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Abstract

We prove that for all d > 1, a shellable d-dimensional complex with at most
d+ 3 vertices is extendably shellable. The proof involves considering the structure
of ‘exposed’ edges in chordal graphs as well as a connection to linear quotients of
quadratic monomial ideals.

Mathematics Subject Classifications: 05E45, 52B22, 13D02, 13F55

1 Introduction

A pure d-dimensional simplicial complex ∆ is said to be shellable if there exists an ordering
of the facets F1, F2, . . . , Fs such that for all k = 2, 3, . . . , n the simplicial complex induced
by ( k−1⋃

i=1

Fi

)
∩ Fk

is pure of dimension d − 1. Shellability is an important combinatorial tool that has
consequences for the topology of ∆ as well as algebraic properties of its Stanley-Reisner
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(face) ring K[∆]. Examples of shellable simplicial complexes include the independence
complexes of matroids [14], boundary complexes of simplicial polytopes [6], as well as the
skeleta of shellable complexes [5]. In particular for any k = 1, 2, . . . , n− 1 the k-skeleton
of a simplex on vertex set [n] is shellable. It was recently shown [11] that for every d > 2
deciding if a given pure d-dimensional simplicial complex is shellable is NP-hard.

Given a shellable complex a natural question to ask is whether one can get ‘stuck’ in the
process of building a shelling order. A shellable complex ∆ is said to be extendably shellable
if any shelling of a subcomplex of ∆ can be extended to a shelling of ∆. Here a subcomplex
of ∆ is a simplicial complex Γ whose set of facets consists of a subset of the facets of ∆. Any
2-dimensional triangulated sphere (which is necessarily polytopal) is extendably shellable
[9], and Kleinschmidt [12] has shown that any d-dimensional sphere with d + 3 vertices is
extendably shellable. Björner and Eriksson [4] proved that independence complexes of
rank 3 matroids are extendably shellable. On the other hand Ziegler [17] has shown that
there exist simplicial 4-polytopes that are not extendably shellable.

Simon [16] has conjectured that every k-skeleton of a simplex is extendably shellable.
One can see that the case of k = 0, 1 as well as k = n− 1, n− 2 are easy exercises. The
Björner-Eriksson result establishes the k = 2 case of Simon’s conjecture by considering U3

n,
the uniform matroid of rank 3. In [2] Simon’s conjecture was established for k = n− 3
(a simpler proof was provided independently in [10] based on results from [7]). Here we
prove that much more is true.

Theorem 1. Suppose X is a shellable d-dimensional simplicial complex on at most d + 3
vertices. Then X is extendably shellable.

This of course implies the k = n − 3 case of Simon’s conjecture and also provides
a generalization of Kleinschmidt’s results. Our result is also best possible in the sense
that there exists 2-dimensional shellable complexes on 6 vertices that are not extendably
shellable (see [13], [3]).

Again the statement is easy to establish if X has d + 1 or d + 2 vertices so our result
addresses the case of d + 3 vertices. To prove Theorem 1 we use the correspondence
between shellings of d-dimensional simplicial complexes on d + 3 vertices and linear
quotients of monomial ideals generated by quadrics. In previous work of the authors ([7],
[10]) it is shown that such constructions are equivalent to removing exposed edges from
chordal graphs. Using these ideas we will see that Theorem 1 follows from the following
graph-theoretic result.

Proposition 2. Suppose G is a chordal graph and suppose H ⊂ G is a subgraph of G that
is also chordal. Then H can be obtained from G via a sequence of removals of exposed
edges.

In the next section we recall the relevant definitions and set notation. In Section 3 we
prove Proposition 2 and show how it leads to a proof of Theorem 1.
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2 Notation

For a finite set E we let
(
E
k

)
denote the family of k-subsets of E. A subset C ⊂

(
E
k

)
will

be called a k-clutter on vertex set E. For a k-clutter C we use C to denote the (pure)
(k − 1)-dimensional simplicial complex generated by C, that is the collection of all subsets
of elements of C (including the empty set ∅). Given a k-clutter C a shelling step is the
addition of a some e ∈

(
E
k

)
− C to C such that

e− C = {f : d ⊂ f ⊂ e},

for some d ⊂ e. In other words the intersection of e with C is a pure simplicial complex of
dimension k − 2.

If ∆ is pure d-dimensional simplicial complex ∆ with shelling order of its facets
(F1, F2, . . . , Fs), the restricted set of the facet Fi is the set of (d− 1)-dimensional faces in
the intersection of the facet Fi with the subcomplex F1 ∪ F2 ∪ · · · ∪ Fi−1.

We next recall some basic notions from graph theory. For us a graph G consists of a
finite set of vertices V (G) along with a set E(G) of unordered pairs of elements of V (G).
In particular our graphs are undirected and simple, with no loops or multiple edges. An
element of E(G) will be written vw, with set brackets and comma suppressed. If G is a
graph on vertex set V (G) then a subgraph H ⊂ G is a graph on a vertex set V (H) ⊂ V (G)
with the property that if e ∈ E(H) then e ∈ E(G). An induced subgraph H ⊂ G has
the property that whenever v, w ∈ V (H) and vw ∈ E(G) we have vw ∈ E(H). If G is a
graph its complement graph GC has the same vertex set V (G) and edge set consisting of
the edges not present in G.

If S ⊂ V (G) is a subset of vertices of G we let G[S] denote the subgraph induced by S.
A clique in a graph G is an induced subgraph K ⊂ G with the property that all pairs of
vertices in V (K) form edges in K (so that K is a complete graph). If v ∈ V (G) is a vertex
of G the neighborhood of v in G is defined as

NG(v) = {w ∈ V (G) : vw ∈ E(G)}.

A vertex v is simplicial if the subgraph induced on N(V ) is a complete graph. We recall
the notion of exposed edges introduced in [7].

Definition 3. Suppose G is a graph. An edge e ∈ E(G) is said to be exposed if it is
uniquely contained in a maximal clique. If in addition the edge is properly contained in the
clique (i.e. e is contained in some triangle) then we say that e is properly exposed. We refer
to the operation of removing a (properly) exposed edge from G as an (proper) erasure. A
sequence of edges (e1, . . . , ek) is an (proper) erasure sequence, if ei is a (properly) exposed
edge of the graph G− {es | s < i} for all i = 1, . . . , k.

An edge which is exposed but not properly exposed will also be called a facet edge. A
chordal graph is a graph with no induced cycles of length four or more. In [7] it is shown
that a graph G on vertex set [n] = {1, 2, . . . , n} is chordal if and only if G can be obtained
from the complete graph Kn via a sequence of erasures. Furthermore, this G is connected
(and chordal) if and only if each edge in that sequence is properly exposed.
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We note that if we fix V (G) = [n] = {1, 2, . . . , n} to be the vertex set of the graph G, the
collection of edges E(G) = {e1, e2, . . . em} corresponds to a (n− 2)-clutter X(G) ⊂

(
[n]
n−2

)
with (n− 2)-subsets given by Fi = [n]\ei. This correspondence can of course be reversed,
so that an (n − 2)-clutter X corresponds to a graph G(X). We will use the following
lemma from [10].

Lemma 4. An ordered set of edges e1, e2, . . . , ek is an erasure sequence in Kn (resulting in
a chordal graph G) if and only if the corresponding ordered set F1, F2, . . . , Fk is a sequence
of shelling steps (resulting in the (n− 3)-dimensional simplicial complex X(GC)). An edge
ei is properly exposed if and only if the restricted set of Fi consists of less than n − 2
elements.

3 Proofs

In this section we provide the proofs of Proposition 2 and Theorem 1, which will follow
from a number of elementary graph-theoretic lemmas. Having obtained Proposition 2,
we discovered that a slightly weaker result had already been proved as Lemma 2 of [15],
though that result does not characterize the class of edges allowed for removal. The
notion of exposed edges allows for a new and simplified treatment of chordality that is
independent of any particular structural descriptions of a chordal graph (such as the one
obtained from a fixed vertex elimination ordering), resulting in a much simpler proof of
Proposition 2 than that found in [15]. Believing this to be of some independent interest,
we include a self-contained discussion here, in the form of Lemmas 5–8.

We first collect some simple observations regarding exposed edges which follow straight
from the definitions:

Lemma 5. For any graph G and any edge xy ∈ E(G) the following are equivalent:

1. xy ∈ G is exposed (respectively, properly exposed).

2. NG(x) ∩NG(y) is complete (resp. complete and nonempty).

3. y is a simplicial (resp. simplicial and non-isolated) vertex of NG(x).

4. x is a simplicial (resp. simplicial and non-isolated) vertex of NG(y).

The basic relationship between exposed edges and chordality is as follows:

Lemma 6. Suppose G is a chordal graph. Then:

1. An edge e ∈ E(G) is exposed if and only if G− e is chordal;

2. if v ∈ V (G) is simplicial, every edge xv ∈ E(G) is exposed.

Proof. For the implication ⇒ of (1) we follow the proof of Theorem 8 in [7]. Suppose G is
a chordal graph and xy ∈ ∂G is an exposed edge. If C is an induced cycle in H := G− e
such that {x, y} 6⊂ C (i.e., C possibly contains x or y, but not both), then C is also an
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induced cycle of G and so of length 3. Otherwise, suppose {x, y} ⊂ C and |C| > 3. Note
that if |C| > 4, then the induced subgraph C ′ = C ∪xy of G has an induced cycle of length
greater than 3, a contradiction. This leaves us with the case where C = x− v1− y− v2−x
for some v1, v2. Since xy is exposed in G, we must have v1v2 ∈ E(G), since otherwise
xy would lie in two distinct maximal cliques so that xy would not be exposed. However,
v1v2 ∈ E(G) (hence in E(H)) means that C would not be an induced cycle in H, a
contradiction.

Conversely, note that if e = xy is not exposed, then there are two non adjacent vertices
z, w ∈ NG(x) ∩NG(y). Thus x− z − y − w − x is an induced four cycle in G− e.

For (2), notice that if v ∈ G is simplicial then every vertex x ∈ NG(v) is simplicial in
NG(v). Thus either NG(v) = {x} so that xv is a facet edge, or else Lemma 5 gives the
result.

The following result for chordal graphs is well-known, but is usually derived in the litera-
ture from the characterization of chordality via vertex elimination orderings. Here we derive
it directly from the hereditary property of chordality and the preceding characterization
of exposed edges.

Lemma 7. Let G be a chordal graph. Then:

1. every facet edge in G is a cut edge;

2. either G is complete or G has at least two nonadjacent simplicial vertices.

Proof. To prove (1), consider a facet edge wz in G. If H := G − wz is connected, then
there is a path from z to w in G− wz. Since G is chordal, we conclude there is a vertex
u ∈ NG(w) ∩NG(z). But this contradicts wz being a facet edge.

To prove (2), suppose G is a counterexample with f(G) := |E(G)|+ |V (G)| as small
as possible. Then G is chordal, incomplete (obviously), and connected: otherwise, each
connected component is a chordal graph that is not a counterexample and we can take one
simplicial vertex from each component to obtain an independent set of simplicial vertices
of cardinality at least 2.

Also, G may not contain a facet edge wz since otherwise G−wz would be chordal with
f(G−wz) < f(G), contradicting minimality: indeed, since G−wz is disconnected by (1),
each connected component K of G− wz would contain at least one simplicial vertex uK

that is neither w nor z, and uK is necessarily simplicial in G.
Next, we claim that G has a properly exposed edge. To see this let v ∈ V (G) be any

vertex of G. Thus f(NG(v)) < f(G) and G[NG(v)] is chordal (all induced subgraphs of
a chordal graph are chordal). Therefore either (i) G[NG(v)] is complete, meaning v is a
simplicial vertex and every edge incident to v is exposed (and there must be one such edge
because G is connected and not complete); or (ii) NG(v) contains two simplicial vertices,
each of which gives rise to a properly exposed edge in G that is incident to v.

Now, let e = xy be a properly exposed edge in G. Then G − e is not complete
and is chordal, and f(G − e) < f(G). Hence there exist v1, v2 nonadjacent simplicial
vertices in G − e. Since NG−e(vi) is complete, we have that {x, y} ∈ NG−e(vi) and so
G[NG(vi)] = G[NG−e(vi)]. Thus v1, v2 are also simplicial in G.
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The following lemma is the promised (mild) strengthening of Lemma 2 in [15], with a
new and simplified proof using exposed edges rather than perfect elimination orderings.

Lemma 8. Suppose H and G are chordal graphs with V (H) = V (G), E(H) = E,
E(G) = E ∪ F where E ∩ F = ∅. Then F contains an exposed edge of G. Equivalently,
there exists an edge e of G such that G− e is chordal and contains H.

Proof. Suppose that (G,H) is a counterexample with |V (G)| minimal. Then Lemma 7
ensures the existence of a simplicial vertex z in H (i.e., NH(z) is complete). First, suppose
that NH(z) = NG(z), so that z is simplicial in G as well and G − z, H − z are chordal
(Lemma 6). Since (G,H) is minimal, we can find an exposed edge e = xy in G− z such
that e /∈ E(H − z). To see that e is also exposed in G, notice that since e /∈ E(H − z)
and hence e /∈ E(H) and z is simplicial in H, we must have that {x, y} 6⊂ NH(z) = NG(z),
or in other words z /∈ NG(x) ∩NG(y). Thus G[NG(x) ∩NG(y)] = G[NG−z(x) ∩NG−z(y)],
which is complete and e is exposed in G.

Now if NH(z) 6⊂ NG(z), then because G[NG(z)] is chordal we can apply Lemma 7 to
see that either (i) G[NG(z)] is complete, in which case z is simplicial in G and any edge
zx with x ∈ NG(z)\NH(z) is exposed (Lemma 6); or (ii) G[NG(z)] has two non-adjacent
simplicial vertices v1, v2. Since z is simplicial in H, we must have {v1, v2} 6⊂ NH(z) and so
one of xv1, xv2 /∈ E(H), but both are exposed in G.

We can now prove the results stated in the introduction.

Proof of Proposition 2. Suppose G is a chordal graph and suppose H ⊂ G is a subgraph of
G that is also chordal. By Lemma 8 there exists and edge e of G such that G− e is chordal
and contains H. Continue removing edges in this way until we obtain the graph H.

Proof of Theorem 1. Suppose X is a shellable d-dimensional complex on vertex set V =
V (X). We first note that if |V | = d + 1 then X is a simplex, and if |V | = d + 2 it is
not hard to see that any ordering on the facets of X is a shelling: after we add the first
facet F1, every subsequent facet Fi intersects the previous collection in i − 1 faces of
dimension d− 1.

Hence we can assume that |V | = d + 3. Let (F1, F2, . . . , F`) be some shelling order for
X, where each Fi is a facet of X (a subset of V of cardinality d+ 1). Let H = G(X) be the
corresponding graph on the same vertex set, with edges given by ei = V \Fi. By Lemma 4
the graph H is chordal. Now suppose that we have a partial shelling (Fi1 , Fi2 , . . . Fik) of X
resulting in a subcomplex Y ⊂ X. Again by Lemma 4 we have that ei1 , ei2 , . . . , eik is an
erasure sequence in the complete graph Kd+3, resulting in the graph G = G(Y ) which by
Lemma 6 is chordal. Hence we see that H is a chordal subgraph of the chordal graph G,
both on the same vertex set V . By Proposition 2 we can obtain H by removing exposed
edges in G, which (again by Lemma 4) corresponds to completing the partial shelling into
a shelling of X. The result follows.
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4 Conclusion

Having established (a strengthening of) Simon’s conjecture for d-dimensional complexes
on d + 3 vertices a natural question to ask is how the methods might extend. Our work
here relies on the the fact that a chordal graph G always admits an exposed edge, and
in fact we can remove exposed edges to obtain any given chordal subgraph H ⊂ G. By
Lemma 4 we have that removing exposed edges corresponds to making shelling moves on
the ‘complementary’ simplicial complex.

One can consider higher-dimensional analogues of these concepts in the context of
d-clutters and exposed circuits. In fact Simon’s conjecture is equivalent to the statement
that every d-clutter obtained by removing exposed circuits from the complete d-clutter
Kd

n admits an exposed circuit [10]. In the case of d = 2 we can rely on various other
properties of chordal graphs including the existence of simplicial vertices. Unfortunately
these properties don’t extend to the higher dimensional setting. In particular clutters
obtained by removing exposed circuits from Kd

n do not in general admit a simplicial vertex,
or even a simplicial ridge [1].

In [2] the authors consider a notion of a decomposable d-clutter that generalizes chordal
graphs in a different way, and conjecture that such clutters admit a simplicial ridge. As
spelled out in [2] a positive answer to this question would imply Simon’s conjecture. As
far as we know this conjecture is open even for the case of d = 3.
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