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Abstract
A permutation π avoids the simsun pattern τ if π avoids the consecutive pat-

tern τ and the same condition applies to the restriction of π to any interval [k].
Permutations avoiding the simsun pattern 321 are the usual simsun permutation
introduced by Simion and Sundaram. Deutsch and Elizalde enumerated the set of
simsun permutations that avoid in addition any set of patterns of length 3 in the
classical sense. In this paper we enumerate the set of permutations avoiding any
other simsun pattern of length 3 together with any set of classical patterns of length
3. The main tool in the proofs is a massive use of a bijection between permutations
and increasing binary trees.

Mathematics Subject Classifications: 05A05, 05A15, 05C05

1 Introduction

A permutation σ ∈ Sn avoids the (classical) pattern τ ∈ Sk if there are no indices
i1, i2, . . . , ik such that the subsequence σi1σi2 . . . σik is order isomorphic to τ.

A permutation σ is called simsun (after Rodica Simion and Sheila Sundaram) if it does
not contain double descents and the same applies to the restriction of σ to any interval
[k]. For example, 41325 is simsun, while 32415 is not. The theory of simsun permutation
goes back to the work by Sundaram [13] where the author proved that the cardinality of
the set of simsun permutations of length n is the (n+ 1)−th Euler number (see sequence
A000111 in [11]). These permutations have been intensively studied in recent years (see
e.g. [3, 4, 5, 7, 8, 9]).

In this paper, we deal with a generalization of simsun permutations defined by Lin, Ma,
and Yeh ([7]): we say that a permutation σ avoids the simsun pattern τ if the restriction
of σ to the interval [k] does not contain the consecutive pattern τ for any k = 1, . . . , n.
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We denote by Sn(τS) the set of all permutations in Sn that avoid the simsun pat-
tern τ . In particular, the set Sn(321S) is the set of Simsun permutations of length n.
If Σ ⊆ ∪i>0Si is any set of permutations, we denote by Sn(τS,Σ) the set of permuta-
tion of length n that avoid the simsun pattern τ and avoid every classical pattern in
Σ. If Σ contains the patterns σ1, σ2, . . . , σk we will write Sn(τS, σ1, σ2, . . . , σk) instead of
Sn(τS, {σ1, σ2, . . . , σk}).

Observe that, if the permutation τ is the image of ρ under the usual reverse map and
Σ′ is the set of permutations obtained by reversing all the permutations in Σ, we have
|Sn(τS,Σ)| = |Sn(ρS,Σ′)|. Hence, for all Σ, we can partition the set of simsun patterns of
length 3 into three classes with respect to the avoidance of the classical patterns in Σ:

|Sn(123S,Σ)| = |Sn(321S,Σ′)|

|Sn(132S,Σ)| = |Sn(231S,Σ′)|
|Sn(213S,Σ)| = |Sn(312S,Σ′)|.

In [4] the authors enumerated Sn(321S,Σ) for all Σ ⊆ S3. Moreover, it is well known
(see [2] or [7]) that |Sn(132S)| is the n-th Bell number (sequence A000110 in [11]).

In the present paper we study the sets Sn(132S,Σ) and Sn(213S,Σ) for every Σ ⊆ S3.
We find a recursive formula for the enumerating sequence of each of these sets, some

of them appear on [11] with different interpretations, while the others are not present on
that database. Our analysis is based on a systematic use of well-known bijection between
permutations and binary increasing trees.

Notice that the avoidance of the simsun patterns 132S and 213S can be recast in terms
of barred generalized patterns. In the last Section we describe this relationship.

2 Permutations avoiding the simsun pattern 132 and Σ ⊆ S3

We observe that a permutation π avoids the simsun pattern 132 if and only if each
occurrence of 132 in π is part of an occurrence of 2413 or, equivalently, π avoids the
barred pattern 2413. It has been shown in [2] that these permutations are enumerated
by the Bell numbers. We will use the bijection ψ between Sn(132S) and the set of par-
titions of {1, 2, . . . , n} presented in [7]. Write π ∈ Sn(132S) as π = w1w2 . . . wk where
wi = xi,1xi,2 . . . xi,si are the ascending runs of π. Then ψ(π) is the partition of n whose
blocks are {x1,1, . . . , x1,s1}, . . . , {xk,1, . . . , xk,sk}. Notice that the sequence x1,1, x2,1, . . . , xk,1
is decreasing, since π avoids the simsun pattern 132. This ensures that the map φ is a
bijection.

Let Σ ⊆ S3 and let π ∈ Sn(132S,Σ). As noted above, each occurrence of 132 in π
is part of an occurrence of 2413. Since 2413 contains the patterns 132, 231, 312, 213, if Σ
contains at least one of those patterns, then

Sn(132S,Σ) = Sn(132,Σ).

Hence, these cases can be traced back to classical pattern avoidance. See [10] for the
complete classification and enumeration of the sets Sn(Σ) with Σ ⊆ S3.
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Moreover if Σ = {123, 321}, the sets Sn(132S,Σ) are empty for n > 7.
Thus, the only remaining cases are Σ = {123} and Σ = {321}.

2.1 Sn(132S, 123)

Let π ∈ Sn(132S, 123). Since π avoids the pattern 123, the ascending runs of π have
length at most two and the sequence of the greatest elements of each ascending run is
decreasing, i.e., with the notation above, x1,s1 > x2,s2 > · · · > xk,sk . Moreover, as seen
above, x1,1 > x2,1 > · · · > xk,1.

Hence, the set Pn corresponding to Sn(132S, 123) under the map ψ consists of the
partitions of {1, 2, . . . , n} such that

• every block has at most two elements and

• if the blocks are arranged in descending order of their smallest element, also the
greatest elements of the blocks are in descending order.

There is a simple bijection between the set P and the set of Motzkin paths of length
n. We recall that a Motzkin path of length n is a lattice path starting at (0, 0), ending
at (n, 0), and never going below the x-axis, consisting of up steps (1, 1), horizontal steps
(1, 0), and down steps (1,−1).

More precisely, given a partition in P, we can construct the Motzkin path whose i-th
step is

• a horizontal step, if the block containing i has cardinality one,

• an up step, if the block containing i has cardinality two and i is the least element
of its block,

• a down step, otherwise.

As a consequence, denoting by Mn the n-th Motzkin number (sequence A001006 in [11])
we have

|Sn(132S, 123)| = Mn.

2.2 Sn(132S, 321)

If π ∈ Sn(132S, 321), then π has at most two ascending runs, namely the partition ψ(π)
has at most two blocks. It is immediate to see that the number of such partitions is 2n−1,
therefore

|Sn(132S, 123)| = 2n−1.
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3 Permutations avoiding the simsun pattern 213

First of all we describe a well-known and widely used bijection φ (see e.g. [6, p. 143] or
[12, p. 44]) between the set Wn of words without repetitions of length n in Z+ and the set
of binary increasing trees with n nodes. By definition, a binary increasing tree (b.i.t) is a
plane, rooted, binary tree in which each of the n nodes bears a different positive integer
label and labels increase along any descending path. In the sequel we will often identify
each node with its label. A non-empty maximal sequence of adjacent left edges of a b.i.t.
will be called left branch. The definition of right branch is analogous.

The definition of the map φ is as follows. The empty word is mapped to the empty
tree. Consider now a word u in Wn, n > 1. Denote by a the minimal integer appearing in
u and write u as u = vaw where v and w are (possibly empty) words. Consider the trees
t1 = φ(v) and t2 = φ(w). Define φ(u) to be the tree

• whose root is labelled by a,

• whose left subtree of the root is t1 and

• whose right subtree of the root is t2.

Needless to say, the image of Sn under tha map φ is the set Tn of binary increasing
trees with labels from {1, 2, . . . , n}.

As an example consider π = 451326 ∈ S6. Then

1

φ(π) = 4 2

5 3 6

We now characterize the subset of Tn corresponding to Sn(213S) under the map φ. We
say that a b.i.t. is a i-tree if it is a tree of the following form

a

b x

c

where a < b < c, x 6 c and where the nodes labelled with x and c are connected by an
arbitrarily long sequence of left edges.
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Theorem 1. The map φ is a bijection between the set Sn(213S) and the set of b.i.t.’s that
do not contain i-subtrees.

Proof. Suppose that the tree t contains a i-subtree and let π = φ−1(t). Then π = ubvawcr
where u, v, w, r are (possibly empty) words such that the symbols of w are greater than
the symbol c and the symbols of v are greater than the symbol a. If each symbol of v is
greater than c, then π contains the simsun pattern bac. Otherwise, there exists a symbol
of b′ of v such that b′ < c. In this case we can replace b by b′, and b′ac is an occurrence of
the simsun pattern 213.

Conversely, suppose that π contains the simsun pattern 213 and let bac an occurence
of such pattern. Let x be minimum of the symbols y appearing in π weakly to the right
of c such that a < y 6 c. Then in the tree φ(π) the nodes labelled by a, b, c and x (with
c and x possibly coincident) form an occurrence of a i-subtree.

We say that a b.i.t. is i-avoiding if it does not contain i-subtrees, and we denote
by Tn(i) the subset of i-avoiding trees of Tn. Let tn,` be the number of elements of
Tn(i) whose leftmost node in the symmetric order (namely, the initial symbol in the
corresponding permutation) is labelled by `. We have the following result.

Theorem 2. The numbers tn,` satisfy the following recurrence

tn,` =

{∑n−1
k=1

∑
i,j

(
`−j−2
i−1

)(
n−`
k−i

)
tk,itn−1−k,j if ` > 2∑

j tn−1,j if ` = 1
∀n > 2

with initial conditions t0,i = δ0,i and t1,i = δ1,i.

Proof. Every tree in Tn(i) can be obtained by

• choosing an integer k, 1 6 k 6 n− 1,

• choosing a tree TL in Tk(i),

• choosing a tree TR in Tn−1−k(i),

• appending to a root TL as the left subtree and TR as the right subtree,

• modifying the labels of TL and TR so that the resulting tree does not contain i
substrees, and its leftmost node has a fixed label `.

If ` = 1, then the left subtree is empty. We only need to choose the right subtree
in Tn−1(i) and increase each label by 1. Suppose now ` > 1. Choose a left and a right
subtree TL and TR, respectively, of the appropriate size. Denote by i (j respectively) the
label of the leftmost node of TL (resp. TR). We may have several ways to modify the
labels of TL before branching it to the root. The chosen set of labels must satisfy the
following conditions:

• they must be grater than or equal to j + 2
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• the i-th smaller label must be equal to l.

Then we must choose i− 1 labels in the interval {j + 2, j + 3, . . . , `− 1} (
(
`−j−2
i−1

)
choices)

and k− i labels in the interval {`+ 1, `+ 2, . . . , n} (
(
n−`
k−i

)
choices). We attach the chosen

labels to the nodes of TL according to the initial labelling and assign the remaining labels
to TR with the same criterion.

Example 3. We illustrate the second part of the proof. If we choose

1

2 ∈ T5(i)TL = 4

35

and
1

2 ∈ T6(i)TR = 3

64

5

then i = 4, j = 3, k = 5. Suppose that n = 12 and that we want to construct a tree
T ∈ T12(i) with ` = 9. Then we have to choose i− 1 = 3 elements in {j + 2, . . . , `− 1} =
{5, 6, 7, 8} and k − i = 1 element in {` + 1, . . . , n} = {10, 11, 12}. If, for example, we
choose 5, 6, 8 from the first set and 11 from the second one we get

1

2

34

127

10

5

6T = 9

811

From the previous Theorem it follows that the first values of the sequence

{|Tn(i)|}n>0 = {
n∑

`>0

tn,`}n>0
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are 1, 1, 2, 5, 15, 53, 217, 1013, . . . This sequence is not present in [11].

4 Permutations avoiding the simsun pattern 213 and Σ ⊆ S3

Now we consider permutations that avoid the simsun pattern 213 and a set of patterns Σ
of length three in the classical sense.

A permutation that avoids the simsun pattern 213 can contain the pattern 213, namely,
it can contain the subsequence bac with a < b < c, only if one of the following two cases
occurs.

• Between b and a there is a symbol x < a. In this case xac is an occurrence of the
pattern 123 and bxa is an occurence of 312.

• Between a and c there is a symbol x such that a < x < b. In this case axc is an
occurrence of the pattern 123 and bax is an occurence of 312.

From the previous observations it follows that a permutation π avoids the simsun
pattern 213 if and only if each occurence of 213 in π is part of an occurrence of 3124.
Note that the condition of avoiding the simsun pattern 213 cannot be rephrased as the
avoidance of a barred pattern.

Since 3124 contains the classical patterns 213, 123 and 312, if Σ contains at least one
of those patterns, then

Sn(213S,Σ) = Sn(213,Σ)

and in such cases we have again avoidance in the classical sense.
Thus, the only nontrivial cases correspond to the sets Σ such that Σ ⊆ {132, 231, 321}.

4.1 Sn(213S, 132)

Denote by RCTn the image of the set Sn(213S, 132) under the map φ. Notice that if a
i-avoiding tree contains the subtree

a

b

c

α =

(with a < b < c), then the corresponding permutation has an occurrence of the pattern
132. As a consequence, if a tree t is in RCTn then, if a node in t has a right son, this son
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cannot have a left son. Moreover every tree t in RCTn must avoid the subtree

bβ =

a

c

where a < b < c and where the dashed paths have arbitrary length.
We will say that a i-avoiding tree that avoids also the subtrees α and β is a right-comb.

It is easily seen that the set RCTn is precisely the set of right-combs with n nodes.
The following figure represents the shape of a right-comb.

Now we will establish a recurrence for the numbers of right-combs. Denote by an the
cardinality of RCTn.

Theorem 4. The sequence {an}n>0 satisfies

an = 2an−1 +
n−2∑
i=1

ai · (an−i−1 − an−i−2) ∀n > 2

with a0 = a1 = 1.

Proof. Given a tree t in RCTn−1, we can always add a son with label n either to the left
of the leftmost vertex or to the right of the last vertex of the first right branch.

Fix now an integer i between 1 and n−2 and consider a tree t1 in RCTi. Consider also
a tree t2 in RCTn−i−1 whose maximal label is not attached to its leftmost vertex. Notice
that we have an−i−1− an−i−2 such trees. We can associate to the pair (t1, t2) a tree t1⊕ t2
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in RCTn by adding to the rightmost vertex of t1 a right son labelled i+ 1, increasing by
i+ 1 each label in t2 and pasting the root of t2 to the left of the leftmost vertex of t1.

Every tree t in RCTn whose vertex with label n is neither the leftmost one nor at the
end of the first right branch can be obtained in this way. In fact, given such a tree

• let i+ 1 be the maximal label on the first right branch,

• consider the subtree t1 (t2, respectively) of nodes labelled by 1, 2, . . . , i, (i+2, . . . , n,
respectively).

Then t = t1 ⊕ t2.

Example 5. Let
1

23

4t = 5

69

11 10

7

8

Then
1

2t1 = 3

45

6

7

1

2t2 = 3

The sequence {an}n>0 is (up to a shift) sequence A105633 in [11].
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4.2 Sn(213S, 231)

Similarly to the previous case, the set Sn(213S, 231) corresponds under the map φ to the
subset of Tn(i) of trees avoiding the subtree

a

α′ = b

c

(with a < b < c) and

β′ = b

a

c

where a < b < c and where the dashed paths have arbitrary length. We denote this
subset by LCTn and call the elements of this set left-combs. Let bn be the cardinality of
LCTn. Now we prove that the sequence {bn}n>0 satisfies the same recurrence of {an}n>0

and hence
|LCTn| = |RCTn|.

Theorem 6. The sequence {bn}n>0 satisfies

bn = 2bn−1 +
n−2∑
j=1

bj · (bn−j−1 − bn−j−2) ∀n > 2 (1)

with b0 = b1 = 1.

Proof. To prove recurrence 1 we will partition the set LCTn into three non-intersecting
subsets.

In fact, given a tree t in LCTn we have three possible cases.

Case 1: The root of t has no left son. Such trees are in bijection with the set LCTn−1
(by removing the root). Hence we have bn−1 trees with n nodes of this kind.

Case 2: The root of t has no right son. There is only one left-comb with n nodes
consisting of a single left branch.

Case 3: The root of t has both a left and a right son. Let h be the label of the
left son of the root. Note that h > 2. Consider now the subtree t1 consisting of
all vertices of t labelled with 2, 3, . . . , h − 1. Let t∗ be the subtree of t obtained by
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removing t1 from the right subtree of the root of t. Denote by t2 the tree whose root
is the vertex of t with label h, whose right subtree is t∗, and whose left subtree is
the left branch stemming from h. Let t1 and t2 be the trees obtained from t1 and t2
by renormalization of the labels, respectively. The tree t is uniquely determined by
the pair (t1, t2). We will write t = t1 ⊗ t2. Note that t1 is a tree in LCTh−2, while t2
is a tree which satisfies all the conditions of the trees in LCTn−h+1, except for the
fact that the left son of the root can also be labelled by 2.

Example 7. Let

1

25

4 3t = 9

6

78

then t = t1 ⊗ t2 with

1

2t1 = 3 and

1

2t2 = 5

4 3

The edges of t corresponding to t2 are denoted by thick lines. In this example
t1 ∈ LCT3, t2 ∈ LCT5 and t ∈ LCT9.

Example 8. Let

1

2

t = 6

5

34

8

9

7

10
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then t = t1 ⊗ t2 with

1

2t1 = 3 and

1

42

6t2 = 3

5

Note that t1 ∈ LCT3, t ∈ LCT10, but t2 /∈ LCT6, since it contains a i-subtree given
by the nodes 1, 2, 4.

There are three possible situations.

Subcase 3.1: t2 is an arbitrary tree in LCTn−h+1 and, since t = t1 ⊗ t2 must belong
to LCTn, t1 is a tree in LCTh−2 such that its rightmost vertex does not have a
left son. In order to compute the number of such trees we proceed as follows.
If s is an element of LCTi such that its rightmost vertex has a left son, the
labels of these last two vertices are consecutive, since s must avoid β′. As a
consequence, the number of such trees is bi−1. Hence we have

n−3∑
j=1

bj · (bn−j−1 − bn−j−2) + bn−2

trees in LCTn obtained as product of smaller trees of these types. We observe
that the term bn−2 refers to the case when t2 is an arbitrary tree in LCTn−2
and t1 is the tree with one node.

Subcase 3.2: t2 is a tree in LCTn−h+1 given by a non-empty sequence of left edges
or the tree with one node, and t1 is a tree in LCTh−2 such that its rightmost
vertex has a left son. The number of trees in LCTn obtained in this way is

bn−3 + bn−4 + · · ·+ b1.

Subcase 3.3: t2 is a tree which satisfies all the conditions of the trees in LCTn−h+1

except for the fact that the left son of the root is labelled by 2 (and the root
has a right son). Once again, since t = t1 ⊗ t2 ∈ LCTn, then t1 belongs to
LCTh−2 and its rightmost vertex does not have a left son (notice that t1 can
also be the tree with a single node).

We denote by ˆLCT n−h+1 the set of trees which satisfy all the conditions of the
trees in LCTn−h+1 except for the fact that the left son of the root is labelled
by 2 (and the root has a right son).
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In order to enumerate the elements of the set ˆLCT j, j > 3, we observe that

a tree w ∈ ˆLCT j in which the right son of the root is labelled by k must
have a left branch stemming from the root whose first labels are 1, 2, . . . , k−1.
Removing the nodes labelled from 2 to k − 1 and scaling the remaining labels
we get an arbitrary tree in LCTj−k+2 different from the tree given by a single
left branch (hence there are bj−k−2 − 1 possible choices for such tree). This
implies

| ˆLCT j| = (bj−1 − 1) + (bj−2 − 1) + · · ·+ (b2 − 1).

The number of trees t1 ∈ LCTi whose rightmost vertex does not have a left
son is bi − bi−1, hence the total number of trees obtained as a product of the
type explained above is

n−3∑
j=3

((bj−1 − 1) + (bj−2 − 1) + · · ·+ (b2 − 1)) · (bn−j−1 − bn−j−2)

+(bn−3 − 1) + (bn−4 − 1) + · · ·+ (b2 − 1)

where the sum in the second line equals the number of the trees t1 ⊗ t2, with
t1 being a single node. It is easy to see that the expression above reduces to

(b2 − 1)bn−4 + (b3 − 1)bn−5 + · · ·+ (bn−3 − 1)b1.

We now proceed by induction on n. The base case with n = 2 is trivial.
Suppose by induction that

bn−1 = 2bn−2 +
n−3∑
j=1

bj · (bn−j−2 − bn−j−3).

This implies that

n−3∑
j=1

bjbn−j−2 = bn−1 − 2bn−2 +
n−4∑
j=1

bjbn−j−3 + bn−3b0

and, iterating, we obtain

n−3∑
j=1

bjbn−j−2 = bn−1 − bn−2 − 1. (2)

Now we add all the contributes from Cases 1,2 and 3. We get

bn =bn−1 +
n−3∑
j=1

bj · (bn−j−1 − bn−j−2) + bn−2 + bn−3 + · · ·+ b1 + 1

+ (b2 − 1)bn−4 + (b3 − 1)bn−5 + · · ·+ (bn−3 − 1)b1 =

bn−1 +
n−3∑
j=1

bj · (bn−j−1 − bn−j−2) + bn−2 + 1

+ bn−3 + b2bn−4 + b3bn−5 + · · ·+ bn−3b1.
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Exploiting identity (2), the last row of the previous equation can be rewritten as bn−1 −
bn−2 − 1, hence we get

bn =bn−1 +
n−3∑
j=1

bj · (bn−j−1 − bn−j−2) + bn−2 + 1

+ bn−1 − bn−2 − 1 =

2bn−1 +
n−2∑
j=1

bj · (bn−j−1 − bn−j−2).

as desired.

4.3 Sn(213S, 321)

In order to enumerate the set Sn(213S, 321) it is more convenient to focus on permutations
themselves rather than studying the properties of the associated trees. Starting from
a permutation π ∈ Sn−1(213S, 321), with n > 3, we can obtain a permutation π̂ ∈
Sn(213S, 321) by inserting the symbol n in one of the following positions. Write π =
σx1x2 . . . xk, k > 1, where x1x2 . . . xk is the last ascending run of π. Then we can either
insert n

• immediately before x1, or

• immediately after xi, for all i > 2, if any, or

• between x1 and x2 whenever σ is the empty permutation (otherwise we would create
an occurence of the consecutive pattern 213).

Denote by An,h the number of elements of Sn(213S, 321) such that the last ascending
run has length h. The above considerations imply that

An,k = An−1,k + An−1,k−1 · δk>3 + An−1,k+1 · δn−1=k+1 +
n−k−1∑
i=2

An−1,k+i

for all n > 3 and k > 1, where

δP =

{
1 if the proposition P is true

0 otherwise.

Note that the sequence {|Sn(213S, 321)|}n>0, is not present in [11]. The first values of
such sequence are 1, 1, 2, 4, 8, 18, 45, 119, . . .
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4.4 Sn(213S, 132, 231)

The results of Subsections 4.1 and 4.2 imply that the map φ restricted to Sn(213S, 132, 231)
is a bijection between such set and the set LCTn∩RCTn. The trees of this last set consist
of a root, a (possibly empty) left branch stemming from the root and a (possibly empty)
right branch stemming from the root, as shown in the following figure

Note that if such a tree has a right branch, the right son of the root has label 2
(otherwise the tree would contain a i-subtree). As a consequence, we can choose the
labels of the nodes on the left branch in the set {3, . . . , n}, without constraints.

The only other possible case is the case of a tree with only a left branch.
Hence

|Sn(213S, 132, 231)| =

{
2n−2 + 1 if n > 2

1 if n = 0, 1.

4.5 Sn(213S, 132, 321)

As proved in Subsection 4.1, the set Sn(213S, 132) corresponds, under the map φ, to the
set RCTn. If π ∈ Sn(213S, 132, 321), the left branch of the right-comb φ(π) has length
at most one (otherwise the elements of π corresponding to the nodes of such left branch
would give rise to a decreasing subsequence). Conversely, it is immediately seen that a
right-comb with a left branch of length at most one, i.e. of the form

corresponds, under the map φ−1, to a permutation in Sn(213S, 132, 321).
Now, denote by k the length of the leftmost right branch of such a tree. For every

n > 2, there is exactly one tree with k = 0 and exactly one tree with k = n − 1.
If 1 6 k 6 n − 2, note that the labels of the nodes of the leftmost right branch are
consecutive, otherwise the tree would contain the subtree β. Hence these labels can be
chosen in n− k − 1 ways. As a consequence,
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|Sn(213S, 132, 321)| =

{
n2−3n+6

2
if n > 2

1 if n = 0, 1.

This is (up to a shift) sequence A152948 in [11].

4.6 Sn(213S, 231, 321)

The set Sn(213S, 231) corresponds, under the map φ, to the set of left-combs LCTn, as
seen in Subsection 4.2. For every π ∈ Sn(213S, 231, 321) the right branches of the tree φ(π)
have length at most one, since the labels of any right branch correspond to a descending
sequence in the permutation. Moreover, φ(π) must avoid also the subtrees of the form

because every labelling of such subtree yields a permutation containing either the pat-
tern 321 or the simsun pattern 213. Hence two nodes of φ(π) with a left son cannot be
consecutive. The following figure represents such a tree

Let t be a tree in φ(Sn(213S, 231, 321)) with n > 3. If the root of t does not have
a left son, removing the root from t we get an arbitrary tree in φ(Sn−1(213S, 231, 321)).
Otherwise, let k > 2 be the label of the left son of the root. Since the tree t avoids the
subtree β′, the nodes with labels {2, . . . , k − 1} have no left son. If we remove from t
such nodes and the root we get an arbitrary tree in φ(Sn−k(213S, 231, 321)). Hence the
sequence {cn}n>0 with cn = |Sn(213S, 231, 321)| satisfies

cn = cn−1 + cn−3 + cn−4 + · · ·+ c0.

This is (up to the first term) sequence A005314 in [11].
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4.7 Sn(213S, 132, 231, 321)

The previous considerations imply that φ(Sn(213S, 132, 231, 321)) is the set of trees con-
sisting of a root, a right branch and, possibly, a left edge stemming from the root, as in
the figure below

There is only one tree consisting of a single right branch. On the other hand, if the
root has a left son and n > 3, we can choose the label of the left son of the root from the
set {3, . . . , n}. Hence

|Sn(213S, 132, 231, 321)| =


n− 1 if n > 3

n if n = 1, 2

1 if n = 0.

5 Connection with barred generalized patterns

A generalized pattern (or vincular pattern) is a classical pattern τ some of whose con-
secutive letters may be underlined. A permutation π contains the generalized pattern τ
if it contains τ in the classical sense and the elements corresponding to τi and τi+1 are
consecutive in π if τiτi+1 is underlined in τ.

A barred generalized pattern τ is a generalized pattern τ some of whose consecutive
letters may be overlined. If τ is a barred generalized pattern, denote by τ̂ the generalized
pattern obtained from τ removing the overbars and by τ̃ the generalized pattern obtained
from τ removing the overbarred symbols.

A permutation π avoids the barred generalized pattern τ if every occurence of τ̃ in π
is part of an occurence of τ̂ .

As an example, consider the barred generalized pattern 3124. In the permutations
π = 4513762 the subsequence 437 forms an occurence of the generalized pattern 213
which is part of an occurence of 3124 and the same holds for the other occurrences of 213,
hence π avoids the barred generalized pattern 3124.

It is possible to recast the avoidance of the simsun patterns 132S and 213S in terms
of barred generalized patterns. In fact, as noted above, Sn(132S) = Sn(2413) and by [1,
Theorem 2.3] we have also

Sn(132S) = Sn(2413) = Sn(2413) = Sn(231).

Likewise, it is possible to prove that

Sn(213S) = Sn(3124).
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