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Abstract

Given two k-graphs F and H, a perfect F -tiling (also called an F -factor) in H
is a set of vertex-disjoint copies of F that together cover the vertex set of H. Let
tk−1(n, F ) be the smallest integer t such that every k-graph H on n vertices with
minimum codegree at least t contains a perfect F -tiling. Mycroft (JCTA, 2016)
determined the asymptotic values of tk−1(n, F ) for k-partite k-graphs F and con-
jectured that the error terms o(n) in tk−1(n, F ) can be replaced by a constant that
depends only on F . In this paper, we determine the exact value of t2(n,K

3
m,m),

where K3
m,m (defined by Mubayi and Verstraëte, JCTA, 2004) is the 3-graph ob-

tained from the complete bipartite graph Km,m by replacing each vertex in one part
by a 2-elements set. Note that K3

2,2 is the well known generalized 4-cycle C3
4 (the

3-graph on six vertices and four distinct edges A,B,C,D with A ∪B = C ∪D and
A∩B = C∩D = ∅). The result confirms Mycroft’s conjecture for K3

m,m. Moreover,
we improve the error term o(n) to a sub-linear term when F = K3(m) and show
that the sub-linear term is tight for K3(2), where K3(m) is the complete 3-partite
3-graph with each part of size m.
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1 Introduction

A k-graph H is a pair H = (V,E) where V is a set of elements called vertices, and E is
a collection of subsets of V with uniform size k called edges. We call |V | the order of H
and |E| the size of H, also denoted by |H| or e(H). We write graph for 2-graph for short.
Given two k-graphs F and H, an F -tiling in H is a collection of vertex-disjoint copies of
F in H. An F -tiling is perfect if it covers every vertex of H, also known as an F -factor.
If F is a single edge then an F -factor in H is a perfect matching in H. As for matchings,
a natural question for tiling is to determine the minimum degree threshold for finding a
perfect F -tiling. Given S ⊆ V (H), the degree of S, denote by dH(S), is the number of
edges of H containing S. The minimum s-degree δs(H) of H is the minimum of dH(S)
over all S ⊆ V (H) of size s. For integer n divisible by |V (F )|, define ts(n, F ) to be the
smallest integer t such that every k-graph H on n vertices with δs(H) > t contains a
perfect F -tiling. For n ∈ N, write [n] for the set {1, . . . , n}, and rN for the set of positive
integers divisible by integer r

Tiling problems have been widely studied for graphs. The celebrated Hajnal-Szemerédi
Theorem [8] states that t1(n,Kr) = (1−1/r)n for n ∈ rN. Alon and Yuster [1] generalized
the Hajnal–Szemerédi Theorem to t1(n,H) 6 (1 − 1/χ(H))n + o(n) for every H with
chromatic number χ(H) and n ∈ hN; later, Komlós, Sárközy, and Szemerédi [15] proved
that the error term o(n) can be replaced by a constant C = C(H). In [19], Kühn and
Osthus improved Alon–Yuster’s result to t1(n,H) = (1−1/χ∗(H))n+O(1), where χ∗(H)
depends on the relative sizes of the colour classes in the optimal colourings of H and
satisfies χ(H)− 1 6 χ∗(H) 6 χ(H). See [18] for a survey on graph tiling.

For hypergraphs, we know much less and tiling problems become much harder. There
are a number of research results on perfect matching problem, see [26, 28] for surveys.

For complete k-graphs and related, the research focus on the case k = 3. Let K3
4

be the complete 3-graph on four vertices, and K3
4 − `e be the 3-graphs obtained from

K3
4 by deleting ` edges. Kühn and Osthus [17] showed that t2(n,K

3
4 − 2e) = (1/4 +

o(1))n, and Czygrinow, DeBiasio and Nagle [3] determined its exact value for large n. Lo
and Markström [20] proved that t2(n,K

3
4 − e) = (1/2 + o(1))n and the exact value was

determined for large n by Han, Lo, Treglown and Zhao [10] recently. Lo and Markström
[21] also proved that t2(n,K

3
4) = (3/4 + o(1))n, and the exact value was determined for

large n by Keevash and Mycroft [14].

A (k, `)-cycle C
(k,`)
s is a k-graph on s vertices so that whose vertices can be ordered

cyclically in such a way that the edges are sets of consecutive k vertices and every two
consecutive edges share exactly ` vertices. Gao and Han [6] and Czygrinow [2] determined

the exact value of t2(n,C
(3,1)
6 ) and t2(n,C

(3,1)
s )(s > 6), respectively, and Gao, Han and

Zhao [7] determined tk−1(n,C
(k,1)
s ) for k > 4. Han, Lo, and Sanhueza-Matamala [11]

proved tk−1(n,C
(k,k−1)
s ) 6 (1/2+1/(2s)+o(1))n where k > 3 and s > 5k2 and this bound

is asymptotically best possible for infinitely many pairs of s and k.
In the study of tiling problems, another family of hypergraphs which was well studied

are k-partite k-graphs. A k-graph F on vertex set V is said to be k-partite if V can be
partitioned into vertex classes V1, . . . , Vk so that for any e ∈ F and 1 6 j 6 k we have
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|e ∩ Vj| =1. The partition V1, . . . , Vk of V is called a k-partite realisation of V . Define

S(F ) :=
⋃
χ

{|V1|, . . . , |Vk|} and D(F ) :=
⋃
χ

{|Vi| − |Vj| : i, j ∈ [k]} ,

where in each case the union is taken over all k-partite realisations χ = {V1, . . . , Vk} of V .
The greatest common divisor of F , denoted by gcd(F ), is then defined to be the greatest
common divisor of the set D(F ) (if D(F ) = {0} then gcd(F )is undefined). The smallest
class ratio of F , denoted by σ(F ), is defined by

σ(F ) := min
S∈S(F )

S

|V (F )|
.

Note in particular that σ(F ) 6 1/k, with equality if and only if |V1| = |V2| = . . . = |Vk|
for any k-partite realisation χ = {V1, V2, . . . , Vk}. A complete k-partite k-graph with
vertex classes V1, . . . , Vk is a k-graph on V = V1 ∪ . . . ∪ Vk and edge set E = {e :
|e ∩ Vi| = 1 for each i ∈ [k]}. Observe that a complete k-partite k-graph has only one
k-partite realisation up to permutations of the vertex classes V1, . . . , Vk. Hence, we write
Kk(V1, . . . , Vk) for a complete k-partite k-graph with vertex classes V1, . . . , Vk and if the
sizes of Vi are emphasized, we write Kk(|V1|, . . . , |Vk|) for Kk(V1, . . . , Vk), if |V1| = · · · =
|Vk| = m we write Kk(m) for Kk(V1, . . . , Vk) and call Kk(m) the balanced complete k-
partite k-graph. Mycroft [23] proved a general result on tiling k-partite k-graphs.

Theorem 1.1 (Theorem 1.1, 1.2, 1.3 in [23]). Let F be a k-partite k-graph. Then for any
α > 0 there exists n0 such that if H is a k-graph on n > n0 vertices for which |V (F )|
divides n and

δk−1(H) >


n/2 + αn if S(F ) = {1} or gcd(S(F )) > 1;
σ(F )n+ αn if gcd(F ) = 1;
max{σ(F )n, n

p
}+ αn if gcd(S(F )) = 1 and gcd(F ) > 1,

(1)

then H contains a perfect F -tiling, where p is the smallest prime factor of gcd(F ). More-
over, (1) is asymptotically best possible for a large class of k-partite k-graphs including
complete k-partite k-graphs.

Furthermore, Mycroft also conjectured that the error terms in (1) can be replaced by
a (sufficiently large) constant that depends only on F .

Conjecture 1.2 ([23]). Let F be a k-partite k-graph. Then there exists a constant C =
C(F ) such that the error terms in (1) can be replaced by C.

Gao, Han and Zhao [7] improved the error term for complete k-partite k-graphs F =
Kk(a1, . . . , ak−1, ak) with gcd(F ) = 1 and disproved Conjecture 1.2 for all complete k-
partite k-graphs F with gcd(F ) = 1 and ak−1 > 2 (remark: in the updated version of [7],
the authors constructed more counterexamples for the conjecture of Mycroft). Han, Zang,
and Zhao [13] determined t1(n,K) asymptotically for all complete 3-partite 3-graphs K.
In this paper, we focus on balanced complete 3-partite 3-graphs. One of our main results
is the following.
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Theorem 1.3. Let m > 2 be an integer. There exists an integer n0 ∈ N such that the
following holds. Suppose that H is a 3-graph on n > n0 vertices with n ∈ 3mN. If
δ2(H) > n/2 +m

1
mn1− 1

m then H contains a K3(m)-factor.

For K3(2), we show that the lower bound of δ2(H) is tight up to a factor.

Proposition 1. There exists an integer n1 ∈ N. For every n > n1, there exists a 3-graph
H on n vertices with δ2(H) > n/2 +

√
2n/5− 3 containing no K3(2)-factor.

Clearly, Theorem 1.3 improves the error term αn in (1) to Cn1−1/m when F = K3(m),
and Proposition 1 shows that the error term C

√
n can not be replaced by a constant for

F = K3(2) and henceforth for F = K3(2m), which gives a new family of counterexamples
for Conjecture 1.2 (As mentioned in the end of [7], K3(2) is not included in the family of
counterexamples given by Gao, Han and Zhao).

Given integer k, let Ck4 be the family of k-graphs which contains four distinct edges A,
B, C, D with A ∪ B = C ∪ D and A ∩ B = C ∩ D = ∅, which was first introduced by
Erdős [4], and is also called the generalized 4-cycles. For k = 2 or 3, we write Ck

4 for Ck4
instead because there is only one graph, up to isomorphism, in Ck4 in these cases. Note
that C3

4 is a supported subgraph of K3(2).
Let X1, X2, . . . , Xt be t pairwise disjoint sets of size k − 1 and let Y be a set of s

elements disjoint from ∪i∈[t]Xi. Define Kk
s,t be the k-graph with vertex set (∪i∈[t]Xi) ∪ Y

and edge set {Xi ∪ {y} : i ∈ [t], y ∈ Y }. In [25], Mubayi and Verstraëte investigated the
Turán number of K3

s,t. We show that Conjecture 1.2 is valid for K3
m,m, in particular for

generalized 4-cycle since K3
2,2 = C3

4 . More precisely, we prove the following theorem.

Theorem 1.4. For any integer m, there exists an integer N such that for all n ∈ 3mN and
n > N ,

t2(n,K
3
m,m) =

{
bn/2c − 1, if n ≡ 1 (mod 4)
dn/2e − 1, otherwise

(2)

To show the lower bound of t2(n,K
3
m,m) in Theorem 1.4 is tight, we give a construction

of extremal 3-graph for K3
m,m.

Construction 1. Given two disjoint sets A,B, let B[A,B] be the 3-graph with vertex set
A ∪B and edge set E = {e : |e| = 3 and |e ∩ A| = 1 or 3}.

Clearly, δ2(B[A,B]) = min{|A| − 2, |B| − 1}, and each copy of K3
m,m intersects B with

an even number of vertices and hence B[A,B] does not contain a K3
m,m-factor provided

that |B| is odd. Now, suppose that n ∈ 3mN. Choose |A| = n/2+1, |B| = n/2−1 if n ≡ 0
(mod 4); |A| = bn/2c, |B| = dn/2e if n ≡ 1 (mod 4); |A| = |B| = n/2 if n ≡ 2 (mod 4);
and |A| = dn/2e, |B| = bn/2c if n ≡ 3 (mod 4). We have δ2(B[A,B]) = bn/2c − 2 if
n ≡ 1 (mod 4), and δ2(B[A,B]) = dn/2e − 2, otherwise. But B[A,B] does not contain a
K3
m,m-factor. The extremal 3-graph constructed here implies that (2) is tight.

In the following we give some notation used in this paper. For a k-graph H = (V,E)
and a vertex set U ⊆ V , write H[U ] for the subgraph of H induced by U and

(
U
r

)
for the

set of all subsets of size r of U . For an S ⊆ V , the neighbourhood of S, denoted by NH(S)
or N(S) if there is no confusion from the context, is the set of subsets T ⊆ V such that
S ∪ T ∈ E(H), the link graph of S, denoted by HS, is the (k− |S|)-graph with vertex set
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V (H) \ S and edge set NH(S). For a 3-graph H = (V,E) and u, v, w ∈ V , we write uv
and uvw for the sets {u, v} and {u, v, w}, respectively. Let V1, . . . , Vt be a partition of
V (H). An edge e = v1v2v3 is of type Vi1Vi2Vi3 if vj ∈ Vij for j ∈ [3] and ij ∈ [t]. Write
E(Vi1Vi2Vi3) for the set of edges of type Vi1Vi2Vi3 and e(Vi1Vi2Vi3) = |E(Vi1Vi2Vi3)|. A
subgraph F of H is said to be of type (t1, . . . , tr) if |V (F )∩Vi| = ti for each i ∈ [t]. Given
two constants α and β, we write α� β if α is sufficiently small with respect to β.

2 Lemmas and proofs of main results

To show Proposition 1, we first revisit a construction of Kk(1, . . . , 1, 2, t+ 1)-free (t > 1)

k-graph G with e(G) ∼
√
t
k!
nk−

1
2 edges given by Mubayi [24]. We only need the special

case that k = 3 and t = 1. Let q be a prime power and Fq be the q-element finite field.

Construction 2 ([24]). Let Gq be a 3-graph with vertex set V (Gq) = (Fq\{0})×(Fq\{0}),
a 3-elements set {(ai, a′i) : i ∈ [3]} forms an edge in Gq if and only if∏

i∈[3]

ai +
∏
i∈[3]

a′i = 1F .

As shown in [24], Gq is K3(1, 2, 2)-free and δ2(Gq) > q − 3.

Construction 3. Let G′q be a vertex-disjoint copy of Gq. Define Hq to be a 3-graph on
vertex set V = V (Gq)∪ V (G′q) and edge set E(Hq), of which every edge intersects V (Gq)
in precisely two vertices, a 3-elements set {(ai, a′i) : i ∈ [3]} with (ai, a

′
i) ∈ V (Gq) for

i = 1, 2 and (a3, a
′
3) ∈ V (G′q) forms an edge in Hq if and only if∏

i∈[3]

ai +
∏
i∈[3]

a′i = 1F .

For convenience, we use ordered triple (a, b, c) denote an edge of Hq with a, b ∈ V (Gq)
and c ∈ V (G′q).

Remark. By the constructions of Gq and Hq, we know that an edge e = abc ∈ E(Gq)
corresponds to three edges e1 = (a, b, c), e2 = (a, c, b), e3 = (b, c, a) in Hq, and Hq possibly
contains some edges of the form (a, b, a) or (a, b, b). The following fact shows that Hq

inherits some properties from Gq.

Fact 1. Hq is K3(1, 2, 2)-free and dHq(ab) > q − 3 for all a ∈ V (Gq), b ∈ V (G′q).

Proof. We show that Hq is also K3(1, 2, 2)-free. As shown in [24], for (p1, q1), (p2, q2) ∈
Fq \ {0} × Fq \ {0}, the equation system{

p1x+ p′1y = 1F
p2x+ p′2y = 1F

(3)

has at most one solution (x, y) if (p1, p
′
1) 6= (p2, p

′
2). Suppose that Hq contains a copy

of K3(1, 2, 2), say K3({a}, {b1, b2}, {c1, c2}). Let a = (u, u′), b1 = (v1, v
′
1) and b2 =
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(v2, v
′
2). Without loss of generality, we may assume a, b1, b2 ∈ V (Gq). Now let p1 =

uv1, p
′
1 = u′v′1, p2 = uv2, and p′2 = u′v′2. Since (v1, v

′
1) 6= (v2, v

′
2), we have (p1, p

′
1) 6=

(p2, p
′
2). So the equation system (3) has at most one solution, this is a contradiction to

K3({a}, {b1, b2}, {c1, c2}) ⊆ Hq.
For a ∈ V (Gq), b ∈ V (G′q), dHq(ab) > q − 3 is clearly true since the determinate

equation ax + by = 1F has exactly q solutions in Fq for any non-zero pair (a, b) ∈ (Fq \
{0})× (Fq \ {0}).

Proof of Proposition 1: For sufficiently large n, without loss of generality, we may assume
n ∈ 6N, choose an odd prime power q and n0 = (q − 1)2 such that n/2 + 2

5

√
n/2 6 n0 6

n/2 + 1
2

√
n/2. Let Fq be the q-element finite field and let A and B be the sets obtained

by deleting any one element and 2n0 − n − 1 elements from (Fq \ {0}) × (Fq \ {0}),
respectively. Then |A| = n0 − 1 and |B| = n− n0 + 1, both of them are odd. Let H ′ be
the subgraph of Hq induced by A ∪ B with A ⊂ V (Gq) and B ⊂ V (G′q). By Fact 1, H ′

is K3(1, 2, 2)-free and dH′(ab) > q − 4 for all a ∈ A, b ∈ B. Let H = B[A,B] ∪H ′. Then
δ2(H) > min{|A| − 2, |B| − 1 +

√
n0− 3} > n/2 + 2

5

√
n/2− 3. We claim that H does not

contain a K3(2)-factor. Suppose to the contrary that H contains a K3(2)-factor. Since
|A| is odd, H must contain a copy of K3(2) such that |V (K3(2)) ∩ A| is odd. Such a
copy of K3(2) must be of type (5, 1) or (3, 3). Note that copies of K3(2) in B[A,B] must
intersect A in an even number of vertices. It is an easy task to check that a copy of K3(2)
of type (5, 1) or (3, 3) forces a copy of K3(1, 2, 2) in H ′, a contradiction.

The proof of Theorems 1.3 and 1.4 are separated into non-extremal case and extremal
case. For the non-extremal case, we use the standard absorbing method, which has been
introduced by Rödl, Ruciński and Szemerédi in [27] and widely used in different research
papers for example in [3, 13, 21].

Roughly speaking, our proof follows two steps: first, we use an “absorbing lemma”
to find a small absorbing set W ⊂ V (H) with the property that given any “sufficiently
small” set U ⊂ V (H) \W , both H[W ] and H[W ∪U ] contain K3(m)-factors; second, we
use an“almost tiling lemma” to find a K3(m)-tiling in H \W that covers all but at most
o(n) vertices. The first step will be completed in Lemma 2.1 and the second step has been
done by an almost tiling lemma given by Mycroft in [23], we restate it in Lemma 2.2.

Given γ > 0, H and G are two 3-graphs on the same vertex set V . We say that H
γ-contains G if |E(G) \ E(H)| 6 γ|V |3, and H is called γ-extremal if there is a partition
of V = A ∪B such that |A| 6 |B| 6 |A|+ 1 and H γ-contains B[A,B].

Lemma 2.1 (Absorption lemma). Let 0 < ε2 � ε1 � γ � 1 and m be an positive integer.
Suppose that H is a 3-graph of order n with δ2(H) > (1/2−γ)n. If H is not 3γ-extremal,
then there exists a set W ⊂ V (H) with |W | 6 ε1n and |W | ∈ 3mN, so that for any
U ⊂ V (H) \ W with |U | 6 ε2n and |U | ∈ 3mN, both H[W ] and H[U ∪ W ] contain
K3(m)-factors.

Lemma 2.2 (Almost tiling lemma, Lemma 1.5 in [23]). Let K be a k-partite k-graph.
Then there exists a constant C = C(K) such that for any α > 0 there exists an integer
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n0 = n0(K,α) with the property that every k-graph H on n > n0 vertices with δk−1(H) >
(σ(K) + α)n admits a K-tiling covering all but at most C vertices of H.

Lemmas 2.3 and 2.4 deal with the extremal case for K3(m) and K3
m,m, respectively.

Lemma 2.3. Letm > 2 be an integer. There exist γ > 0 and n0 ∈ N such that the following
holds. Suppose that H is a 3-graph on n > n0 vertices with δ2(H) > n/2 + m

1
mn1− 1

m ,
n ∈ 3mN. If H is γ-extremal, then H contains a K3(m)-factor.

Lemma 2.4. There exist γ > 0 and n0 ∈ N such that the following holds. Suppose that
H is a 3-graph on n > n0 vertices with δ2(H) satisfying (2), where n ∈ 3mN. If H is
γ-extremal, then H contains a K3

m,m-factor.

Proof of Theorems 1.3 and 1.4: Let 0 < α � 1 and 1/n � ε2 � ε1 � γ � 1 with

n ∈ 3mN. Let H be a 3-graph of order n with δ2(H) > n/2 + m
1
mn1− 1

m (resp. δ2(H)
satisfying (2)).

I. H is 3γ-extremal. Then, by Lemma 2.3, H contains a K3(m)-factor (resp. K3
m,m-

factor by Lemma 2.4).
II. H is not 3γ-extremal. From the definition of K3

m,m, one can easily have that K3
m,m

is a spanning subgraph of K3(m). If H has a K3(m)-factor then it also contains a K3
m,m-

factor. By Lemma 2.1, we can choose an absorbing set W ⊂ V (H) with |W | 6 ε1n and
|W | ∈ 3mN so that for any U ⊂ V (H)\W with |U | 6 ε2n and |U | ∈ 3mN, both H[W ] and
H[U ∪W ] contain K3(m)-factors. Let H ′ be the 3-graph obtained from H by deleting the
vertices of W . Then |V (H ′)| = n′ > (1− ε1)n and δ2(H

′) > n/2− 1− ε1n > (1/3 + α)n′.
Note that σ(K3(m)) = 1/3. The codegree condition in Lemma 2.2 for H ′ and K3(m)
is satisfied. By Lemma 2.2, H ′ contains a K3(m)-tiling M1 covering all but at most
C vertices. Let U = V (H ′) \ V (M1). Then |U | = n − |W | − |V (M1)| ∈ 3mN and
|U | 6 C 6 ε2n. Hence H[U ∪ W ] contains a K3(m)-factor M2. Then M1 ∪ M2 is a
K3(m)-factor in H. We are done.

The rest of the paper is organized as follows. In Section 3, we give the proof of the
absorption lemma used in the paper, i.e. Lemma 2.1, and in Section 4, we deal with the
extremal case, i.e. we prove Lemmas 2.3 and 2.4.

3 Absorption lemma

To prove the absorption lemma, we need some preliminaries. Let H = (V,E) be a k-graph
of order n, and F be a k-graph of order t. Given an integer i > 1, a constant η > 0, and
two vertices x, y ∈ V , a vertex set S ⊂ V is called an (x, y)-connector of length i with
respect to F if S ∩ {x, y} = ∅, |S| = ti− 1 and both H[S ∪ {x}] and H[S ∪ {y}] contain
F -factors. Two vertices x and y are called (i, η)-close with respect to F if there exist at
least ηnti−1 (x, y)-connectors of length i with respect to F in H. Let

ÑF,i,η(x) = {y : x and y are (i, η)-close with respect to F}.
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A subset U ⊂ V is said to be (F, i, η)-closed in H if every pair of vertices in U are
(i, η)-close with respect to F . If V is (F, i, η)-closed in H then we simply say that H is
(F, i, η)-closed.

The following lemma given by Lo and Markström [21] referred to as absorption lemma
provides an absorbing set for any sufficiently small vertex set if H is (F, i, η)-closed.

Lemma 3.1 (Lemma 1.1 in [21]). Let t and i be positive integers and η > 0. Then there
exist η1, η2 such that 0 < η2 � η1 � η and an integer n0 = n0(i, η) satisfying the
following: Suppose that F is a k-graph of order t and H is an (F, i, η)-closed k-graph
of order n > n0. Then there exists a vertex subset U ⊂ V (H) of size at most η1n with
|U | ∈ tZ such that, for every vertex set W ⊂ V \ U of size at most η2n with |W | ∈ tZ,
both H[U ] and H[U ∪W ] contain F -factors.

Lemma 3.2 also given in [21] allows us to find close pairs with respect to a k-partite
k-graph F .

Lemma 3.2 (Lemma 4.2 in [21]). Let k > 2 be an integer and α > 0. Given a k-partite
k-graph F , there exist a constant η0 = η0(k, F, α) > 0 and an integer n0 = n0(k, F, α)
such that the following holds: Let H be a k-graph of order n > n0 and x, y ∈ V (H). If

|{S |S ∈ N(x) ∩N(y) with |N(S)| > αn}| > α

(
n

k − 1

)
,

then x and y are (F, 1, η)-close for all 0 < η 6 η0.

The following lemma in [12] gives us a partition of V (H) with bounded number of
parts such that each of them is closed with respect to F .

Lemma 3.3 (Lemma 6.3 in [12]). Given δ > 0, integers c, k, t > 2 and 0 < η � 1/c, δ, 1/t,
there exists a constant η′ > 0 such that the following holds for all sufficiently large
n: Let F be a k-graph on t vertices. Assume a k-graph H on n vertices satisfies that
|ÑF,1,η(v)| > δn for any v ∈ V (H) and every set of c + 1 vertices in V (H) contains two
vertices that are (F, 1, η)-close. Then we can find a partition of V (H) into V1, . . . , Vr with
r 6 min{c, 1/δ} such that for any j ∈ [r], |Vj| > (δ − η)n and Vj is (F, 2c−1, η′)-closed in
H.

Actually here we use a variant absorbing method which is so-called lattice-based ab-
sorption developed by Han [9], the notation used were first given by Keevash and My-
croft [14]. Given a k-graph H = (V,E) and a partition P = {V1, . . . , Vr} of V , the index
vector iP(S) of a subset S ⊂ V with respect to P is the vector whose j-th coordinate
is the size of the intersection of S and Vj. A vector v ∈ Zr is called an s-vector if all
its coordinates are nonnegative and their sum equals to s. Given a k-graph F of order t
and µ > 0, a t-vector v is called a µ-robust F -vector if there are at least µnt copies F ′

of F in H satisfying iP(V (F ′))=v. Let IµP,F (H) be the set of all µ-robust F -vectors and
LµP,F (H) be the lattice (i.e. the additive subgroup) generated by IµP,F (H). For j ∈ [r], let
uj ∈ Zr be the j-th unit vector, namely, uj has 1 on the j-th coordinate and 0 on other
coordinates. A transferral is a vector of the form uj − u` for some distinct j, ` ∈ [r].

The following lemma in [13] states that if LµP,F (H) contains all transferrals then H is
closed.
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Lemma 3.4 (Lemma 3.9 in [13]). Let i0, k, r0 > 0 be integers and let F be a k-graph on t
vertices. Given constants ε, η, µ > 0, there exist η′ > 0 and an integer i′0 > 0 such that the
following holds for sufficiently large n: Let H be a k-graph on n vertices with a partition
P = {V1, . . . , Vr} such that r 6 r0 and for each j ∈ [r], |Vj| > εn and Vj is (F, i0, η)-closed
in H. If uj − u` ∈ LµP,F (H) for all 1 6 j < ` 6 r, then H is (F, i′0, η

′)-closed.

The following lemma helps us to count the number of copies of K3(m).

Lemma 3.5 (Corollary 2 in [5]). Let F be a k-partite k-graph of order t. For every ε > 0,
there exists a constant µ > 0 and an integer n0 such that every k-graph H of order n > n0

with e(H) > εnk contains at least µnt copies of F .

We also need the following lemma from [10].

Lemma 3.6 (Lemma 3.3 in [10]). Let 0 < 1/n � γ < 1/100. Suppose that H is a 3-
graph of order n with δ2(H) > (1/2 − γ)n. Let X, Y be any bipartition of V (H) with
|X|, |Y | > n/5. If H is not 3γ-extremal, then H contains at least γ2n3 XXY -edges and
at least γ2n3 XY Y -edges.

Now it is ready to give the proof of our absorption lemma, we restate it here.

Lemma 3.7. Let 0 < ε2 � ε1 � γ � 1 and m be an positive integer. Suppose that H is
a 3-graph of order n with δ2(H) > (1/2− γ)n. If H is not 3γ-extremal, then there exists
a set W ⊂ V (H) with |W | 6 ε1n and |W | ∈ 3mN so that for any U ⊂ V (H) \W with
|U | 6 ε2n and |U | ∈ 3mN, both H[W ] and H[U ∪W ] contain K3(m)-factors.

Proof. Assume γ is sufficiently small and let α = γ/3. Let F = K3(m). If we prove that
H is (F, i, η)-closed for some i > 0 and 0 < η � γ, then by Lemma 3.1 with t = 3m
we obtain the desired absorbing set. So in the following it is sufficient to show that H is
(F, i, η)-closed for some parameters i > 0 and 0 < η � γ. The outline of the proof is as
follows. The first step is, by applying Lemma 3.3 on H, to obtain a partition P of V (H)
with |P| 6 2 such that each part is (F, 2, η′)-closed and has large enough size. To show
that all conditions of Lemma 3.3 are satisfied, we need to verify that for every vertex
v ∈ V (H), ÑF,1,η(v) is large enough (this can be done in Claim 2) and any three vertices
contain at least one (F, 1, η)-close pair (this can be done by using Lemma 3.2). If |P| = 1,
then we are done. Otherwise, we show H is closed by applying Lemma 3.4 on H and P ,
i.e. we prove that LµP,F (H) contains all transferrals (this can be done in Claims 3 and 4).

Claim 2. For each v ∈ V (H) and some 0 < η � γ, ÑF,1,η(v) > (1/2− 2γ)n.

Proof of Claim 2: Fix v ∈ V (H), we have

|N(v)| > (1/2− γ)n(n− 1)

2
= (1/2− γ)

(
n

2

)
. (4)

Note that |N(S)| > (1/2 − γ)n > αn for any 2-elements set S ⊆ V (H). By Lemma 3.2,
we have u ∈ ÑF,1,η(v) if |N(v)∩N(u)| > α

(
n
2

)
for any 0 < η 6 η0 = η0(k, F, α). Let G be

a bipartite graph with partitions N(v) and V (H) \ {v}, and a 2-elements set S ∈ N(v)
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and a vertex w ∈ V (H) \ {v} are adjacent in G if and only if S ∪ {w} ∈ E(H). Then we
have

e(G) =
∑

S∈N(v)

dG(S) =
∑

S∈N(v)

(|N(S)| − 1) < |ÑF,1,η(v)| · |N(v)|+ n · α
(
n

2

)
.

Together with |N(S)| > (1/2− γ)n, we have

|ÑF,1,η(v)| > (1/2− γ)n− 1−
n · α

(
n
2

)
(1/2− γ)

(
n
2

) > (1/2− 2γ)n.

Given any three vertices x1, x2, x3 ∈ V (H), by (4) and the inclusion-exclusion principle,
we have ∑

16i<j63

|N(xi) ∩N(xj)| =
3∑
i=1

|N(xi)| − | ∪3i=1 N(xi)|+ | ∩3
i=1 N(xi)|

> 3(1/2− γ)

(
n

2

)
− | ∪3

i=1 N(xi)|+ | ∩3
i=1 N(xi)|

> 3α

(
n

2

)
+

(
n

2

)
− | ∪3

i=1 N(xi)|+ | ∩3
i=1 N(xi)|

> 3α

(
n

2

)
.

By the pigeonhole principle, there exists at least one pair xi, xj so that |N(xi)∩N(xj)| >
α
(
n
2

)
, by Lemma 3.2, such a pair xi, xj is (F, 1, η)-close.

Now apply Lemma 3.3 to F and H with δ = (1/2 − 2γ), c = 2 and η � γ, we have
that there exist a constant η′ > 0 and a partition P of V with at most 2 parts such that
each part has size at least (1/2 − 3γ)n and is (F, 2, η′)-closed in H. If |P| = 1, then H
is (F, 2, η′)-closed, as desired. So, we assume |P| = 2 and P = {X, Y }. Since H is not
3γ-extremal, by Lemma 3.6, both e(XXY ) and e(XY Y ) are at least γ2n3.

Define
E0 = {xy : x ∈ X, y ∈ Y, dX(xy) > γ2n, dY (xy) > γ2n},
E1 = {xy : x ∈ X, y ∈ Y, dX(xy) > γ2n, dY (xy) < γ2n},

and
E2 = {xy : x ∈ X, y ∈ Y, dX(xy) < γ2n, dY (xy) > γ2n}.

Then E(K2(X, Y )) = E0 ∪ E1 ∪ E2. So |Ei| 6 e(K2(X, Y )) 6 n2

4
for any i ∈ {0, 1, 2}.

Let V1 = X, V2 = Y . By Lemma 3.4, to show that H is closed it suffices to show
u1−u2 ∈ LµP,F (H) for some µ. Or equivalently, we need to show that there exists an ` such
that H contains at least µn3m copies of K3(m) of types (`, 3m− `) and (`+1, 3m− `−1),
respectively. We split the following proof into two cases according to the size of E0.

Claim 3. There exists µ1 > 0 for any given integers 0 6 s, t 6 m with s + t = m such
that the following holds: If |E0| > γ4n2, then H contains at least µ1n

3m copies of K3(m)
of type (m+ s,m+ t).
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Proof of Claim 3: Choose 0 < γ1 � γ. Construct an auxiliary 4-partite 4-graph G1

as follows. Let V (G1) = X ′ ∪ X ∪ Y ∪ Y ′, where X ′ and Y ′ are copies of X ′ and Y ′,
respectively; for a ∈ X ′, x ∈ X, y ∈ Y, b ∈ Y ′, axyb ∈ E(G1) if and only if axy, xyb ∈ H.
Then |V (G1)| = 2n, and

|G1| >
∑
xy∈E0

dX(xy)dY (xy) > γ4n2 · γ2n · γ2n = γ8/16|V (G1)|4.

Hence, by Lemma 3.5, there exists a positive constant µ1 such that G1 contains at least
µ1n

4m copies of K4(m). Fix a pair (s, t), a copy of K4(s,m,m, t) is contained in at most(|X′|
t

)(|Y ′|
s

)
6 ns+t = nm copies of K4(m,m,m,m). Therefore, G1 contains at least µ′1n

3m

copies of K4(s,m,m, t) for some µ′1 > 0. Observe that a copy of K4(s,m,m, t) in G1

gives us a copy of K3(m) of type (m+ s,m+ t). Then H contains at least µ′1n
3m copies

of K3(m) of type (m+ s,m+ t).

Claim 4. Given integers 0 6 s, t 6 m with s + t = m, there exists µ′1 > 0 such that the
following holds: If |E0| < γ4n2, then H contains at least µ′1n

3m copies of K3(m) of the
same type either (2m+ s, t) or (t, 2m+ s).

Proof of Claim 4: Without loss of generality, assume that |E1| 6 |E2|. First, we show
3γ2n2 6 |E1| 6 1

8
n2. The upper bound is trivial by the assumption that |E1| 6 |E2|. Now

suppose that |E1| < 3γ2n2. Then, we have

e(XXY ) =
1

2

∑
x∈X,y∈Y

dX(xy)

<
1

2

(
|E0| · |X|+ |E1| · |X|+ |E2| · γ2n

)
<

1

2

((
γ4 + 3γ2

)
n2 ·

(
1

2
+ 3γ

)
n+

n2

4
· γ2n

)
< γ2n3,

a contradiction to e(XXY ) > γ2n3. Thus, we have |E1| > 3γ2n2. Note that for xy ∈ E1,
we have dX(xy) > (1/2−γ−γ2)n and hence (1/2−γ−γ2)n 6 |X|, |Y | 6 (1/2+γ+γ2)n.

Let Y ′ = {y ∈ Y : dE0(y) 6 γ2n}. Since |E0| 6 γ4n2, there are at most γ2n vertices y
in Y such that dE0(y) > γ2n. Thus we have |Y ′| > |Y | − γ2n.

We claim that either dE1(y) 6 3γ2n or dE1(y) > |X| − 3γn for all y ∈ Y ′. Fix y ∈ Y ′.
Let ey be the number of edges x1x2y of the form XXY such that exactly one of {x1y, x2y}
belongs to E1. On one hand, we have

ey > ((1/2− γ − γ2)n− dE1(y)) · dE1(y) > (|X| − 2γn− 2γ2n− dE1(y)) · dE1(y),

since for each x ∈ NE1(y), there are at least (1/2 − γ − γ2)n − dE1(y) edges xx′y of the
form XXY with x′ ∈ NE0(y) ∪ NE2(y) and |X| 6 (1/2 + γ + γ2)n. On the other hand,
we have

ey 6 |X| · dE0(y) + γ2n · dE2(y) 6 2γ2n|X|,
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since dX(x′y) < γn2 for x′y ∈ E2, and the last inequality holds since dE0(y) 6 γ2n and
dE2(y) 6 |X|. Therefore, we have

(|X| − 2γn− 2γ2n− dE1(y)) · dE1(y) 6 2γ2n|X|.

Solve the inequality we have either dE1(y) 6 3γ2n or dE1(y) > |X| − 3γn for all y ∈ Y ′.
Let Y0 = {y : dE1(y) > |X| − 3γn, y ∈ Y ′}. Clearly,

|Y0| >
|E1| − (|Y | − |Y ′|)|X| − |Y | · 3γ2n

|X|
>

3γ2n2 − γ2n|X| − |Y | · 3γ2n
|X|

> γ2n.

Now we claim that there are at least (1 − 14γ)
(|X|

2

)
pairs x1x2 ∈

(
X
2

)
such that

dY (x1x2) > 1
10
γ2n. Clearly,

e(XXY0) =
1

2

∑
x∈X,y∈Y0

dX(xy)

>
|Y0|(1/2− γ − γ2)n(|X| − 3γn)

2

>
|Y0||X|(1− 5γ)|X|(1− 7γ)

2

> (1− 12γ)

(
|X|
2

)
|Y0|.

On the other hand, if the number of pairs x1x2 ∈
(
X
2

)
with dY0(x1x2) > 1

10
γ2n is less

than (1− 14γ)
(|X|

2

)
, we have

e(XXY0) =
∑

x1x2∈(X
2 )

dY0(x1x2)

< (1− 14γ)

(
|X|
2

)
|Y0|+ 14γ

(
|X|
2

)
1

10
γ2n

6 (1− 12γ)

(
|X|
2

)
|Y0| − 2γ

(
|X|
2

)
|Y0|+ 14γ

(
|X|
2

)
1

10
|Y0|

= (1− 12γ)

(
|X|
2

)
|Y0| −

3

5
γ

(
|X|
2

)
|Y0|

< (1− 12γ)

(
|X|
2

)
|Y0|,

a contradiction.
Next, we claim that there are at least (1

2
− 11γ)

(|X|
2

)
pairs x1x2 ∈

(
X
2

)
such that
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dX(x1x2) > γn. In fact,∑
x1x2∈(X

2 )

dX(x1x2) =
∑

x1x2∈(X
2 )

dH(x1x2)−
∑

x1x2∈(X
2 )

dY (x1x2)

>

(
1

2
− γ
)
n ·
(
|X|
2

)
− 1

2

∑
x∈X,y∈Y

dX(xy)

>

(
1

2
− γ
)
n ·
(
|X|
2

)
− 1

2

(
γ4n2 · |X|+ n2

8
· |X|+ n2

4
· γ2n

)
>

(
1

2
− γ
)
n ·
(
|X|
2

)
− n

2

(
γ4n · |X|+ n

8
· |X|+ n

4
· γ2n

)
>

(
1

4
− 3γ

)
n

(
|X|
2

)
,

the third inequality holds since dX(xy) 6 |X| for any xy ∈ E0 ∪ E1, dX(xy) < γ2n
for xy ∈ E2 and |E0| < γ4n2, |E1| 6 n2

8
and |E2| 6 n2

4
; the last inequality holds since

(1/2− 3γ)n 6 |X| 6 (1/2 + 3γ)n. Since

(1
4
− 3γ)n

(|X|
2

)
− γn

(|X|
2

)
|X|

>
1
4
− 4γ

1
2

+ 3γ

(
|X|
2

)
>

(
1

2
− 11γ

)(
|X|
2

)
,

there are at least (1
2
− 11γ)

(|X|
2

)
pairs x1x2 ∈

(
X
2

)
such that dX(x1x2) > γn.

Therefore, there are at least (1− 14γ + 1
2
− 11γ − 1)

(|X|
2

)
> n2

100
pairs x1x2 ∈

(
X
2

)
such

that dX(x1x2) > γn and dY (x1x2) > 1
10
γ2n. As what we have done in the proof of Claim 3,

define an auxiliary 4-graph G2 as follows. Let V (G2) = X ′ ∪X ∪ Y , where X ′ is a copy
of X; for x′ ∈ X ′, x1, x2 ∈ X, y ∈ Y , x′x1x2y ∈ E(G2) if and only if x′x1x2, x1x2y ∈ H.
Hence, n < |V (G2)| = n+ |X| < 2n, and

|G2| > γn · γ
2

10
n · n

2

100
> γ′|V (G2)|4.

By Lemma 3.5, there exists a positive constant µ2 such that G2 contains at least µ2n
4m

copies of K4(m). As the same argument shown in the proof of Claim 3, H contains at
least µ′2n

3m copies of K3(m) of type (2m+ s, t) for some positive µ′2.

This completes the proof of Lemma 2.1.

4 Extremal case

In this section, we prove Lemmas 2.3 and 2.4. Let G and H be two k-graphs on the same
vertex set V and let G \ H be the graph (V,E(G) \ E(H)). Suppose that |V | = n and
0 6 α 6 1, we say a vertex v ∈ H α-good with respect to G if dG\H(v) 6 αnk−1, otherwise
call it α-bad. We call H α-good with respect to G if all of vertices in H are α-good with
respect to G. First we deal with a special case when H is α-good with respect to the
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extremal graph. We need a lemma from [13] which follow with some extra work from a
perfect packing theorem of Lu and Székely [22]. Given V = A ∪ B, let D[A,B] be the
k-graph on V consisting of all edges of type ABk−1.

Lemma 4.1 (Lemma 6.1 in [13]). Let K be a complete k-partite k-graph of order t with the
first part of size a1. Given 0 < ρ� 1/m and a sufficiently large integer n, suppose H is a
k-graph on n ∈ tZ vertices with a partition of V (H) = X∪Y such that a1|Y | = (t−a1)|X|.
Furthermore, assume that H is ρ-good with respect to D[X, Y ]. Then H contains a K-
factor.

Lemma 4.2. Let α, ε be any given constants with 0 < ε � α and m be an integer.
Suppose that H is a 3-graph with large enough order n and V (H) has a partition A ∪B
with ||A| − |B|| < εn such that H is α-good with respect to B[A,B]. Then H contains
a K3(m)-tiling covering all but at most 2εn vertices. Furthermore, if n ∈ 12mZ and
|A| = |B|. Then H contains a K3(m)-factor.

Proof. Without loss of generality, assume |A| 6 |B|. Let |A| = 6mn′ + s and |B| =
6mn′ + t, where 0 6 s < 6m and t = |B| − |A| + s < εn + s. Let A0 and B0 be the sets
obtained from A and B by deleting s and t vertices from A and B, respectively. Then
|A0∪B0| = 12mn′ ∈ 12mN. Let H0 = H[A0∪B0] and n0 := V (H0). Then H0 must be α′-
good with respect to B[A0, B0] for some constant α′ > 0. Partition A0 into three subsets
A1, A2, A

′
2 with |A1| = 3mn′, |A2| = mn′ and |A′2| = 2mn′. Let H1 = H0[A1 ∪ B0]

and H2 = H0[A2 ∪ A′2]. Then we have |V (H1)| = 3
4
n0 and |V (H2)| = 1

4
n0. One can

examine that H1 is 16
9
α′-good with respect to D[A1, B0] and H2 is 16α′-good with respect

to D[A2, A
′
2]. Set K = K3(m). Applying Lemma 4.1 to H1 and H2 with parameters 16

9
α′

and 16α′, we obtain K3(m)-factors M1 in H1 and M2 in H2, respectively. Therefore,
M1 ∪M2 is a desired K3(m)-factor of H0.

If n ∈ 12mZ and |A| = |B| then H0 = H. HenceM1∪M2 is a K3(m)-factor of H.

Remark: Note that, in the above proof, the K3(m)-factors M1 and M2 have the
following property:
(1) Each member inM1 (resp. M2) has type (m, 2m) (resp. (3m, 0)) with respect to the
partition A ∪B, and
(2) both |M1|(∼ n

4
) and |M2|(∼ n

12
) are large enough.

The following classical result [16] also will be used.

Lemma 4.3 (Kövári-Sós-Turán, 1954). For all t > s > 2, the Turán function of the
complete bipartite graph K2(s, t) is

ex2(n,K
2(s, t)) 6

1

2
((t− 1)1/sn2−1/s + (s+ 1)n).

4.1 Proofs of Lemmas 2.3 and 2.4

Since H is γ-extremal, there is a partition V = A ∪ B such that |A| 6 |B| 6 dn/2e and
H is γ-extremal with respect to B[A,B]. Set γ1 =

√
γ. By the definition of γ-extremal,

all but at most γ1n vertices in V are γ1-good with respect to B[A,B]. Let A0 and B0 be
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the sets of γ1-bad vertices in A and B, respectively. Then |A0 ∪ B0| 6 γ1n. For a vertex
x ∈ A0 ∪ B0, we call it B-acceptable if |E(Hx) ∩ E(K2(A,B))| > n2

40
; otherwise we call it

A-acceptable. Note that |E(Hx)| > δ1(H) > (n − 1)(bn/2c − 1)/2. If x is A-acceptable
then |E(Hx) ∩

(
A
2

)
| > 3

4

(|A|
2

)
and |E(Hx) ∩

(
B
2

)
| > 3

4

(|B|
2

)
. Now move all A-acceptable

vertices into A and B-acceptable vertices into B, we get a new partition V = A′∪B′ with
the property that

1) n/2− γ1n 6 |A′|, |B′| 6 n/2 + γ1n (since |A0 ∪B0| 6 γ1n);
2) H γ2-contains B[A′, B′] for some constant γ2 � γ1.
Moreover, we can partition A′ into A1, A2 so that:
A1) Every vertex in A1 is γ2-good with respect to B[A′, B′];
A2) |A2| 6 γ1n;
A3) for every x ∈ A2, |E(Hx) ∩

(
A′

2

)
| > 2

3

(|A′|
2

)
and |E(Hx) ∩

(
B′

2

)
| > 2

3

(|B′|
2

)
.

Similarly, there is a partition B1, B2 of B′ so that:
B1) Every vertex in B1 is γ2-good with respect to B[A′, B′];
B2) |B2| 6 γ1n;
B3) for every x ∈ B2, |E(Hx) ∩ E(K2(A′, B′))| > n2

50
.

Our strategy is to find vertex-disjoint K3(m)-tiling K1,K2,K3,K4 in H so that the
union of them is a K3(m)-factor of H, in which K1 is so-called ’parity breaking’ copies
dealing with the case |B′| 6≡ 0 (mod 2m), K2 covers all vertices in A2 ∪ B2, and K3 is
used to guarantee the divisibility condition required by Lemma 4.2 after removing the
vertices covered by K1 and K2. Furthermore, K1,K2,K3 are all small enough such that
the graph obtained by deleting K1,K2,K3 is γ3-good for some constant γ3. Finally, we
apply Lemma 4.2 to obtain K4.

In Claims 5 and 6, we show that such ’parity breaking’ copies of K3(m) (resp. K3
m,m)

do exist.

Claim 5. If δ2(H) > n/2 + m1/mn1−1/m, then H contains either 2m − 1 disjoint copies
of K3(m) of type (m+ 1, 2m− 1) or 2m− 1 disjoint copies of K3(m) of type (3m− 1, 1).

Proof of Claim 5: If we can find a copy of K3(m) of type (m+1, 2m−1) or (3m−1, 1)
avoiding any given vertex set W ⊂ V with |W | 6 C for some constant C > 6m2, then we
can greedily find 2m− 1 disjoint copies of K3(m) of desired type because we always can
find a new copy of K3(m) avoiding the vertices of copies of K3(m) we have found (since
C > 6m2). So the rest of the proof is to show the statement is true. Choose any vertex
set W ⊂ V with |W | 6 C for some constant C > 6m2. We split the proof into two cases
according to the size of B′.

First assume that |B′| 6 n/2. For any a ∈ A′, b ∈ B′, we have |NH(ab) ∩ A′| >
m1/mn1−1/m since δ2(H) > n/2 + m1/mn1−1/m. Construct an auxiliary bipartite graph G
as follows: set V (G) = A′ ∪ B′ and E(G) consists of all pairs ab with a ∈ A′, b ∈ B′ and
|NH(ab) ∩ B′| > (1 − √γ2)|B′|. Since H γ2-contains B[A′, B′], there are at most γ2n

3

A′B′B′-edges missing in H. Clearly, we have that at most 2γ2n
3/(
√
γ2|B′|) 6 8

√
γ2n

2

pairs ab missing in G. By double-counting the number of ordered pairs (v, e) with v ∈
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A′ \W and e ∈ NH(v) ∩ E(G−W ), we have∑
v∈A′\W

|NH(v) ∩ E(G−W )| > (|G| − Cn) · (m1/mn1−1/m − |A′ ∩W |).

Note that (|G| − Cn)(m1/mn1−1/m − |A′ ∩W |)/|A′ \W | > 1
2
(m − 1

2
)1/mn2−1/m. We can

choose a vertex v ∈ A′ \W such that |NH(v)∩E(G−W )| > 1
2
(m− 1

2
)1/mn2−1/m. Lemma

4.3 implies that there exists a copy of K2(m), denoted by M , in NH(v)∩E(G−W ). By
the definition of E(G),∣∣∣∣∣

(⋂
e∈M

NH(e)

)
∩ (B′ \W )

∣∣∣∣∣ > |B′| −m2√γ2|B′| − C > m− 1

for sufficiently large n and small γ2. Pick such any m − 1 vertices together with v and
V (M), we obtain a copy of K3(m) of type (m+ 1, 2m− 1) avoiding W .

Now assume |B′| > n/2. For any pair aa′ ∈
(
A′

2

)
, we have |NH(aa′)∩B′| > m1/mn1−1/m.

Construct another auxiliary graph G′ as follows: set V (G′) = A′ and E(G′) consists of all
pairs aa′ ∈

(
A′

2

)
with |NH(aa′) ∩ A′| > (1 − √γ2)|A′|. Similarly, since there are at most

γ2n
3 A′A′A′-edges missing in H, there are at most 3γ2n

3/(
√
γ2|A′|) 6 8

√
γ2n

2 edges aa′

missing in G′. By double-counting the number of ordered pairs (v, e) with v ∈ B′ \W
and e ∈ NH(v) ∩ E(G′ −W ), we have∑

v∈B′\W

|NH(v) ∩ E(G′ −W )| > (|G′| − C|A′|) · (m1/mn1−1/m − |B′ ∩W |).

Note that (|G′| − C|A′|)(m1/mn1−1/m − |B′ ∩W |)/|B′ \W | > 1
2
m1/m|A′|2−1/m. We can

choose a vertex v ∈ B′ \W such that |NH(v) ∩ E(G′ −W )| > 1
2
m1/m|A′|2−1/m. Lemma

4.3 implies that there is a copy of K2(m), denoted by M ′, in N(v) ∩E(G′ −W ). By the
definition of E(G′),∣∣∣∣∣ ⋂

e∈M ′

N(e) ∩ (A′ \W )

∣∣∣∣∣ > |A′| −m2√γ2|A′| − C > m− 1.

Pick any such m− 1 vertices together with v and V (M ′), we obtain a copy of K3(m) of
type (3m− 1, 1) avoiding W . This completes the proof of claim 5.

Claim 6. If δ2(H) satisfies (2) in Theorem 1.4, then H contains a copy K of K3
m,m of type

(m + 1, 2m − 1) or (3m − 1, 1), unless |B′| = bn/2c when n ≡ 1 (mod 4). Furthermore,
for any 0 6 t 6 m, H contains a copy K ′ of K3

m,m of type (m+ 2t, 2m− 2t) disjoint from
K.

Proof of Claim 6: If there exists a pair a1a
′
1 ∈

(
A′

2

)
such that |NH(a1a

′
1) ∩ B′| > 2γ1n,

then we can choose m distinct vertices b1, . . . , bm ∈ NH(a1a
′
1)∩B1 since 2γ1n−|B2| > m.

Note that for a γ2-good vertex b ∈ B′,

|E(Hb) ∩ E(K2(A′, B′))| > |A′||B′| − γ2n2 >
m

m+ 1
|A′||B′|,
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we have ∣∣∣∣∣
m⋂
i=1

E(Hbi) ∩ E(K2(A′, B′))

∣∣∣∣∣ > 1

m+ 1
|A′||B′|.

Thus (
⋂m
i=1E(Hbi)) ∩ E(K2(A′, B′)) contains a matching of order m − 1, choose such a

matching a2b
′
2, . . . , amb

′
m. So the subgraph induced by {a′1, a1, a2, . . . , am}∪{b1, . . . , bm}∪

{b′2, . . . , b′m} of H contains a copy of K3
m,m of type (m+ 1, 2m− 1).

Now assume |NH(a1a2) ∩ B′| < 2γ1n for any a1a2 ∈
(
A′

2

)
. Then |NH(a1a2) ∩ A′| >

n/2−2−2γ1n. Let F be the spanning subgraph consisting of all the edges of type A′A′B′

of H. We claim that if there is some b ∈ B′ such that |Fb| > 2mγ1n, then H contains
a copy of K3

m,m of type (3m − 1, 1). In fact, assume that there is some b ∈ B′ with
|Fb| > 2mγ1n. First, suppose that Fb contains a matching of size m. Let a1a

′
1, . . . , ama

′
m

be a matching of Fb. Since∣∣∣∣∣
m⋂
i=1

NH(aia
′
i) ∩ A′

∣∣∣∣∣ > m(n/2− 2− 2γ1n)− (m− 1)|A′| > |A′|/2,

one can choose m − 1 distinct vertices a′′1, . . . , a
′′
m−1 ∈

⋂m
i=1NH(aia

′
i) ∩ A′. And then the

edges aia
′
ia
′′
j , aia

′
ib ∈ E(H) (i ∈ [m], j ∈ [m− 1]) form a copy of K3

m,m of type (3m− 1, 1).
Now suppose that M is a maximum matching in Fb of size at most m − 1. Clearly,
V (M) is a vertex cover of Fb and thus there exists a vertex a in V (M) of degree at least
2mγ1n
2(m−1) > |A2| + m. That is to say, there are m distinct γ2-good vertices a′′1, . . . , a

′′
m in

NA′(ab). Note that for a γ2-good vertex a′′i ∈ A′, |E(Ha′′i
)∩
(
A′

2

)
| >

(|A′|
2

)
−γ2n2 > m

m+1

(|A′|
2

)
,

we have ∣∣∣∣∣
m⋂
i=1

E(Ha′′i
) ∩
(
A′

2

)∣∣∣∣∣ > 1

m+ 1

(
|A′|
2

)
.

Thus
⋂m
i=1E(Ha′′i

) ∩
(
A′

2

)
contains a matching of order m − 1, choose such a matching

a2a
′
2, . . . , ama

′
m. Therefore, the subgraph of H induced by {a′′1, . . . , a′′m} ∪ {a2, a′2, . . . ,

am, a
′
m} ∪ {a, b} contains a copy of K3

m,m of type (3m − 1, 1), as desired. So the rest of
the case is to show that such a vertex b ∈ B′ with |Fb| > 2mγ1n does exist.

If n ≡ 1 (mod 4) and |B′| 6 bn/2c − 1 or n 6≡ 1 (mod 4) and |B′| 6 dn/2e − 1, then
for every pair ab with a ∈ A′, b ∈ B′, we have |NH(ab)∩A′| > 1. Hence for any b ∈ B′, we
have δ(Fb[A

′]) > 1 and so |Fb| > |A′|/2 > 2mγ1n, we are done. Now assume |B′| > dn/2e.
Then for any pair aa′ ∈

(
A′

2

)
, we have |NH(aa′) ∩B′| > 1. Since(

|A′|
2

)/
|B′| >

(
n/2− γ1n

2

)/
(n/2 + γ1n) > 2mγ1n,

there exist at least one vertex b ∈ B′ such that |Fb| > 2mγ1n.
Next, we show that H contains a copy K ′ of K3

m,m of type (m+ 2t, 2m− 2t) disjoint
from K, 0 6 t 6 m. Choose any m distinct γ2-good vertices a1, . . . , at ∈ A′ \ V (K)
and bt+1, . . . , bm ∈ B′ \ V (K). Since |E(Hai) ∩

(
A′

2

)
| >

(|A′|
2

)
− γ2n2, there exists at least

6m+1 vertices a′ ∈ A′ with |NHai
(a′)∩A′| > |A′|−√γ2n, that is we can choose t distinct
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vertices a′1, . . . , a
′
t ∈ A′\V (K) such that |NA′(aia

′
i)| > |A′|−

√
γ2n for 1 6 i 6 t. Similarly,

since |E(Hb) ∩ E(K2(A′, B′))| > |A′||B′| − γ2n
2, we can choose m − t distinct vertices

b′t+1, . . . , b
′
m ∈ B′ \V (K) such that |NA′(bjb

′
j)| > |A′|−

√
γ2n for t+1 6 j 6 n. Therefore,

we have | (∩ti=1NA′(aia
′
i)) ∩

(
∩mi=t+1NA(bibi)

)
∩ A′| > |A′|/2. So we can pick m vertices

a′′1, . . . , a
′′
m ∈ (∩ti=1NA′(aia

′
i)) ∩

(
∩mi=t+1NA(bibi)

)
∩ A′ different from ai, bi, a

′
i, b
′
i, i ∈ [m].

Clearly, the subgraph of H induced by {ai, a′i : i ∈ [t]}∪{bi, b′i : t+ 1 6 i 6 m}∪{a′′i : i ∈
[m]} contains a copy of K3

m,m of type (m+ 2t, 2m− 2t). This completes the proof.

The next claim shows that we can find a small K3(m)-tiling to cover the vertices in
A2 ∪B2.

Claim 7. Suppose that δ2(H) > bn
2
c − 1. Let W ⊂ V (H) with |W | 6 γ2n. Every vertex

x ∈ (A2 ∪B2) \W can be covered by a copy of K3(m) of type (m, 2m) avoiding W .

Proof of Claim 7: Recall that every vertex in A1∪B1 is γ2-good with respect to B[A,B].
Let G be the graph on vertex set V and edge set consisting of all pairs xy ∈

(
V
2

)
satisfying

dB\H(xy) 6
√
γ2n. By the definition of γ2-good, for each vertex x ∈ A1 ∪ B1, we have

dG(x) > n−√γ2n.

If x ∈ A2 \W , by A3), we have |Hx[B1 \W ]| > 2
3

(|B′|
2

)
− γ1n2 − 2γ2n > 1

2

(|B′|
2

)
. Hence

|E(Hx[B1\W ])∩E(G)| > 1
3

(|B′|
2

)
. Thus, by Lemma 4.3, Hx[B1\W ]∩G contains a copy of

K2(m), denoted by M . Since dH(e) > |A′|−√γ2n for any e ∈M , we have |
⋂
e∈M NH(e)∩

A′| > |A′| − m2√γ2n. Hence we can choose {a1, . . . , am−1} ⊂
(⋂

e∈M NH(e) ∩ A′
)
\W .

Therefore, the subgraph of H induced by {x, a1, . . . , am−1} ∪ V (M) contains a copy of
K3(m) of type (m, 2m) covering x.

Now suppose x ∈ B2 \W . B3) together with A2), B2) imply that

|E(Hx) ∩ E(G[A1 \W,B1 \W ])| > n2

50
− 2γ1n

2 − γ2n2 −√γ2n
2 >

1

100
|A′||B′|.

By Lemma 4.3, Hx ∩ G[A1 \W,B1 \W ] contains a copy of K2(m) avoiding W , denoted
by M ′. Since dH(e) > |B′| − √γ2n for any e ∈ M ′, we have |

⋂
e∈M NH(e) ∩ B′| > |B′| −

m2√γ2n. Hence we can choose m−1 distinct vertices b1, . . . , bm−1 ∈
(⋂

e∈M ′ NH(e) ∩B′
)
\

W . Therefore, the subgraph of H induced by {x, b1, . . . , bm−1} ∪ V (M) contains a copy
of K3(m) of type (m, 2m) covering x, as desired.

Proof of Lemma 2.3: Let t ≡ |B′| (mod 2m) such that 0 6 t 6 2m − 1. Let K1 be
2m− t disjoint copies of K3(m) of type (m+ 1, 2m− 1) or t disjoint copies of K3(m) of
type (3m− 1, 1) in H guaranteed by Claim 5. Note that |V (K1)| 6 6m2 is small enough.
We can apply Claim 7 recursively to H to obtain a K3(m)-tiling K2 covering all vertices
of (A2 ∪ B2) \ V (K1). Moreover, every copy of K3(m) in K2 is of type (m, 2m). Let
A′′ := A′ \ V (K1 ∪ K2) and B′′ := B′ \ V (K1 ∪ K2). Clearly, |B′′| ≡ 0 (mod 2m). Since
n ∈ 3mN, we have |A′′ ∪ B′′| ≡ 0 (mod 3m) and |A′′| ≡ 0 (mod m). Since |K1| < 2m
and |K2| 6 2γ1n, we have n/2 − 5mγ1n 6 |A′′|, |B′′| 6 n/2 + γ1n. Let |A′′| = (6a +
s)m, |B′′| = (6b′ + 2t′)m. Then it is easy to check that s ≡ t′ (mod 3). So we can set
|A′′| = (6a+ s)m and |B′′| = (6b+ 2s)m for some 0 6 s 6 5. Now, each vertex in A′′∪B′′
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is γ′2-good with respect to B(A′′, B′′) for some constant γ′2 � γ2. By Lemma 4.2, we
can find 6(b − a) + s disjoint copies of K3(m) of type (m, 2m) if b − a > 0, or 2(a − b)
disjoint copies of K3(m) of type (3m, 0) and s disjoint copies of K3(m) of type (m, 2m)
if b − a < 0. Let K3 be these copies of K3(m). Thus, |K3| 6 6|b − a| + s 6 6γ1n. Let
A∗ = A′′ \ V (K3) and B∗ = B′′ \ V (K3). Then we have |A∗| = |B∗| ≡ 0 (mod 6m) and
|A∗| = |B∗| > n/2 − 100γ1mn. Clearly, A∗ ⊂ A1 and B∗ ⊂ B1. Let H∗ = H[A∗ ∪ B∗].
Since both |A2| and |B2| are small, it can be checked that there is some constant γ3 � γ′2
such that every vertex in H∗ is γ3-good with respect to B[A∗, B∗]. By Lemma 4.2, H∗

contains a K3(m)-factor, say K4. Therefore, K1 ∪ K2 ∪ K3 ∪ K4 is a K3(m)-factor of H.

Proof of Lemma 2.4: The proof is similar to the one of Lemma 2.3. Note that n ∈ 3mN
and δ2(H) satisfies condition (2). Let t ≡ |B′| (mod 2m) with 0 6 t 6 2m−1. If t is even
(note that |B′| = bn/2c and n ≡ 1 (mod 4) belongs to this case), by Claim 6 for m− t/2,
we can find a copy K ′ of K3

m,m of type (3m − t, t) in H. Set K1 = {K ′}. Now assume t
is odd. Then we can find two disjoint copies K,K ′ of K3

m,m of types (m+ 1, 2m− 1) and
(3m − t − 1, t + 1) (by Claim 6 for m − (t + 1)/2), respectively, or of types (3m − 1, 1)
and (3m − t + 1, t − 1) (by Claim 6 for m − (t − 1)/2), respectively. In this case, set
K1 = {K,K ′}. For each case, we have |B′ \ V (K1)| ≡ 0 (mod 2m) and |A′ \ V (K1)| ≡ 0
(mod m). Since K3

m,m is a spanning subgraph of K3(m), the existence of K3
m,m-tiling

K2,K3,K4 follows from the existence of K3(m)-tilings K2,K3,K4 in H with the same
argument as in Lemma 2.3. Finally we have K1∪K2∪K3∪K4 is a K3

m,m-factor of H.
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