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Abstract

We propose a new proof technique that applies to the same problems as the
Lovász Local Lemma or the entropy-compression method. We present this approach
in the context of non-repetitive colorings and we use it to improve upper-bounds re-
lating different non-repetitive chromatic numbers to the maximal degree of a graph.
It seems that there should be other interesting applications of the presented ap-
proach.

In terms of upper-bounds our approach seems to be as strong as entropy-
compression, but the proofs are more elementary and shorter. The applications
we provide in this paper are upper bounds for graphs of maximal degree at most ∆:
a minor improvement on the upper-bound of the non-repetitive chromatic number, a
4.25∆+o(∆) upper-bound on the weak total non-repetitive chromatic number, and
a ∆2 + 3

21/3
∆5/3 + o(∆5/3) upper-bound on the total non-repetitive chromatic num-

ber of graphs. This last result implies the same upper-bound for the non-repetitive
chromatic index of graphs, which improves the best known bound.

Mathematics Subject Classifications: 05C15

1 Introduction

A sequence s1 . . . s2n is a square if si = si+n for each i ∈ {1, . . . , n}. A sequence is
repetitive if it contains a consecutive subsequence that is a square and it is non-repetitive
(or square-free) otherwise. For instance, the words hotshots, repetitive and alfalfa are
repetitive and the words total and minimize are square-free.

The work of Thue on non-repetitive words is regarded as the starting point of combi-
natorics on words [18, 19] (see [4] for a translation in modern mathematical English). He
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showed that there are infinite square-free sequences over three elements. Many general-
izations and variations of this notion have been studied. One such notion that received a
lot of attention is the notion of non-repetitive coloring of graphs introduced by Alon et
al. [1] (see [6, 20] for surveys on this topic). We say that a coloring (either of the vertices
or of the edges) of a graph is non-repetitive if the sequence of colors of any path is non-
repetitive. The non-repetitive chromatic number (resp. non-repetitive chromatic index )
(also called Thue number and Thue index ) of a graph, denoted by π(G) (resp. π′(G)) is
the smallest number of colors in a non-repetitive coloring of the vertices (resp. the edges)
of the graph. Alon et al. showed that π′(G) is in O(∆2) where ∆ is the maximum degree
of G [1]. Different authors successively improved the upper-bounds on the non-repetitive
chromatic number and the non-repetitive chromatic index [13, 8, 10]. Although this is not
the topic of this article, non-repetitive colorings have since been studied in many other
context than graphs of bounded degree. For instance, after many intermediate results it
was recently shown that planar graphs have bounded non-repetitive chromatic number [7].

Most results regarding non-repetitive coloring of graphs of bounded maximal degree
are either based on the Lovász Local Lemma (LLL) or entropy-compression and they
naturally hold in the stronger setting of list coloring. A list assignment of a graph G is a
function that maps any vertex x (and/or any edge) to a set of colors L(x). An L-coloring
of a graph is a coloring of the graph such that the color of each vertex (and/or edges) x
belongs to its list of colors L(x). A graph is then said to be non-repetitively `-choosable
if it admits a non-repetitive L-coloring for any list assignment L such that every list is
of size at least `. The non-repetitive choice number πch(G) is the smallest integer ` such
that G is non-repetitively `-choosable. Similarly, the list variant of the non-repetitive
chromatic index is denoted by π′ch(G). The best bounds relating these quantities to the
maximum degree ∆ of a graph are respectively (see [10])

π′ch(G) 6 ∆2 + 24/3∆5/3 +O(∆4/3) (1)

and

πch(G) 6

⌈
∆2 +

3

22/3
∆5/3 +

22/3∆5/3

∆1/3 − 21/3

⌉
. (2)

The notion of Total Thue coloring was introduced by Schreyer and Škrabuvláková [17].
A coloring of the edges and the vertices of a graph is a weak total Thue coloring if the
sequence of consecutive vertex-colors and edge-colors of every path is non repetitive. If
moreover the sequence of vertex-colors and the sequence of edge-colors of any path are
both non-repetitive then this is a (strong) total Thue coloring. The weak total Thue
number πTw(G) (resp. total Thue number πT(G)) is the minimum number of colors in a
weak total Thue coloring of G (resp. a total Thue coloring of G). These two parameters
both have there list-coloring counterpart denoted respectively by πTwch(G) and πTch(G).
Schreyer and Škrabuvláková [17] showed that πT(G) 6 5∆2+o(∆2), πTch(G) 6 17.9856∆2

and πTw(G) 6 |E(G)| − |V (G)| + 5. We remark that the second bound also relies on an
application of the Lovász Local Lemma.

In this article, we propose a different proof technique strongly related to the Lovász
Local Lemma and to entropy-compression (whose idea is based on the algorithmic proof
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of the Lovász Local Lemma by Moser and Tardos [14]) and we apply this technique to
different non-repetitive coloring problems. This technique provides bounds as good as
entropy-compression, but is much more elementary. The more advanced mathematics re-
quired in the proof is summation of geometric series (for comparison, entropy-compression
arguments usually rely on analytic combinatorics to compute some variations of Catalan
numbers to bound the number of records). The main idea of this approach is to show
inductively that, if we color the vertices or edges one-by-one, at every “step” the number
of possible colorings grows exponentially (this resembles the proof of LLL in this regard).
One more benefit of this approach is that it provides exponential lower bounds on the
number of solutions. However, we lose the constructive aspect and the algorithmic impli-
cations of entropy-compression arguments. We should mention that Bernshteyn recently
introduced the Local Cut Lemma [3], a lemma that also aims to be applied to the same set
of problems as LLL or entropy-compression. In some cases it provides shorter proofs than
LLL or entropy-compression, but they are still more technical (and it might be argued
that they are longer if one includes the proof of the Local Cut Lemma itself).

As a simple illustration of our technique we first provide a proof that the Thue choice
number of any path is at most 4 (for a proof of this result based on LLL see [12] and
for a proof based on entropy-compression see [11]). Then we apply our technique to the
Thue choice number in Theorem 3 and improve the lowest degree term of the bound
given by (2). The improvement is minor and could certainly be achieved with a more
careful analysis in [10], however the proof given in [10] is much more technical than our
self-contained proof of one and a half pages.

We then apply our method to weak total Thue coloring and total Thue coloring. Our
first result given in Theorem 5 asserts that πTwch(G) 6 6∆ for any graph of maximum
degree ∆. In Theorem 7, we show that if ∆ > 300, we have a stronger bound πTwch(G) 6
4.25∆. Our result is not obvious to compare to the bound πTw(G) 6 |E(G)| − |V (G)|+ 5
from [17], but it is stronger in most graphs (also our result is more general since for any
graph G, πTw(G) 6 πTwch(G)). For instance, as long as the average degree of the graph
is at least 9.5 our bound is stronger. In fact, our result also implies a linear upper-bound
on the number of vertices instead of a quadratic upper-bound.

Regarding the total Thue choice number, we show in Theorem 9 that πT (G) 6
πTch(G) 6 ∆2 + 3

21/3
∆5/3 + 8∆4/3 + 1 which improves considerably the two bounds from

[17] previously mentioned and slightly improves the bound for the non-repetitive chro-
matic index. We conclude with a discussion regarding applications of this method to
other problems.

We will use the term “L-coloring” for partial colorings if all the colored elements
receive a color from their list and if the context clearly indicates that the coloring is
partial. Recall that for any x > 1,∑

i>1

ix−i =
x

(x− 1)2
.
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2 Non-repetitive colorings of paths and the proof technique

In this section, we first give an illustrative example of our proof technique. Then we
informally sketch a more general description of the proof technique.

2.1 Non-repetitive colorings of paths

This section is devoted to the proof of Theorem 1. This result is not new [12, 11], but it
is a simple application of our approach.

Theorem 1. For every path P , πch(P ) = 4.

This Theorem is a simple consequence of the following lemma. We order the vertices
of any path “from left to right” such that each vertex is adjacent to the vertex to its right
and to its left (the leftmost and rightmost vertices are the ends of the path).

Lemma 2. Let L be a list assignment of a path P such that all lists are of size 4. Let Cn
be the number of non-repetitive L-colorings of the n leftmost vertices of P . Then for any
integer n < |P |,

Cn+1 > 2Cn .

Proof. Let us proceed by induction on n. Let n be an integer such that the Lemma holds
for any integer smaller than n. We now show that Cn+1 > 2Cn. Let F be the set of
L-colorings of the n+ 1 leftmost vertices that are repetitive, but whose restrictions to the
n leftmost vertices are non-repetitive. Then

Cn+1 = 4Cn − |F | .

Let us now bound the size of F . For every i, let Fi be the colorings from F that contain
a square of length 2i. Then clearly |F | 6

∑
i>1 |Fi|. For any coloring c of Fi, the first

n+1−i colors form a non-repetitive coloring and they uniquely determine the last i colors
of c because of the repetition. We deduce that for all i, |Fi| 6 Cn+1−i. By the induction
hypothesis this implies that |Fi| 6 21−iCn. We finally get

Cn+1 > 4Cn −
∑
i>1

21−iCn > 2Cn

which concludes our proof.

The consequences of Lemma 2 are in fact stronger than Theorem 1, since it implies
that there are at least 2n colorings for any list assignment. However, the statement of this
Lemma is even stronger and it is crucial in the proof that the number of valid colorings
is multiplied by at least 2 every time that we color one more vertex.

the electronic journal of combinatorics 27(3) (2020), #P3.43 4



2.2 The proof technique

Let us now give a more general informal sketch of our proof technique. Suppose one wants
to show that any graph from some class C of graphs admits a valid coloring with at most
γ colors (eg. Theorem 1). Suppose moreover that both the class and the valid colorings
are hereditary in the sense that the graph induced by a colored elements also belongs to
C and that every subcoloring of a valid coloring is also valid. For any graph G, we let
c(G) be the set of valid colorings of G.

We try to show the stronger result that there exists a constant α > 1 such that for
any graph G ∈ C and element e of G to be colored (it might be an edge or a vertex),
|c(G)| > α × |c(G − e)| (eg, Lemma 2 with γ = 4 and α = 2). We proceed by induction
on |V (G)| to show this result.

Let F be the set of colorings of G that are not valid, but whose restrictions to G− e
are valid colorings. Then by definition,

|c(G)| = γ|c(G− e)| − F .

Now suppose we can find coefficients (ai)i>1 such that

|F | 6
∑
i>1

ai
|c(G− e)|
αi−1

(3)

and ∑
i>1

ai
αi−1

6 (γ − α) . (4)

We deduce
|c(G)| > |c(G− e)|α

which concludes our proof.
The technical part is to show the upper-bound on F with the right coefficients (ai)i>1.

This is done by finding injections from F to valid colorings of subgraphs of G− e. More
precisely, we find a way to express F as the union of colorings (Fi)i>1, such that for all
i there is an injection from Fi to the union of the colorings of ai different subgraphs of
G − e of cardinality |G| − i. Then we can use our induction hypothesis to upper-bound
the number of valid colorings of any subgraph obtained by removing i elements of G− e
by |c(G−e)|

αi which leads to equation (3).
It might seem that we have to guess the right values of γ and α in the Lemma state-

ment, but it is not the case. Indeed, one can first find the coefficients (ai)i>1 with variables
γ and α and then take the best values γ and α such that equation (4) is satisfied. This
is done by choosing

γ = min
α> 1

r

(
α +

∑
i>1

ai
αi−1

)
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where r is the radius of convergence of
∑

i>1 aix
i. 1 For instance, in Lemma 2, we need

γ − α
α−1

> α and α > 1. The minimum of α
α−1

+ α is 4 and is reached for α = 2 these are
respectively the best values to take for γ and α.

The technique is strongly related to the entropy-compression technique. In fact, in
the particular context of colorings of graphs of bounded degree, it is equivalent to the
approach of [10, Theorem 12]. Using our technique one can in fact provide a simpler
proof of their Theorem 12 (our ai are their Ci and our α is their x−1), but it does not
seem to be worth the trouble of introducing all the necessary formalism only to provide
an alternative proof of the exact same result. However, even if we can simplify the proof
and match the bound of their Theorem, we cannot easily improve the bound.

Remark that bounding |F | in the proof of Lemma 2 is simplified by the linear structure
of the path, since we know that the vertices that contribute to a square are always the
last vertices added. In fact, in the setting of words this proof is almost identical to the
power series method for pattern avoidance [2, 5, 15, 16].

3 Non-repetitive colorings

In this section we apply our method to non-repetitive colorings of graphs of bounded
maximum degree.

Theorem 3. For every graph G with maximum degree ∆ > 1,

πch(G) 6 ∆2 +
3

22/3
∆5/3 + 22/3∆4/3 .

Let us instead show a stronger Lemma. For any graph G and any list assignment L
of G, the set CL(G) is the set of non-repetitive L-colorings of G.

Lemma 4. Let ∆ > 2 be an integer and γ = 3
22/3

+ 22/3∆−1/3 + ∆−2/3. Let G be a graph
of maximal degree at most ∆ and L be a list assignment of G. If each list is of size at
least ∆(∆− 1)(1 + γ∆−1/3) + 1, then for any vertex v of G,

|CL(G)| > ∆(∆− 1)(1 + 21/3∆−1/3)|CL(G− v)| .

Proof. Let us show this by induction on the number of vertices of G. This is clearly true
if |G| = 1 since the empty graph has exactly one coloring. Let n be an integer such that
the Lemma holds for any graph with less than n vertices.

Let G be a graph over n vertices of maximal degree at most ∆ and L be a list
assignment of G such that each list is of size at least ∆(∆− 1)(1 + γ∆−1/3) + 1. Let v be
any vertices of G.

Let F be the set of repetitive L-colorings of G whose restriction to G − v is a non-
repetitive coloring. Then

|CL(G)| = (∆(∆− 1)(1 + γ∆−1/3) + 1)|CL(G− v)| − |F | . (5)

1In pratice, we take upper-bounds of the minimum obtained from manipulations of Taylor polynomials
in order to give nicer expressions.
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We need to upper-bound the size of F . Let Fi be the set of colorings from F that contain
a path of length 2i that is a square. Clearly |F | 6

∑
i>1 |Fi|. Thus for any coloring c from

Fi there is path p of length 2i such that

• the sequence of colors of p is a square,

• p contains v and let us call p′ the half of p that contains v and G′ the graph obtained
by removing from G the vertices of p′ and the adjacent edges,

• the restriction of c to G′ is non-repetitive,

• p and the restriction of c to G′ uniquely determines c (since the second half of the
square is identical to the first half).

Thus, for any fixed p and p′, the number of such colorings from Fi is at most |CL(G′)|.
Since p′ contains v and i − 1 other vertices our induction hypothesis implies that this
quantity is bounded by

|CL(G′)| 6 |CL(G− v)|
(∆(∆− 1)(1 + 21/3∆−1/3))i−1

.

Moreover, there are at most i∆(∆ − 1)2i−2 paths of length 2i going through v. To see
that, remark that v splits such a path in two halves, so one can choose the length of the
shortest half between 0 and i− 1. Then there are ∆ ways to chose the neigbor of v that
belongs to the long half of the path and after that there are ∆ − 1 possible choices for
each new vertex to add to the path. We deduce

|Fi| 6 i∆(∆− 1)2i−2 |CL(G− v)|
(∆(∆− 1)(1 + 21/3∆−1/3))i−1

.

We simplify the computations with the slightly weaker bound for i > 2,

|Fi| 6 i(∆− 1)
|CL(G− v)|

(1 + 21/3∆−1/3)i−1

and for i = 1 we use

|F1| 6 ∆|CL(G− v)| = (∆− 1)|CL(G− v)|+ |CL(G− v)| .

We finally upper-bound |F |.

|F | 6 |CL(G− v)|

(
1 + (∆− 1)

∑
i>1

i

(1 + 21/3∆−1/3)i−1

)

6 |CL(G− v)|
(

1 + (∆− 1)
(1 + 21/3∆−1/3)2

((1 + 21/3∆−1/3)− 1)2

)
6 |CL(G− v)|

(
1 + (∆− 1)∆2/3

(
2−1/3 + ∆−1/3

)2
)
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Together with equation (5), it implies

|CL(G)| > |CL(G− v)|
(

∆(∆− 1)(1 + γ∆−1/3)− (∆− 1)∆2/3
(
2−1/3 + ∆−1/3

)2
)

> |CL(G− v)|∆(∆− 1)
(

1 + ∆−1/3
(
γ −

(
2−1/3 + ∆−1/3

)2
))

> |CL(G− v)|∆(∆− 1)
(
1 + ∆−1/3

(
γ − 2−2/3 − 22/3∆−1/3 −∆−2/3

))
.

Substituting γ = 3
22/3

+ 22/3∆−1/3 + ∆−2/3, we finally get

|CL(G)| > |CL(G− v)|∆(∆− 1)
(
1 + ∆−1/321/3

)
which concludes this proof.

Remark that the bound given by this Lemma is in fact

πch 6

⌈
∆(∆− 1)

(
1 +

3

22/3
∆−1/3 + 22/3∆−2/3 + ∆−1

)
+ 1

⌉
6

⌈
∆2 +

3

22/3
∆5/3 + 22/3∆4/3 − 3

22/3
∆2/3 − 22/3∆1/3

⌉
which is slightly stronger than the bound given in Theorem 3. One can also compare the
bound from Theorem 3 to the result from [10] (already mentioned in equation (2)). As ∆
goes to +∞ their upper-bound is asymptotically equivalent to

∆2 +
3

22/3
∆5/3 + 22/3∆4/3 + 2∆ +O(∆2/3)

which is larger than our upper-bound by 2∆+O(∆2/3). This is a really minor improvement
and this can be achieved with the entropy-compression argument. The best known lowed-

bound on the maximal Thue number for any maximum degree ∆ is Ω
(

∆2

log ∆

)
[1], so this

could be the case that even the first coefficient is not optimal. However, the fact that our
method is simpler allowed us to easily improve the analysis while still providing a shorter
proof.

4 (Weak) total Thue coloring

In this section, we consider three kinds of paths

• vertex-paths : sequences of consecutive adjacent vertices (they were simply called
path in the previous section),

• edges-paths : sequences of consecutive adjacent edges,

• mixed-paths : alternating sequences of vertices and edges such that consecutive ele-
ments are adjacent.
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In each of these definitions, we require that there are no repeated edges or vertices. An
element of a graph is an edge or a vertex of the graph. The length of a vertex-path (resp.
an edge-path, a mixed-path) is the number of vertices of the path (resp. the number of
edges, the number of edges and vertices). In other words, the length is the number of
elements.

We color graphs element by element, but when we color an edge it might be the case
that one or both of its vertices are not colored yet. Thus the graph restricted to the
colored elements is not necessarily a proper graph in the sense that some edges might be
missing one or two vertices. But for our inductive approach to hold, we need our result to
hold for such objects. We do not want to formalize this notion, but whenever we remove
a vertex from a graph all its adjacent edges remain in the graph and are still adjacent to
one another. Thus, if S is a set of edges or vertices of a graph G, we denote by G − S
the graph obtained by deleting exactly the vertices and edges of S (that is, we do not
remove edges connected to some vertices of S unless they also belong to S). Also if two
edges are connected by a vertex v then they are still considered to be connected in G− v
and in particular they can still appear consecutively in an edge-path of G − v (similarly
two adjacent vertices are still adjacent even if we remove their shared edge and they can
still be consecutive in a vertex-path). We use the same notation to remove a vertex-path,
an edge-path or a mixed-path. For instance, if p = (v1, v2, . . . , vn) is a vertex-path of G,
then G− p does not contain the vertixes v1, v2, . . . but it still contains the edge {v1, v2}.

4.1 Weak total Thue coloring

Let us recall that a coloring of the edges and the vertices of a graph is a weak total Thue
coloring if the sequence of colors of any mixed-path is non-repetitive.

Theorem 5. For every graph G with maximum degree ∆ > 1,

πTwch(G) 6 6∆ .

Given a graph G, a set S of edges and vertices of G and a list assignment L of G, the
set CL(G− S) is the set of weak total Thue L-colorings of G− S.

Lemma 6. Let ∆ > 2 be an integer. Let G be a graph of maximal degree at most ∆ and
L be a list assignment of G. Suppose each list is of size at least 6∆ then for any vertex
or edge x of G:

|CL(G)| > 3∆|CL(G− x)| .

Proof. Let us show this by induction on the sum of the number of vertices and edges of
G. This is true for the graph with a single vertex since the empty graph admits exactly
one coloring. Let n be an integer such that the Lemma holds for any graph with less than
n vertices and edges.

Let G = (V,E) be a graph with |E| + |V | = n of maximal degree at most ∆ and L
be a list assignment of G such that each list is of size at least 6∆. Let x be an edge or a
vertex of G.
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Let F be the set of L-colorings of G that are not weak total Thue colorings but whose
restriction to G− x is a weak total Thue coloring. Then

|CL(G)| = 6∆|CL(G− x)| − |F | . (6)

In order to upper-bound the size of F , let Fi be the set of colorings from F that contains
a mixed-path of length 2i whose sequence of colors is a square2. Clearly |F | 6

∑
i>1 |Fi|.

For any coloring c from Fi there is a mixed-path p of length 2i such that

• the sequence of colors of p is a square,

• p contains x and let us call p′ the half of p that contains x,

• the restriction of c to G− p′ is non-repetitive,

• p and the restriction of c to G − p′ uniquely determines c (since the second half of
the square is identical to the first half).

Given p and p′ the number of such colorings in Fi is at most |CL(G − p′)|, but since p′

contains x and n− 1 other elements our induction hypothesis implies

|CL(G− p′)| 6 |CL(G− x)|
(3∆)i−1

.

If x is a vertex then there are at most i∆i mixed-paths of length 2i going through x. If
x is an edge then there are at most 2i∆i−1 6 i∆i mixed-paths of length 2i going through
x. We deduce

|Fi| 6 i∆i |CL(G− x)|
(3∆)i−1

= i∆
|CL(G− x)|

3i−1
.

Thus we can finally upper-bound |F |

|F | 6 ∆|CL(G− x)|
∑
i>1

i

3i−1
6

9

4
∆|CL(G− x)| .

Together with equation (6), it implies

|CL(G)| > 6∆|CL(G− x)| − 9

4
∆|CL(G− x)|

>
15

4
∆|CL(G− x)| > 3∆|CL(G− x)|

which concludes our proof.

A better analysis leads to a leading coefficient γ = 5.21914 instead of 6 (γ is a root of
the polynomial −3− 4x− 20x2 + 4x3). The same result can be shown with a longer proof
relying on entropy-compression.

2Recall, that a mixed-path of length 2i has i edges and i vertices.
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4.2 Weak total Thue coloring for large maximal degree

It is clear in the previous proof that the worst case is when x is a vertex since a vertex
belongs to at most i∆i mixed-paths of length 2i while an edge belongs an to at most
2i∆i−1 such mixed-paths. In fact, we can use two different “growth rates” to distinguish
between these cases and improve our bound on the weak total Thue number of graphs
for large values of ∆. It is not clear whether this second bound can be proven by the
entropy-compression method.

Theorem 7. For every graph G with maximum degree ∆ > 300,

πTwch(G) 6 d4.25∆e .

This is a simple corollary of the following Lemma.

Lemma 8. Let ∆ > 300 be an integer. Let G be a graph of maximal degree at most ∆
and L be a list assignment of G. Suppose each list is of size at least 4.25∆ then for any
edge e of G,

|CL(G)| > 4.2∆|CL(G− e)| (7)

and for any vertex v of G,

|CL(G)| > 1.62∆|CL(G− v)| . (8)

Proof. The proof is similar to the proof of Lemma 6. The induction is the same and we
keep the notations F , Fi and p′, but we distinguish between edges and vertices to obtain
better upper-bounds on the size of Fi.

Let us start with the proof of equation (7) when e is an edge. There are at most
2i∆i−1 mixed-paths of length 2i going through e and the induction hypothesis implies
that |CL(G)| > 1.62∆|CL(G − x)|, for any element x of G. Thus we can use the exact
same argument as in the previous proof to obtain

|CL(G)| > 4.25∆|CL(G− e)| −
∑
i>1

2i∆i−1|CL(G− e)|
(1.62∆)i−1

> |CL(G− e)|∆

(
4.25− 2

∆

∑
i>1

i

1.62i−1

)

> |CL(G− e)|∆
(

4.25− 2

∆

1.622

0.622

)
.

Since ∆ > 300, numerical computations yield

|CL(G)| > 4.2∆|CL(G− e)| .

which concludes the proof of equation (7).
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We now prove equation (8) when v is a vertex. The half p′ of a mixed-path of length
2i containing v contains at least d i−1

2
e edges. Thus in this case our induction hypothesis

implies

|CL(G− p′)| 6 |CL(G− v)|
(
√

1.62× 4.2∆)i−1
.

Moreover, there are at most i∆i mixed-paths of length 2i going through v which gives:

|CL(G)| > 4.25∆|CL(G− v)| −
∑
i>1

i∆i|CL(G− v)|
(
√

1.62× 4.2∆)i−1

> |CL(G− v)|∆

(
4.25−

∑
i>1

i

(
√

1.62× 4.2)i−1

)
.

Numerical computations give

|CL(G)| > 1.62∆|CL(G− v)|

which conclude our proof.

4.3 Total Thue coloring

Let us recall that a coloring of the edges and the vertices of a graph is a total Thue
coloring if the sequence of colors of any mixed-path, any vertex-path and any edge-path
is non-repetitive.

Theorem 9. For every graph G with maximum degree ∆,

πTch(G) 6 ∆2 +
3

21/3
∆5/3 + 8∆4/3 + 1 .

This is a simple Corollary of Lemma 10. For any set S of edges and vertices of a graph
G and any list assignment of G, the set CL(G− S) is the set of total Thue L-colorings of
G− S.

Lemma 10. Let ∆ > 2 be an integer and γ = 3
21/3

+8∆−1/3. Let G be a graph of maximal
degree at most ∆ and L be a list assignment of G. Suppose each list is of size at least
∆2(1 + γ∆−1/3) then for any vertex or edge x of G:

|CL(G)| > ∆2
(
1 + 22/3∆−1/3

)
|CL(G− x)| .

Proof. Let us proceed by induction on the sum of the number of vertices and edges of G.
This is true for the graph with a single vertex since the empty graph admits exactly one
coloring. Let n be an integer such that the Lemma holds for any graph with less than n
elements (vertices and edges).

Let G = (V,E) be a graph with |E|+ |V | = n of maximal degree at most ∆ and L be
a list assignment of G such that each list is of size at least ∆2(1 + γ∆−1/3). Let x be an
edge or a vertex of G.
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Let F be the set of L-colorings of G that are not total Thue coloring but whose
restriction to G− x is a total Thue coloring. Then

|CL(G)| = ∆2(1 + γ∆−1/3)|CL(G− x)| − |F | . (9)

We need to upper-bound the size of F . Let Mi be the set of colorings from F that contains
a mixed-path of length 2i whose sequence of colors is repetitive. If x is an edge (resp. a
vertex) let Si be the set of colorings from F that contain an edge-path (resp. a vertex-
path) of length 2i whose sequence of colors is repetitive. Clearly |F | 6

∑
i>1(|Mi|+ |Si|).

For any coloring c from Mi there is mixed-path p of length 2i such that

• the sequence of colors of p is a square,

• p contains x and let us call p′ the half of p that contains x,

• the restriction of c to G− p′ is non-repetitive,

• p and the restriction of c to G − p′ uniquely determines c (since the second half of
the square is identical to the first half).

Given p and p′ the number of such colorings from Mi is at most |CL(G− p′)|, but since p′

contains x and n − 1 other elements our induction hypothesis implies that this quantity
is bounded by

|CL(G− p′)| 6 |CL(G− x)|
(∆2(1 + 22/3∆−1/3))i−1

.

If x is a vertex then there are at most i∆i mixed-paths of length 2i going through x. If
x is an edge then there are at most 2i∆i−1 6 i∆i mixed-paths of length 2i going through
x. We deduce

|Mi| 6 i∆i |CL(G− x)|
(∆2(1 + 22/3∆−1/3))i−1

= i∆
|CL(G− x)|

(∆(1 + 22/3∆−1/3))i−1
.

If the sequence of colors of an edge-path (resp. a vertex-path) is a square we can
also recover the coloring of the full path by knowing only the first half of it. Moreover,
there are at most 2i∆2i−1 edge-paths of length 2i going through a given edge and at most
i∆2i−1 6 2i∆2i−1 vertex-paths of length 2i going through a given vertex. Using the same
idea we can bound the size of Si by

|Si| 6 2i∆2i−1 |CL(G− x)|
(∆2(1 + 22/3∆−1/3))i−1

= 2i∆
|CL(G− x)|

(1 + 22/3∆−1/3)i−1
.

We can now upper-bound |F |.

|F | 6 ∆|CL(G− x)|
∑
i>1

2i

(1 + 22/3∆−1/3)i−1
+

i

(∆(1 + 22/3∆−1/3))i−1

6 ∆|CL(G− x)|

(
1 +

(
2 +

1

∆

)∑
i>1

i

(1 + 22/3∆−1/3)i−1

)
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6 ∆|CL(G− x)|
(

1 +

(
2 +

1

∆

)
(1 + 22/3∆−1/3)2

(22/3∆−1/3)2

)
6 ∆5/3|CL(G− x)|

(
∆−2/3 +

(
2 +

1

∆

)(
2−2/3 + ∆−1/3

)2
)

Since ∆ > 1 (and ∆−1/3 > ∆−2/3) we finally get

|F | 6 ∆5/3|CL(G− x)|
(
2−1/3 + 8∆−1/3

)
.

Together with equation (9), it implies

|CL(G)| > ∆2(1 + γ∆−1/3)|CL(G− x)| −∆5/3|CL(G− x)|
(
2−1/3 + 8∆−1/3

)
> ∆2|CL(G− x)|

(
1 + ∆−1/3

(
γ −

(
2−1/3 + 8∆−1/3

)))
.

Substituting γ = 3
21/3

+ 8∆−1/3, we finally get

|CL(G)| > ∆2
(
1 + 22/3∆−1/3

)
|CL(G− v)|

which concludes this proof.

This upper-bound also holds for non-repetitive vertex coloring and non-repetitive edge
coloring which provides the following Corollary.

Corollary 11. For every graph G with maximum degree ∆,

π′ch(G) 6 ∆2 +
3

21/3
∆5/3 + 8∆4/3 + 1 .

This bound is better than the upper-bound π′l(G) 6 ∆2 + 24/3∆5/3 + O(∆4/3) given
in [10] (24/3 ≈ 2.52 . . . and 3

21/3
≈ 2.38 . . .). One can also easily improve the coefficient of

∆4/3 in our bound with a more careful analysis (at least as low as 1 + 24/3 in the case of
total Thue coloring and 24/3 in the case of non-repetitive edge coloring).

5 Conclusion

Most results in this paper can be obtained with entropy-compression. However, our
approach is much simpler to use and provides exponential lower bounds on the number
of satisfying assignments. Moreover, it is not clear that Theorem 7 can be proven by
entropy-compression. Our approach can obviously be generalized outside of the scope of
non-repetitive coloring and we can for instance provide simpler proofs of all the result
from [9].

Our proof technique is also strongly related to the Lovász Local Lemma. We show
lemmas of the form “with γ colors, coloring a new vertex multiply the number of valid
colorings by α” which is equivalent to “when adding a new vertex the probability for
a random coloring to be valid is multiplied by at least α

γ
”(remark that α

γ
is a quantity

smaller than 1). Proofs of the Lovász Local Lemma are based on idea similar to the
second version of this statement. In fact, some SAT versions of the Lovász Local Lemma
are also easy to obtain with our approach, but once again we get the same bounds.
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[17] J. Schreyer and E. Škrabuvláková. Total Thue colourings of graphs. European Journal
of Mathematics, (1):186–197, 2015.
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