4− 5r < 2r.
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4. Cases 12 and 16: ∣∣∣∣∣∣
∣∣∣∣∣∣
 1

2
r

1− r
1
2
r

−
− (2r − 1)

1− r
1− r

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= r < 2r,

∣∣∣∣∣∣
∣∣∣∣∣∣
 1

2
r

1
2
r

1− r

−
− (2r − 1)

1− r
1− r

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= r < 2r.

5. Cases 18 and 19: ∣∣∣∣∣∣
∣∣∣∣∣∣
1

3
1
3
1
3

−
− (1− r)

1− r
2r − 1

∣∣∣∣∣∣
∣∣∣∣∣∣
1

=
10

3
− 4r < 2r,

∣∣∣∣∣∣
∣∣∣∣∣∣
1

3
1
3
1
3

−
− (1− r)

2r − 1
1− r

∣∣∣∣∣∣
∣∣∣∣∣∣
1

=
10

3
− 4r < 2r.

6. Case 20: ∣∣∣∣∣∣
∣∣∣∣∣∣
1

3
1
3
1
3

−
− (2r − 1)

1− r
1− r

∣∣∣∣∣∣
∣∣∣∣∣∣
1

=
2

3
< 2r.

Hence conv (V (r, (−1, 1, 1))) is a blocked set of P3 (r). By symmetry, if
p ∈ conv (V (r, (1, 1, 1) , 2)) or p ∈ conv (V (r, (1, 1, 1) , 3)) then calculations similar to the
above can be performed with y ∈ conv (V (r, (1,−1, 1))) or y ∈ conv (V (r, (1, 1,−1)))
respectively.

Using the above lemma and the same argument as after Lemma 10 in the last subsec-
tion, we have

|P3 (r) ∩ (C∗3\S3 (r))| 6 7.

However, as in the previous subsection it is possible to lower the 7 to a 6 with the following
argument.

Lemma 14. Let r ∈
(
4
7
, 3
5

]
. Then for any P3 (r), there exist at least two blocked sets of

P3 (r).

Proof. Let conv (V (r, (σ1, σ2, σ3))), σ1, σ2, σ3 ∈ {−1, 1}, be a blocked set of P3 (r) and con-
sider the set conv (V (r, (−σ1,−σ2,−σ3))). If conv (V (r, (−σ1,−σ2,−σ3))) is a blocked
set of P3 (r) then we are done. Otherwise, by Lemma 13 there must be a blocked set
conv (V (r, (σ′1, σ

′
2, σ

′
3))) of P3 (r) such that (−σ1,−σ2,−σ3) and (σ′1, σ

′
2, σ

′
3) differ by ex-

actly one coordinate. Then (σ′1, σ
′
2, σ

′
3) 6= (σ1, σ2, σ3), which means that

conv (V (r, (σ1, σ2, σ3))) and conv (V (r, (σ′1, σ
′
2, σ

′
3))) are two distinct blocked sets of P3 (r).
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The proof of Theorem 2 (b) is virtually identical to the proof of Theorem 2 (a).

Proof of Theorem 2 (b). Let r ∈
(
4
7
, 3
5

]
. By Lemma 14, Lemma 12, and the 12-point

packing set for rC∗3 from Proposition 17, we have

γ (C∗3 , r) = 12.

4.4 Proof of Theorem 2 (c): the r ∈
(
1
2
, 4
7

]
case

Before we prove Theorem 2 (c), we remark that an immediate consequence of Lemma 9
is that

|P3 (r) ∩ conv (V (r, (σ1, σ2, σ3)))| 6 1

for all σ1, σ2, σ3 ∈ {−1, 1}, which means that

|P3 (r) ∩ (C∗3\S3 (r))| =

∣∣∣∣∣∣P3 (r) ∩

 ⋃
σ1,σ2,σ3∈{−1,1}

conv (V (r, (σ1, σ2, σ3)))

∣∣∣∣∣∣
6

∑
σ1,σ2,σ3∈{−1,1}

|P3 (r) ∩ conv (V (r, (σ1, σ2, σ3)))|

6 8.

Proof of Theorem 2 (c). Let r ∈
(
1
2
, 4
7

]
. By the above remark and Lemma 12, we have

γ (C∗3 , r) 6 14.

We are not able to find the exact value of γ (C∗3 , r) for such r, but some lower bounds
are in Section 5.

5 Constructive lower bounds including the proof of Prop. 3

In contrast to the upper bounds, the lower bounds are all obtained by explicit construc-
tions of points in the cross-polytope. For n = 3 and r ∈

(
1
2
, 2
3

]
, all of the constructions

shown here contain the six points of V3 and the remaining points are in the union of the
eight sets conv (V (r, (σ1, σ2, σ3))). There are no claims of uniqueness made here; more
than one set of points may achieve the lower bounds of Theorems 2 and 3. The proofs of
these propositions amount to checking that the distance between any two distinct points
in the packing set is at least 2r, and the calculations can be performed by hand or using
a computer.

Proposition 15. Let qn =
(
1
n
, . . . , 1

n

)T ∈ Rn. Then Vn ∪ {±qn} ⊂ C∗3 and for r ∈(
0, 1− 1

n

]
,

Vn∪{±qn} =




1
0
0
...
0

 ,


−1
0
0
...
0

 ,


0
1
0
...
0

 ,


0
−1
0
...
0

 , . . . ,


0
0
...
0
1

 ,


0
0
...
0
−1




∪ 1

n




1
1
...
1
1

 ,−


1
1
...
1
1
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is a packing set of rC∗n.

Proof. Any points x,y ∈ Vn ∪ {±qn}, x 6= y, have the property that ||x||1 6 1 and
||x− y||1 > 2

(
1− 1

n

)
, so Vn ∪ {±qn} ⊂ C∗3 is a packing set of rC∗n for r 6 1− 1

n
.

Proposition 16. Let

Q10 =
1

3


1

1
1

 ,

−1
−1
1

 ,

−1
1
−1

 ,

 1
−1
−1

 .

Then V3 ∪Q10 ⊂ C∗3 and for r ∈
(
0, 2

3

]
,

V3 ∪Q10 =


1

0
0

 ,

−1
0
0

 ,

0
1
0

 ,

 0
−1
0

 ,

0
0
1

 ,

 0
0
−1


∪ 1

3


1

1
1

 ,

−1
−1
1

 ,

−1
1
−1

 ,

 1
−1
−1


is a packing set of rC∗3 .

Proof. Any points x,y ∈ V3 ∪ Q10, x 6= y, have the property that ||x||1 6 1 and
||x− y||1 >

4
3
, so V3 ∪Q10 ⊂ C∗3 is a packing set of rC∗n for r 6 2

3
.

Proposition 17. Let

Q+
12 =

1

5


2

2
1

 ,

−2
1
2

 ,

 1
−2
2

 .

Then V3 ∪Q+
12 ∪

(
−Q+

12

)
⊂ C∗3 and for r ∈

(
0, 3

5

]
,

V3 ∪Q+
12 ∪

(
−Q+

12

)
=


1

0
0

 ,

−1
0
0

 ,

0
1
0

 ,

 0
−1
0

 ,

0
0
1

 ,

 0
0
−1


∪ 1

5


2

2
1

 ,

−2
1
2

 ,

 1
−2
2

 ∪ −1

5


2

2
1

 ,

−2
1
2

 ,

 1
−2
2


is a packing set of rC∗3 .

Proof. Any points x,y ∈ V3∪Q+
12∪

(
−Q+

12

)
, x 6= y, have the property that ||x||1 6 1 and

||x− y||1 >
6
5
, so V3 ∪Q+

12 ∪
(
−Q+

12

)
⊂ C∗3 is a packing set of rC∗n for r 6 3

5
.

Finally we consider the case r ∈
(
0, 6

11

]
. The construction below differs from the

previous configurations as there appear to be no obvious large-scale symmetries.
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Proposition 18. Let

Q13 =
1

11


−1

5
5

 ,

 5
−1
5

 ,

 5
5
−1

 ,

−5
−2
4

 ,

−5
4
−2

 ,

 4
−2
−5

 ,

−3
−5
−3

 .

Then V3 ∪Q13 ⊂ C∗3 and for r 6 6
11

,

V3 ∪Q13 =


1

0
0

 ,

−1
0
0

 ,

0
1
0

 ,

 0
−1
0

 ,

0
0
1

 ,

 0
0
−1


∪ 1

11


−1

5
5

 ,

 5
−1
5

 ,

 5
5
−1

 ,

−5
−2
4

 ,

−5
4
−2

 ,

 4
−2
−5

 ,

−3
−5
−3


is a packing set of rC∗3 .

Proof. Any points x,y ∈ V3 ∪ Q13, x 6= y, have the property that ||x||1 6 1 and
||x− y||1 >

12
11

, so V3 ∪Q13 ⊂ C∗3 is a packing set of rC∗n for r 6 6
11

.

We do not know if this result can be improved, either in the sense of a 13-point
configuration for some r > 6

11
or a 14-point configuration for r = 6

11
. Regarding the

first avenue for potential improvement, the upper end of the range r ∈
(
0, 6

11

]
cannot

be raised without moving the points of V3 ∪ Q13. As for the second, according to the
comments before the proof of Theorem 2 (c), at most eight points in any P3

(
6
11

)
can

be in the union
⋃
σ1,σ2,σ3∈{−1,1} conv

(
V
(

6
11
, (σ1, σ2, σ3)

))
, with at most one point in each

conv
(
V
(

6
11
, (σ1, σ2, σ3)

))
. The packing set V3 ∪ Q13 contains points in each set of the

form conv
(
V
(

6
11
, (σ1, σ2, σ3)

))
, σ1, σ2, σ3 ∈ {−1, 1}, except for conv

(
V
(

6
11
, (1, 1, 1)

))
,

see Figure 6.6. Since

V

(
6

11
, (1, 1, 1)

)
=


0

0
0

 ,
1

11

5
5
1

 ,
1

11

5
1
5

 ,
1

11

1
5
5


and the distances from each point in this set to 1

11
(−1, 5, 5)T ∈ V3 ∪Q13 are∣∣∣∣∣∣

∣∣∣∣∣∣
0

0
0

− 1

11

−1
5
5

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= 1 <
12

11
,

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

11

5
5
1

− 1

11

−1
5
5

∣∣∣∣∣∣
∣∣∣∣∣∣
1

=
10

11
<

12

11
,

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

11

5
1
5

− 1

11

−1
5
5

∣∣∣∣∣∣
∣∣∣∣∣∣
1

=
10

11
<

12

11
,
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∣∣∣∣∣∣
∣∣∣∣∣∣ 1

11

1
5
5

− 1

11

−1
5
5

∣∣∣∣∣∣
∣∣∣∣∣∣
1

=
2

11
<

12

11
,

it follows that the distance from any point in conv
(
V
(

6
11
, (1, 1, 1)

))
to 1

11
(−1, 5, 5)T is

less than 12
11

. Similar calculations can be performed for the distance from any point in

conv
(
V
(

6
11
, (1, 1, 1)

))
to 1

11
(5,−1, 5)T and 1

11
(5, 5,−1)T. Therefore, without moving the

points in the subset

1

11


−1

5
5

 ,

 5
−1
5

 ,

 5
5
−1

 ⊂ V3 ∪Q13,

conv
(
V
(

6
11
, (1, 1, 1)

))
cannot contain any points of P3

(
6
11

)
and a 14-point packing set of

6
11
C∗3 is not possible.

Proof of Proposition 3. By Proposition 18, the set V3 ∪ Q13 is a subset of C∗n with 13
points and is a packing set for rC∗3 where r ∈

(
1
2
, 6
11

]
. Therefore

γ (C∗3 , r) > 13 for r ∈
(

1

2
,

6

11

]
.

6 Diagrams of cross-polytope packings

Below are graphs showing the unit cross-polytope with cross-polytopes of radius r around
each point of V3, V3 ∪ Q10, V3 ∪ Q+

12 ∪
(
−Q+

12

)
, and V3 ∪ Q13. For each diagram except

the first one, the value of r in the diagram is the largest possible for that configuration of
points. In each diagram the grey cross-polytope in the middle is C∗3 .

V3: 6 points in C∗
3 V3 is a packing set of rC∗3 for all 0 < r 6 1.

Figure 3: The green cross-polytopes represent the sets C
(
x, 9

10

)
for x ∈ V3.
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V3 ∪Q10: 10 points in C∗
3 V3 ∪Q10 is a packing set of rC∗3 for all 0 < r 6 2

3
.

Figure 4: The green cross-polytopes represent the sets C
(
x, 2

3

)
for x ∈ V3 and the blue

cross-polytopes represent the sets C
(
y, 2

3

)
for y ∈ Q10.

V3 ∪Q+
12 ∪

(
−Q+

12

)
: 12 points in C∗

3 V3 ∪ Q+
12 ∪

(
−Q+

12

)
is a packing set of rC∗3 for

all 0 < r 6 3
5
.

Figure 5: The green cross-polytopes represent the sets C
(
x, 3

5

)
for x ∈ V3 and the blue

cross-polytopes represent the sets C
(
y, 3

5

)
for y ∈ V3 ∪Q+

12 ∪
(
−Q+

12

)
.
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V3 ∪Q13: 13 points in C∗
3 V3 ∪Q13 is a packing set of rC∗3 for all 0 < r 6 6

11
.

Figure 6: The green cross-polytopes represent the sets C
(
x, 6

11

)
for x ∈ V3, the blue cross-

polytopes represent C
(

1
11

(−1, 5, 5) , 6
11

)
, C

(
1
11

(5,−1, 5) , 6
11

)
, and C

(
1
11

(5, 5,−1) , 6
11

)
,

the purple cross-polytopes represent C
(

1
11

(−5,−2, 4) , 6
11

)
, C

(
1
11

(−5, 4,−2) , 6
11

)
, and

C
(

1
11

(4,−2,−5) , 6
11

)
, and the magenta cross-polytope represents C

(
1
11

(−3,−5,−3) , 6
11

)
.
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[11] H. Hadwiger, Über treffanzahlen bei translationsgleichen eikörpern, Archiv der
Mathematik, 8 (1957), pp. 212–213.

[12] A. B. Hopkins, F. H. Stillinger, and S. Torquato, Densest local sphere-
packing diversity: General concepts and application to two dimensions, Physical re-
view. E, Statistical, nonlinear, and soft matter physics, 81 (2010), p. 041305.

[13] D. G. Larman and C. Zong, On the kissing numbers of some special convex
bodies, Discrete & Computational Geometry, 21 (1999), pp. 233–242.

[14] B. D. Lubachevsky and R. L. Graham, Curved hexagonal packings of equal
disks in a circle, Discrete & Computational Geometry, 18 (1997), pp. 179–194.
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