
A degree sequence version of the
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Abstract

A fundamental result of Kühn and Osthus [The minimum degree threshold for
perfect graph packings, Combinatorica, 2009] determines up to an additive constant
the minimum degree threshold that forces a graph to contain a perfect H-tiling. We
prove a degree sequence version of this result which allows for a significant number
of vertices to have lower degree.

Mathematics Subject Classifications: 05C35, 05C70

1 Introduction

1.1 Minimum degree conditions forcing tilings

A substantial branch of extremal graph theory concerns the study of tilings. Given two
graphs H and G, an H-tiling in G is a collection of vertex-disjoint copies of H in G. An
H-tiling is called perfect if it covers all the vertices of G. Perfect H-tilings are also often
referred to as H-factors, perfect H-packings or perfect H-matchings.

In the case when H has a component on at least 3 vertices, the decision problem of
whether a graph contains a perfect H-tiling is NP-complete [6]. Thus, there has been a
focus on establishing sufficient conditions to force a perfect H-tiling. The seminal Hajnal–
Szemerédi theorem [5] characterises the minimum degree that ensures a graph contains a
perfect Kr-tiling.

Theorem 1 (Hajnal and Szemerédi [5]). Every graph G whose order n is divisible by
r and whose minimum degree satisfies δ(G) > (1 − 1/r)n contains a perfect Kr-tiling.
Moreover, there are n-vertex graphs G with δ(G) = (1− 1/r)n− 1 that do not contain a
perfect Kr-tiling.
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The following result of Alon and Yuster [1] shows that any sufficiently large graph G
with minimum degree slightly above that in Theorem 1 in fact contains a perfect H-tiling
for any graph H with χ(H) = r.

Theorem 2 (Alon and Yuster [1]). Suppose that γ > 0 and H is a graph with χ(H) = r.
Then there exists an integer n0 = n0(γ,H) such that the following holds. If G is a graph
whose order n > n0 is divisible by |H| and

δ(G) > (1− 1/r + γ)n

then G contains a perfect H-tiling.

For many graphs H the minimum degree condition in Theorem 2 is best-possible up to
the term γn. Indeed, for many graphs H there are so-called divisibility barrier construc-
tions G on n vertices that have minimum degree (1 − 1/χ(H))n − 1 but fail to contain
a perfect H-tiling (see [15, Section 2]). However, Komlós, Sárközy and Szemerédi [12]
proved that the term γn in Theorem 2 can be replaced with a constant dependent only
on H. Further, as discussed shortly, Kühn and Osthus [14, 15] proved that there are also
many graphs H for which one can significantly reduce the minimum degree condition in
Theorem 2.

In a related direction, Komlós [10] showed that if one only requires an H-tiling covering
almost all vertices in the host graph, then one can replace the χ(H)-term in the minimum
degree condition of the Alon–Yuster theorem by the so-called critical chromatic number
χcr(H) of H. Here χcr(H) is defined as

χcr(H) := (χ(H)− 1)
|H|

|H| − σ(H)
,

where σ(H) denotes the size of the smallest possible colour class in any χ(H)-colouring
of H. Note that all graphs H satisfy χ(H) − 1 < χcr(H) 6 χ(H) and χcr(H) = χ(H)
precisely when every χ(H)-colouring c of H is balanced (i.e. the colour classes of c have
the same size).

Theorem 3 (Komlós [10]). Let η > 0 and let H be a graph. Then there exists an integer
n0 = n0(η,H) such that every graph G on n > n0 vertices with

δ(G) >

(
1− 1

χcr(H)

)
n

contains an H-tiling covering all but at most ηn vertices.

Note that the minimum degree condition in Theorem 3 is best-possible in the sense
that one cannot replace the (1−1/χcr(H)) term here with any smaller fixed constant (this
is a consequence of [10, Theorem 7]). Further, for any x ∈ (0, 1) and sufficiently large
n, Komlós [10] determined the minimum degree threshold that ensures a graph G on n
vertices contains an H-tiling covering at least xn vertices. Shoukoufandeh and Zhao [18]
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later proved that the number of uncovered vertices in Theorem 3 can be reduced to a
constant dependent only on H.

Kühn and Osthus [14, 15] showed that for many graphs H, a minimum degree slightly
above that in Komlós’ theorem actually ensures a perfect H-tiling. To state their result
we need to introduce some notation. We say that a colouring of H is optimal if it uses
exactly χ(H) =: r colours. Let CH denote the set of all optimal colourings of H. Given
an optimal colouring c of H, let xc,1 6 xc,2 6 · · · 6 xc,r denote the sizes of the colour
classes of c. We write

D(c) := {xc,i+1 − xc,i | i = 1, . . . , r − 1},

and let
D(H) :=

⋃
c∈CH

D(c).

We denote by hcfχ(H) the highest common factor of all integers in D(H). If D(H) = {0}
then we define hcfχ(H) := ∞. We write hcfc(H) for the highest common factor of all
the orders of components of H. For non-bipartite graphs H we say that hcf(H) = 1 if
hcfχ(H) = 1. If χ(H) = 2 then we say hcf(H) = 1 if hcfc(H) = 1 and hcfχ(H) 6 2.
(See [15] for some examples.) Set

χ∗(H) :=

{
χcr(H) if hcf(H) = 1;

χ(H) otherwise.

Also let δ(H,n) denote the smallest integer k such that every graph G whose order n is
divisible by |H| and with δ(G) > k contains a perfect H-tiling.

When hcf(H) = 1, Kühn and Osthus showed that χcr(H) is the parameter governing
the minimum degree condition that ensures a perfect H-tiling. When hcf(H) 6= 1, χ(H)
instead is the relevant parameter.

Theorem 4 (Kühn and Osthus [15]). For every graph H there exists a constant C = C(H)
such that (

1− 1

χ∗(H)

)
n− 1 6 δ(H,n) 6

(
1− 1

χ∗(H)

)
n+ C.

Intuitively speaking, graphs H with hcf(H) = 1 avoid certain divisibility barrier prob-
lems when seeking a perfect H-tiling, thus ensuring the lower threshold in this case in
Theorem 4. Earlier Kühn and Osthus [14] had proven a version of Theorem 4 for graphs
H with χ(H) > 3 and hcf(H) = 1; there though the constant C(H) was replaced with a
linear error term. We now state this result explicitly for future reference.

Theorem 5 (Kühn and Osthus [14]). Let η > 0 and H be a graph with hcfχ(H) = 1 and
χ(H) =: r > 3. Then there exists an integer n0 = n0(η,H) such that the following holds.
Let G be a graph on n > n0 vertices such that |H| divides n and

δ(G) >

(
1− 1

χcr(H)
+ η

)
n.

Then G contains a perfect H-tiling.
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1.2 Degree sequence conditions forcing tilings

As discussed in the previous subsection, the minimum degree conditions in each of the
Hajnal–Szemerédi theorem, Komlós’ theorem and the Kühn–Osthus theorem are essen-
tially best-possible. However, this does not mean one cannot seek significant strength-
enings of these results. For example, Kierstead and Kostochka [9] proved an Ore-type
generalisation of Theorem 1 where now one replaces the minimum degree condition with
the condition that the sum of the degrees of every pair of non-adjacent vertices in G is at
least 2(1− 1/r)n− 1.

The focus of this paper concerns degree sequence conditions that force a perfect H-
tiling. The study of degree sequence results for tilings was initiated in [2]. In particular,
a conjecture on a degree sequence strengthening of the Hajnal–Szemerédi theorem was
raised [2, Conjecture 7], as well as a degree sequence version of the Alon–Yuster theorem [2,
Conjecture 8]. In [20] the second author proved the latter conjecture (also yielding an
asymptotic version of Conjecture 7 from [2]).

Theorem 6 (Treglown [20]). Suppose that η > 0 and H is a graph with χ(H) =: r > 2.
Then there exists an integer n0 = n0(η,H) such that the following holds. If G is a graph
whose order n > n0 is divisible by |H|, and whose degree sequence d1 6 · · · 6 dn satisfies

di > (r − 2)n/r + i+ ηn for all 1 6 i 6 n/r,

then G contains a perfect H-tiling.

Theorem 6 is a significant strengthening of the Alon–Yuster theorem as it allows for
n/r vertices to have degree (significantly) below that required in the latter. Further
Theorem 6 provides the first piece of a degree sequence analogue of the Kühn–Osthus
theorem.

The main result in this paper deals with the remaining part of this problem, providing
a degree sequence condition that forces a perfect H-tiling for graphs with hcf(H) = 1.

Theorem 7. Let η > 0 and H be a graph with hcf(H) = 1 and χ(H) =: r > 2. Let
σ := σ(H), h := |H| and ω := (h− σ) /(r−1). Then there exists an integer n1 = n1(η,H)
such that the following holds. Let G be a graph on n > n1 vertices such that h divides n
and G has degree sequence d1 6 · · · 6 dn such that

di >

(
1− ω + σ

h

)
n+

σ

ω
i+ ηn for all 1 6 i 6 ωn

h
.

Then G contains a perfect H-tiling.

Note that here ω is the average size of the colour classes of H after excluding one of
minimal size σ(H). Observe that when i = ωn/h, we have

dωn
h
>
(

1− ω

h
+ η
)
n =

(
1− 1

χcr(H)
+ η

)
n.
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Hence, Theorem 7 is a strengthening of Theorem 5. Note that Theorem 7 applies to all
graphs H with hcf(H) = 1, not just graphs H with χ(H) > 3 and hcfχ(H) = 1 (as in
Theorem 5). Moreover, Theorem 7 (and Theorem 6) is best-possible for many graphs H
in the sense that we cannot replace the ηn-term with a o(

√
n)-term (see Proposition 12).

Theorem 7 is also best possible for all graphs H in the sense that there are n-vertex graphs
G with only slightly more than ωn/h vertices with degree (slightly) below (1−ω/h+ η)n
that do not contain a perfect H-tiling (see Proposition 15).

Thus, it is not possible to allow significantly more ‘small’ degree vertices in Theorem 7.
Extremal examples are discussed in more detail in Section 3.2.

Combining Theorem 7 with Theorem 6 we obtain the following degree sequence version
of the Kühn–Osthus theorem (Theorem 4).

Theorem 8. Let η > 0 and H be a graph with χ(H) =: r > 2. Let σ := σ(H), h := |H|
and ω := (h− σ) /(r − 1). Then there exists an integer n1 = n1(η,H) such that if G is a
graph on n > n1 vertices, h divides n and either (i) or (ii) below holds, then G contains
a perfect H-tiling.

(i) hcf(H) = 1 and G has degree sequence d1 6 · · · 6 dn such that

di >

(
1− ω + σ

h

)
n+

σ

ω
i+ ηn for all 1 6 i 6 ωn

h
.

(ii) hcf(H) 6= 1 and G has degree sequence d1 6 . . . 6 dn such that

di > (r − 2)n/r + i+ ηn for all 1 6 i 6 n/r.

One can in fact obtain the following generalisation of Theorem 7 in which we assume
σ(H) 6 σ < h/r.

Theorem 9. Let η > 0 and H be a graph with hcf(H) = 1 and χ(H) =: r > 2. Let
h := |H|. Set σ ∈ R such that σ(H) 6 σ < h/r and ω := (h− σ) /(r − 1). Then there
exists an integer n1 = n1(η,H) such that the following holds. Let G be a graph on n > n1

vertices such that h divides n and G has degree sequence d1 6 · · · 6 dn such that

di >

(
1− ω + σ

h

)
n+

σ

ω
i+ ηn for all 1 6 i 6 ωn

h
.

Then G contains a perfect H-tiling.

Observe that for graphs H with hcf(H) = 1, Theorem 9 interpolates between Theo-
rems 6 and 7. In Section 7, we will prove Theorem 9 directly. The proof of Theorem 9
follows that of Theorem 5 in [14] closely. The main novelty of our proof is how we avoid
divisibility barriers. For this we make use of an elementary number theoretic result for
graphs with hcf(H) = 1 (see Theorem 30). We also make use of a recent degree sequence
strengthening of Komlós’ theorem proved by the authors and Liu [7].
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d1 d2

Degree

(
1− 2

r

)
n+ ηn

(
1− 1

r
− σ(H)+ω(H)

2h

)
n+ ηn

(
1− ω(H)+σ(H)

h

)
n+ ηn

(
1− ω(H)

h

)
n+ ηn

(
1− 1

2r
− ω(H)

2h

)
n+ ηn

(
1− 1

r

)
n+ ηn

d
n
r

d (
h
+
rω

(H
)

2r
h

)n
d ω

(H
)n

h

Figure 1: The degree sequence in Theorem 9 for a fixed graph H given σ = σ(H) (medium

dashed); σ = h+rσ(H)
2r

(long dashed); σ = h
r

(full).

Since the choice of σ ∈ [σ(H), h/r) is arbitrary, note that Theorem 9 provides an
infinite collection of degree sequences that force a perfect H-tiling. Having a higher value
of σ lowers the starting point of the degree sequence condition, but at the price of a
steeper ‘slope’ and higher value of dωn/h (see Figure 1).

As with Theorem 7, for many graphs H, each of these degree sequences is best-possible
in the sense that we cannot replace the ηn-term with a o(

√
n)-term (see Section 3.2). Note

too that we cannot extend Theorem 9 to the case when σ < σ(H). Indeed, in this case,
if we set η � 1 then the degree sequence condition in Theorem 9 would allow all vertices
in G to have degree below (1− 1/χcr(H))n− 1; however, we know from Theorem 4 that
there are graphs G that satisfy this condition and that do not contain perfect H-tilings.

The paper is organised as follows. In the next section we introduce some notation
and definitions. In Section 3 we discuss various senses of optimality for degree sequence
conditions before giving several extremal examples for Theorems 7 and 9. We also ask
whether one can improve Theorem 7 by suitably ‘capping’ the bounds on the degrees of
the vertices (see Question 16). In Section 4 we give a number of auxiliary results and defi-
nitions relating to the regularity lemma and tilings. We then prove an elementary number

the electronic journal of combinatorics 27(3) (2020), #P3.48 6



theoretic result (Theorem 30) in Section 5 which will be a crucial tool in overcoming di-
visibility barriers during the proof of Theorem 9. In Section 6 we give an overview of the
proof of Theorem 9 before proving it in Section 7.

2 Notation and Definitions

Let G be a graph. We define V (G) to be the vertex set of G and E(G) to be the edge set of
G. Let X ⊆ V (G). Then G[X] is the graph induced by X on G and has vertex set X and
edge set E(G[X]) := {xy ∈ E(G) : x, y ∈ X}. We also define G \X to be the graph with
vertex set V (G) \X and edge set E(G \X) := {xy ∈ E(G) : x, y ∈ V (G) \X}. For each
x ∈ V (G), we define the neighbourhood of x in G to be NG(x) := {y ∈ V (G) : xy ∈ E(G)}
and define dG(x) := |NG(x)|. We drop the subscript G if it is clear from context which
graph we are considering. We write dG(x,X) for the number of edges in G that x sends
to vertices in X. Given a subgraph G′ ⊆ G, we will write dG(x,G′) := dG(x, V (G′)). Let
A,B ⊆ V (G) be disjoint. Then we define eG(A,B) := |{xy ∈ E(G) : x ∈ A, y ∈ B}|.

Let t ∈ N. We define the blow-up G(t) to be the graph constructed by first replacing
each vertex x ∈ V (G) by a set Vx of t vertices and then replacing each edge xy ∈ E(G)
with the edges of the complete bipartite graph with vertex sets Vx and Vy.

We write 0 < a � b � c < 1 to mean that we can choose the constants a, b, c from
right to left. More precisely, there exist non-decreasing functions f : (0, 1] → (0, 1] and
g : (0, 1]→ (0, 1] such that for all a 6 f(b) and b 6 g(c) our calculations and arguments in
our proofs are correct. Larger hierarchies are defined similarly. Note that a � b implies
that we may assume e.g. a < b or a < b2.

3 A discussion on the optimality of degree sequence conditions

In this section we describe various notions concerning when a degree sequence condition
is ‘best-possible’ in some sense. In particular, we will explain in what way our results
(Theorems 7 and 9) are essentially best-possible, as well as how we may be able to
strengthen these theorems further. Some of our discussion draws on the survey [3].

First we introduce a few definitions. An integer sequence π = (d1 6 . . . 6 dn) is called
graphic if there exists a (simple) graph G that has π as its degree sequence. Given a
graph property P , we say that a graphic sequence π forces P if every graph with degree
sequence π satisfies property P . Given a property P (such as containing a Hamilton cycle
or perfect H-tiling), the ‘holy-grail’ in the study of degree sequences is to establish all
those graphic sequences π that force P .

The following theorem of Chvátal [4] provides an extremely general condition on degree
sequences that force a Hamilton cycle.

Theorem 10 (Chvátal [4]). Suppose that the degree sequence of a graph G is d1 6 · · · 6
dn. If n > 3 and di > i+ 1 or dn−i > n− i for all i < n/2 then G is Hamiltonian.

Note that Chvátal’s theorem is best-possible in the following sense: if d1 6 · · · 6 dn
is a degree sequence that does not satisfy the condition in Theorem 10 then there exists
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a non-Hamiltonian graph G whose degree sequence d′1 6 · · · 6 d′n is such that d′i > di for
all 1 6 i 6 n. (We will informally refer to a degree sequence result being best-possible in
this way as a Chvátal-type result.)

Crucially note though that Chvátal’s theorem does not describe all those graphic
sequences that force a Hamilton cycle. For example, graphs with degree sequence
(2, 2, 2, 2, 2) must be Hamiltonian (in fact, are themselves simply a 5-cycle), but do not
satisfy Chvátal’s condition. More generally, all 2k-regular graphs on 4k + 1 vertices are
Hamiltonian [17] yet their degree sequences fail the condition in Theorem 10.

3.1 Degree sequence conditions forcing perfect H-tilings

At present, for a given fixed graph H, it seems out of reach to characterise those graphic
degree sequences that force a perfect H-tiling, or obtain a Chvátal-type result in this
setting. Thus, it is natural to seek degree sequence conditions that force a perfect H-
tiling, and are best-possible in some weaker sense. For example, consider the following
conjecture:

Conjecture 11 (Balogh, Kostochka and Treglown [2]). Let n, r ∈ N such that r divides
n. Suppose that G is a graph on n vertices with degree sequence d1 6 · · · 6 dn such that:

(α) di > (r − 2)n/r + i for all i < n/r;

(β) dn/r+1 > (r − 1)n/r.

Then G contains a perfect Kr-tiling.

Conjecture 11 is best-possible in the sense that there are examples (see [2, Section 4])
showing that one cannot replace (α) with di > (r − 2)n/r + i − 1 for even a single i or
(β) with dn/r+1 > (r − 1)n/r − 1 and dn/r+2 > (r − 1)n/r. That is, there is no room to
lower the degree sequence condition further, not even by lowering a single entry by just
one. (We will informally refer to a degree sequence result being best-possible in this way
as a Pósa-type result.) However, Conjecture 11, if true, is likely still significantly weaker
than a Chvátal-type result. For example, it is easy to see that any graph G with degree
sequence d1 6 · · · 6 dn satisfying (i) d1 > r − 1; (ii) d2 > n − 2; (iii) dn−r+2 > n − 1
contains a perfect Kr-tiling even though the condition in Conjecture 11 is violated.

One could also ask for a Pósa-type strengthening of the Kühn–Osthus theorem (Theo-
rem 4) for all graphs H. However, obtaining such a result again seems extremely difficult,
not only because (the special case) Conjecture 11 is still open, but also in general because
the ‘correct’ value of the constant C(H) in Theorem 4 is not known.

3.2 Extremal examples for Theorems 7 and 9

Despite the aforementioned challenges, in this paper we have provided degree sequence
conditions that force a perfect H-tiling, and are best-possible in various ways. The follow-
ing 3 extremal examples demonstrate this. The first shows that we cannot significantly
lower every term in the degree sequence conditions of Theorems 7 and 9 and still ensure a
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perfect H-tiling for complete r-partite graphs H. The second shows that that the ‘slope’
of the degree sequence in Theorem 7 is best possible for so-called bottle graphs. The third
demonstrates that for any graph H, to ensure a perfect H-tiling (or even an ‘almost’ per-
fect H-tiling) in a graph G on n vertices we cannot have significantly more than ωn/h

vertices that have degree below
(

1− 1
χcr(H)

+ η
)
n.

Extremal Example 1. The following construction (a simple adaption of [20, Proposition
3.1]) demonstrates that for most complete r-partite graphs H, one cannot replace the ηn-
term in Theorems 7 and 9 with a o(

√
n)-term.

Proposition 12. Let r > 3 and H := Kt1,...,tr with ti > 2 (for all 1 6 i 6 r). Let
h := |H|. Set σ ∈ R such that σ(H) 6 σ < h/r and ω := (h− σ) /(r − 1). Let n ∈ N
be sufficiently large so that

√
n is an integer that is divisible by 6h2. Set C :=

√
n/3h2.

Then there exists a graph G on n vertices whose degree sequence d1 6 · · · 6 dn satisfies

di >

(
1− ω + σ

h

)
n+

σ

ω
i+ C for all 1 6 i 6 ωn

h

but such that G does not contain a perfect H-tiling.

Proof. Let G denote the graph on n vertices consisting of r vertex classes V1, . . . , Vr with
|V1| = 1, |V2| = ωn/h + 1 + Cr, |V3| = (σ + ω)n/h − 2 − 3C and |Vi| = ωn/h − C if
4 6 i 6 r and which contains the following edges:

• All possible edges with an endpoint in V3 and the other endpoint in V (G) \ V1. (In
particular, G[V3] is complete.);

• All edges with an endpoint in V2 and the other endpoint in V (G) \ V2;

• All edges with an endpoint in Vi and the other endpoint in V (G) \ Vi for 4 6 i 6 r;

• There are
√
n/2 vertex-disjoint stars in V2, each of size b2|V2|/

√
nc or d2|V2|/

√
ne,

which cover all of V2.

In particular, note that the vertex v ∈ V1 sends all possible edges to V (G) \ V3 but no
edges to V3.

Let d1 6 . . . 6 dn denote the degree sequence of G. Notice that every vertex in Vi for
3 6 i 6 r has degree at least (1− ω/h)n+ C. Note that b2|V2|/

√
nc > 2

√
n/h = 6Ch >

6Cr. Thus, there are
√
n/2 vertices in V2 of degree at least

(1− ω/h)n− 1− Cr + (6Cr − 1) > (1− ω/h)n+ C.

The remaining ωn/h+ 1 + Cr −
√
n/2 6 ωn/h−

√
n/3− 1 vertices in V2 have degree at

least
(1− ω/h)n− Cr > (1− ω/h)n− σ

√
n/3ω + C.

Since dG(v) >
(
1− ω+σ

h

)
n+ C + σ/ω for the vertex v ∈ V1 we have that

di >

(
1− ω + σ

h

)
n+

σ

ω
i+ C for all 1 6 i 6 ωn

h
.
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Suppose that v ∈ V1 lies in a copy H ′ of H in G. Then by construction of G, two of the
vertex classes U1, U2 of H ′ must lie entirely in V2. By definition of H, H ′[U1∪U2] contains
a path of length 3. However, G[V2] does not contain a path of length 3, a contradiction.
Thus, v does not lie in a copy of H and so G does not contain a perfect H-tiling.

Extremal Example 2. We require the following definitions. Let t ∈ N. We will refer to
a vertex class of size t of G as a t-class of G. Set r, σ, ω ∈ N and σ < ω. We define the
r-partite bottle graph B with neck σ and width ω to be the complete r-partite graph with
one σ-class and (r − 1) ω-classes.

Let η > 0 be fixed. Let B be an r-partite bottle graph with neck σ and width ω.
The following extremal example (adapted from Proposition 3.1 in [7]) G on n vertices
demonstrates that Theorem 7 is best possible for such graphs B, in the sense that G
satisfies the degree sequence of Theorem 7 except for a small linear part that only just
fails the degree sequence, but does not contain a perfect B-tiling. In fact, G does not
contain a B-tiling that covers all but at most ηn vertices.

Proposition 13. Let η > 0 be fixed and n ∈ N such that 0 < 1/n� η � 1. Let r > 3 be
an integer. Let B be an r-partite bottle graph with neck σ and width ω, where b := |B|.
Additionally assume that b divides n. Then for any 1 6 k < ωn/b − (rb + 1)ηn, there
exists a graph G on n vertices whose degree sequence d1 6 · · · 6 dn satisfies

di >

(
1− ω + σ

b

)
n+

σ

ω
i+ ηn for all i ∈ {1, . . . , k − 1, k + rbηn+ 1, . . . , ωn/b},

di =

(
1− ω + σ

b

)
n+

⌈σ
ω
k
⌉

+ ηn for all k 6 i 6 k + rbηn,

but such that G does not contain a B-tiling covering all but at most ηn vertices.

Proof. Let G be the graph on n vertices with r + 1 vertex classes V1, . . . , Vr+1 where

• |V1| = σn/b;

• |V2| = ωn/b− ηn;

• |V3| = . . . = |Vr| = ωn/b− (ηn+ 1);

• |Vr+1| = (r − 1)(ηn+ 1)− 1.

Label the vertices of V1 as a1, a2, . . . , aσn/b. Similarly, label the vertices of V2 as
c1, c2, . . . , cωn/b−ηn. The edge set of G is constructed through the following process.

Initially, let G have the following edges:

• All edges with an endpoint in V1 and the other endpoint in V (G) \ V2, in particular
G[V1] is complete;

• All edges with an endpoint in Vi and the other endpoint in V (G) \ (V1 ∪ Vi) for
2 6 i 6 r + 1;
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• All edges with both endpoints in Vr+1, in particular G[Vr+1] is complete;

• Given any 1 6 i 6 ωn/b− ηn and j 6 dσi/ωe include all edges ciaj.

So at the moment G indeed satisfies the degree sequence in Theorem 7; we therefore
modify G slightly. For all k 6 i 6 k + rbηn and dσk/ωe + 1 6 j 6 dσ(k +
rbηn)/ωe delete each edge between ci and aj. One can easily check that G satisfies the
degree sequence in the statement of the proposition. In particular, the vertices of degree(
1− ω+σ

b

)
n+ dσ

ω
ke+ ηn are ck, . . . , ck+rbηn.

Define A := {a1, . . . , adσk/ωe} and C := {c1, . . . , ck+rbηn}. Note that there are no edges
between C and V1 \ A in G.

Claim 14. Let T be a B-tiling of G. Then T does not cover at least 3ηn/2 vertices in C.

Firstly, consider any copy B′ of B in T that contains at least one vertex in Vr+1. Since
C is an independent set in G, observe that B′ contains at most ω vertices from C. Thus,
there are at most ω|Vr+1| = ω(r− 1)ηn+ω(r− 2) vertices in C covered by copies of B in
T that each contain at least one vertex in Vr+1.

Secondly, consider any copy B′ of B in T that contains at least one vertex from C
and no vertices from Vr+1. As before, since C is an independent set in G, we have that
B′ contains at most ω vertices from C. Since there are no edges between C and V1 \A in
G, B′ contains at least σ vertices in A.

These two observations, alongside the fact that b = σ+ω(r−1) > ω(r−1) > ω(r−2),
imply that at most ω(r−1)ηn+ω(r−2) + dσk/ωe(ω/σ) < k+ 1 + b(ηn+ 1) vertices in C
can be covered by T . Since |C| = k+ rbηn, we have that T does not cover at least 3ηn/2
vertices in C. Therefore, Claim 14 holds. Hence G does not have a B-tiling covering all
but at most ηn vertices.

Extremal Example 3. Let H be an h-vertex graph, χ(H) =: r, σ := σ(H) and
ω := (h−σ)/(r−1). The following extremal example demonstrates that there are n-vertex
graphs G for which all but (ω/h+o(1))n vertices have degree above (1−1/χcr(H)+o(1))n,
with the remaining (ω/h+ o(1))n vertices having degree (1− 1/χcr(H)− o(1))n, and yet
G does not contain a perfect H-tiling. Thus, this shows that one cannot have significantly
more than ωn/h ‘small’ degree vertices in Theorem 7.

Proposition 15. Let 0 < η � 1 be fixed. Let H be a graph with χ(H) =: r. Let h := |H|,
σ := σ(H) and set ω := (h− σ)/(r− 1). Then there exists a graph G on n vertices whose
degree sequence d1 6 · · · 6 dn satisfies

di = (1− ω/h− (r − 1)η)n = (1− 1/χcr(H)− (r − 1)η)n for all i 6 (ω/h+(r−1)η)n,

di > (1− ω/h+ η)n = (1− 1/χcr(H) + η)n for all i > (ω/h+ (r − 1)η)n,

but such that G does not contain an H-tiling covering all but at most ηn vertices.

Proof. Let G be the complete r-partite graph on n vertices with vertex classes V1, . . . , Vr
such that
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• |V1| = σn
h
− ηn,

• |V2| = ωn
h

+ (r − 1)ηn,

• |V3| = · · · = |Vr| = ωn
h
− ηn.

Then G satisfies the degree sequence condition in the proposition. The choice in size of V1

ensures that any H-tiling in G covers at most |V1|h/σ < n− ηn vertices, as desired.

3.3 A possible strengthening of Theorem 7

Whilst Proposition 12 demonstrates that we cannot lower every term in the degree se-
quence condition in Theorem 7 by much, perhaps one can cap the degrees as follows.

Question 16. Can the degree sequence condition in Theorem 7 be replaced by

di > min

{(
1− ω + σ

h

)
n+

σ

ω
i+ ηn,

(
1− 1

χcr(H)

)
n+ C

}
for all 1 6 i 6 ωn

h

where C is a constant dependent only on H?

Note that Theorem 8 does not quite imply the Kühn–Osthus theorem (Theorem 4)
due to the ηn-terms. On the other hand, an affirmative answer to Question 16, together
with an analogous ‘capped’ version of Theorem 8 (ii), would fully imply the upper bound
in Theorem 4.

4 Auxiliary results

4.1 The regularity and blow-up lemmas

The results in this section will be employed in our proof of Theorem 9. First we need the
following definitions.

Definition 17. Let G = (A,B) be a bipartite graph with vertex classes A and B. We
define the density of G to be

dG(A,B) :=
eG(A,B)

|A||B|
.

Set ε > 0. We say that G is ε-regular if for all X ⊆ A and Y ⊆ B with |X| > ε|A| and
|Y | > ε|B| we have that |dG(X, Y )− dG(A,B)| < ε.

Definition 18. Given ε > 0, d ∈ [0, 1] and G = (A,B) a bipartite graph, we say that G
is (ε, d)-superregular if all sets X ⊆ A and Y ⊆ B with |X| > ε|A| and |Y | > ε|B| satisfy
that d(X, Y ) > d, that dG(a) > d|B| for all a ∈ A and that dG(b) > d|A| for all b ∈ B.

The following groundbreaking result of Szemerédi [19] will be instrumental in our proof
of Theorem 9.
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Lemma 19 (Degree form of Szemerédi’s Regularity lemma [19]). Let ε ∈ (0, 1) and
M ′ ∈ N. Then there exist natural numbers M and n0 such that for any graph G on
n > n0 vertices and any d ∈ (0, 1) there is a partition of the vertices of G into subsets
V0, V1, . . . , Vk and a spanning subgraph G′ of G such that the following hold:

• M ′ 6 k 6M ;

• |V0| 6 εn;

• |V1| = · · · = |Vk| =: q;

• dG′(x) > dG(x)− (d+ ε)n for all x ∈ V (G);

• e(G′[Vi]) = 0 for all i > 1;

• For all 1 6 i, j 6 k with i 6= j the pair (Vi, Vj)G′ is ε-regular and has density either
0 or at least d.

We call V1, . . . , Vk the clusters of our partition, V0 the exceptional set and G′ the pure
graph. We define the reduced graph R of G with parameters ε, d and M ′ to be the graph
whose vertex set is V1, . . . , Vk and in which ViVj is an edge if and only if (Vi, Vj)G′ is
ε-regular with density at least d. Note also that |V (R)| = k.

We will apply the following well known fact, in conjunction with Lemma 21 (below),
in Section 7.2.

Fact 20. Let 0 < ε < α and ε′ := max{ε/α, 2ε}. Let (A,B) be an ε-regular pair of
density d. Suppose A′ ⊆ A and B′ ⊆ B where |A′| > α|A| and |B′| > α|B|. Then (A′, B′)
is an ε′-regular pair with density d′ where |d′ − d| < ε.

Lemma 21 (Key lemma [13]). Suppose that 0 < ε < d, that q, t ∈ N and that R is
a graph with V (R) = {v1, . . . , vk}. We construct a graph G as follows: Replace every
vertex vi ∈ V (R) with a set Vi of q vertices and replace each edge of R with an ε-regular
pair of density at least d. For each vi ∈ V (R), let Ui denote the set of t vertices in
R(t) corresponding to vi. Let H be a subgraph of R(t) with maximum degree ∆ and set
h := |H|. Set δ := d− ε and ε0 := δ∆/(2 + ∆). If ε 6 ε0 and t− 1 6 ε0q then there are
at least

(ε0q)
h labelled copies of H in G

so that if x ∈ V (H) lies in Ui in R(t), then x is embedded into Vi in G.

Let G be a graph as in Theorem 9 and R a reduced graph of G. The next well known
lemma essentially says that R ‘inherits’ the degree sequence of G.

Lemma 22 (See e.g. [7]). Set M ′, n0 ∈ N and ε, d, η, b, ω, σ to be positive constants such
that 1/n0 � 1/M ′ � ε � d � η, 1/b and where ω + σ 6 b. Suppose G is a graph on
n > n0 vertices with degree sequence d1 6 · · · 6 dn such that

di >
b− ω − σ

b
n+

σ

ω
i+ ηn for all 1 6 i 6 ωn

b
.
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Let R be the reduced graph of G with parameters ε, M ′ and d and set k := |V (R)|. Then
R has degree sequence dR,1 6 · · · 6 dR,k such that

dR,i >
b− ω − σ

b
k +

σ

ω
i+

ηk

2
for all 1 6 i 6 ωk

b
.

Let G and H be graphs and R be a reduced graph of G. Let H be a perfect H-tiling in
R. The following result ensures that after removing only a few vertices from each cluster
in R every edge in each copy of H ∈ H corresponds to a superregular pair. This will be
essential to apply Lemma 24 in Section 7.4.

Proposition 23 (See e.g. [16]). Let G be a graph, ε, d ∈ (0, 1) and M ′,∆ ∈ N. Apply
Lemma 19 to G with parameters ε,M ′ and d to obtain a reduced graph R with clusters of
size q. Let H be a subgraph of the reduced graph R with ∆(H) 6 ∆ and label the vertices
of H as V1, . . . , V|H|. Then each vertex Vi of H contains a subset V ′i of size (1−ε∆)q such
that for every edge ViVj of H the graph (V ′i , V

′
j )G′ is (ε/(1−ε∆), d−(1+∆)ε)-superregular.

The following fundamental result of Komlós, Sárközy and Szemerédi [11], known as
the Blow-up lemma, essentially says that (ε, d)-superregular pairs behave like complete
bipartite graphs with respect to containing bounded degree subgraphs.

Lemma 24 (Blow-up lemma [11])). Given a graph F on vertices {1, . . . , f} and d,∆ > 0,
there exists an ε0 = ε0(d,∆, f) > 0 such that the following holds. Given L1, . . . , Lf ∈ N
and ε 6 ε0, let F ∗ be the graph obtained from F by replacing each vertex i ∈ F with a set
Vi of Li new vertices and joining all vertices in Vi to all vertices in Vj whenever ij is an
edge of F . Let G be a spanning subgraph of F ∗ such that for every edge ij ∈ F the pair
(Vi, Vj)G is (ε, d)-superregular. Then G contains a copy of every subgraph H of F ∗ with
∆(H) 6 ∆.

4.2 Tilings in complete graphs

In [14], the following result of Kühn and Osthus is essential to their proof of Theorem 5.

Lemma 25. [15, Lemma 12] Let H be a graph with χ(H) =: r > 2 and hcf(H) = 1.
Let h := |H| and ω(H) := (h− σ(H)) /(r − 1). Let 0 < β1 � λ1 � σ(H)/ω(H),
1− σ(H)/ω(H), 1/h be positive constants. Suppose that F is a complete r-partite graph
with vertex classes U1, . . . , Ur such that: 1/|F | � β1;

|F | is divisible by h; (1 − λ
1/10
1 )|Ur| 6 σ(H)|Ui|/ω(H) 6 (1 − λ1)|Ur| for all i < r;

||Ui| − |Uj|| 6 β1|F | whenever 1 6 i < j < r. Then F contains a perfect H-tiling.

We will use the Blow-up lemma in tandem with the following generalisation of
Lemma 251 to conclude that a particular tiling that we construct in a reduced graph R
guarantees a perfect H-tiling in our original graph G.

1Note that Lemma 25 is the σ = σ(H) case of Lemma 26.
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Lemma 26. Let H be a graph with χ(H) =: r > 2 and hcf(H) = 1. Let h := |H|. Set
σ ∈ R such that σ(H) 6 σ < h/r and ω := (h− σ) /(r − 1). Let 0 < β2 � λ2 � σ/ω,
1 − σ/ω, 1/h be positive constants. Suppose that F is a complete r-partite graph with

vertex classes U1, . . . , Ur such that: 1/|F | � β2; |F | is divisible by h; (1 − λ1/10
2 )|Ur| 6

σ|Ui|/ω 6 (1− λ2)|Ur| for all i < r; ||Ui| − |Uj|| 6 β2|F | whenever 1 6 i < j < r. Then
F contains a perfect H-tiling.

Proof. Note we may assume that σ > σ(H) as otherwise the result follows immediately
from Lemma 25. We choose β2 � β1 � λ2 � λ1 where β1 and λ1 are as in Lemma 25.
Additionally we may assume β2, λ2 � (σ/ω − σ(H)/ω(H)).

Let F be as in the statement of the lemma. Set H∗ to be the complete balanced
r-partite graph on rh vertices (that is, each vertex class of H∗ has size h). Observe that
H∗ has a perfect H-tiling using precisely r copies of H.

Repeatedly delete disjoint copies of H∗ from F (and therefore update the classes
U1, . . . , Ur) until the first point for which there is some i < r such that

(1− λ1/10
1 /2)|Ur| 6 σ(H)|Ui|/ω(H) 6 (1− 2λ1)|Ur|.

Call the resulting graph F ′. Note that σ/ω > σ(H)/ω(H), so we can indeed obtain F ′.
Further note that our (sufficiently small) choice of β2 ensures each class Uj still contains

at least a β
1/2
2 -proportion of the vertices it started with. So now ||Ui| − |Uj|| 6 β2|F | 6

β
1/2
2 |F ′| 6 β1|F ′| whenever 1 6 i < j < r. Moreover, this implies

(1− λ1/10
1 )|Ur| 6 σ(H)|Uj|/ω(H) 6 (1− λ1)|Ur|

for all j < r. Thus, by Lemma 25, F ′ contains a perfect H-tiling and therefore, so too
does F , as desired.

4.3 A degree sequence Komlós theorem

In [14], Kühn and Osthus begin their proof of Theorem 5 by applying Komlós’ theorem
(Theorem 3).

In our proof of Theorem 9 we will use the following degree sequence version of Komlós’
theorem that the authors and Liu proved in [7].

Theorem 27. [7, Theorem 8.1] Let η > 0 and H be a graph with χ(H) =: r and h := |H|.
Set σ ∈ R such that σ(H) 6 σ 6 h/r and ω := (h− σ) /(r − 1). Then there exists an
integer n0 = n0(η, σ,H) ∈ N such that the following holds. Suppose G is a graph on
n > n0 vertices with degree sequence d1 6 · · · 6 dn such that

di >

(
1− ω + σ

h

)
n+

σ

ω
i for all 1 6 i 6 ωn

h
.

Then G contains an H-tiling covering all but at most ηn vertices.
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4.4 Bézout’s Lemma

To prove Theorem 30 we will need the following elementary arithmetic result.

Lemma 28 (Bézout’s Lemma). Let a1, a2, . . . , at ∈ Z. Then there exist integers
y1, y2, . . . , yt ∈ Z such that

t∑
i=1

yiai = hcf(a1, a2, . . . , at)

where hcf(a1, a2, . . . , at) is the highest common factor of a1, a2, . . . , at.

5 A tool for the proof of Theorem 9

In this section, we prove a theorem (Theorem 30) that will be used in Sections 7.3.1
and 7.3.2 of the proof of Theorem 9. At the beginning of Section 7.3, we will have a
certain B̂-tiling B̂ of a reduced graph R (the graph B̂ will be defined later). Denote the
copies of B̂ in B̂ by B̂1, B̂2, . . . , B̂k̂. For applications of Lemma 26 required at the end of

our proof of Theorem 9, we will need |VG(B̂i)| to be divisible by h for each 1 6 i 6 k̂.
The following theorem is the crucial tool for ensuring we can remove copies of H from G
to achieve this.

For a graph H with χ(H) = r, recall that CH is the set of all optimal colourings of
H and that given an optimal colouring c ∈ CH we let xc,1 6 xc,2 6 . . . 6 xc,r denote the
sizes of the colour classes of c. We require the following definitions.

Definition 29. Let H be a graph with χ(H) =: r. Fix 1 6 p 6 r − 1. For each c ∈ CH ,
define Dc to be the multiset [xc,1, xc,2, . . . , xc,r]. We say that A is a p-subset contained in Dc

if A is a multiset, |A| = p and A = [xc,j1 , xc,j2 , . . . , xc,jp ] where j1, j2, . . . , jp ∈ {1, . . . , r}
are distinct. Let zp :=

(
r
p

)
be the number of p-subsets contained in Dc. For each

colouring c ∈ CH , label the p-subsets contained in Dc by Ap,c,1, Ap,c,2, . . . , Ap,c,zp . Let
Sp,c,J :=

∑
x∈Ap,c,J

x for each c ∈ CH , 1 6 J 6 zp.

Theorem 30. Let H be an r-partite graph and let h := |H|. Fix 1 6 p 6 r − 1. Let b be
the number of components of H and t1, . . . , tb be the sizes of the components of H. Then

• if r = 2 and hcfc(H) = 1, there exists a collection of non-negative integers {ai : 1 6
i 6 b} and ā ∈ N such that

ai 6 ā for all 1 6 i 6 b,

and
b∑
i=1

aiti ≡ 1 mod h.
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• if r > 3 and hcfχ(H) = 1, there exists a collection of non-negative integers {ap,c,i :
c ∈ CH , 1 6 i 6 zp} and ā ∈ N such that

ap,c,i 6 ā for all c ∈ CH and 1 6 i 6 zp,

and ∑
c∈CH

zp∑
i=1

ap,c,iSp,c,i ≡ 1 mod h.

For each 1 6 p 6 r − 1, c ∈ CH and j ∈ {1, . . . , r}, let Zp,c,j be the multiset defined
by the following table:

Colour class size xc,1 · · · xc,j−1 xc,j xc,j+1 · · · xc,r
Multiplicity in Zp,c,j p · · · p p+ 1 p · · · p

The following fact will be useful in our proof of Theorem 30.

Fact 31. For any 1 6 J, L 6 r, we can partition Zp,c,J into {xc,L} and r p-subsets
contained in Dc.

Proof of Theorem 30. Firstly, we will consider the case when r = 2 and hcfc(H) = 1. So
H must have multiple components. The sizes of these components of H are t1, t2, . . . , tb.
Since hcfc(H) = 1, by Bezout’s Lemma (Lemma 28) there exist integers a′1, . . . , a

′
b such

that
b∑
i=1

a′iti = hcf(t1, . . . , tb) = 1.

Since
∑b

i=1 ti = h, there exists â ∈ N ∪ {0} such that

b∑
i=1

(a′i + â)ti ≡ 1 mod h

and
a′i + â > 0 for all 1 6 i 6 b.

For each 1 6 i 6 b, take ai := a′i + â and ā := max
i=1,...,b

ai.

Next consider when r > 3. Instead of explicitly calculating ap,c,i for each c ∈ CH ,
1 6 i 6 zp, we will construct for each c ∈ CH a multiset Xc of bounded size which can be
partitioned into p-subsets contained in Dc. Further, we will construct our multisets Xc

such that ∑
c∈CH

∑
x∈Xc

x ≡ 1 mod h.

Observe that constructing such multisets Xc immediately yields a collection of non-
negative integers {ap,c,i : c ∈ CH , 1 6 i 6 zp} that satisfy the conditions in Theorem 30.

the electronic journal of combinatorics 27(3) (2020), #P3.48 17



Indeed, for each c ∈ CH and 1 6 i 6 zp, we take ap,c,i to be precisely the number of times
Ap,c,i occurs in the partition of Xc into p-subsets.

In order to start constructing our multisets Xc, we define the following multiset:

D∗(H) :=
⋃
c∈CH

[xc,j+1 − xc,j | j = 1, . . . , r − 1].

As hcfχ(H) = 1 we can apply Lemma 28 to the multiset D∗(H) to get for each c ∈ CH ,
1 6 j 6 r − 1 integers bc,j such that the following holds:

∑
c∈CH

r−1∑
j=1

bc,j(xc,j+1 − xc,j) ≡ 1 mod h. (1)

We now construct our multisets Xc. Fix c ∈ CH . Choose tc ∈ N to be the smallest
natural number such that

ptc > max{|bc,1|, |bc,1 − bc,2|, |bc,2 − bc,3|, . . . , |bc,r−2 − bc,r−1|, |bc,r−1|}.

Then ptc − bc,1, ptc + bc,1 − bc,2, ptc + bc,2 − bc,3, . . . , ptc + bc,r−2 − bc,r−1, ptc + bc,r−1 are
non-negative integers. Let Yc be the multiset defined by the following table:

Colour
class size

xc,1 xc,2 xc,3 · · · xc,r−1 xc,r

Multiplicity
in Yc

ptc − bc,1
ptc + bc,1 −
bc,2

ptc + bc,2 −
bc,3

· · · ptc + bc,r−2 −
bc,r−1

ptc + bc,r−1

Then |Yc| = rptc. If we can partition Yc into p-subsets contained in Dc then we
take Xc := Yc. Assume we cannot. Then the multiplicities of xc,1, . . . , xc,r in Yc must
be sufficiently different from one another. We employ the following algorithm which
transforms Yc into a multiset which can be partitioned into p-subsets contained in Dc

using Fact 31. To state the algorithm we require the following definition.

Definition 32. For each c ∈ CH , 1 6 i 6 r, let mc,i be the multiplicity of xc,i in Yc. Let

J, L ∈ {1, . . . , r} such that J 6= L; mc,J >
∑r

i=1mc,i

r
; mc,L 6

∑r
i=1mc,i

r
; mc,L + 1 6= mc,J ;

mc,L 6= mc,J . Let Y ′c := Yc − {xc,J}+ {xc,L}.2 Then we say that Y ′c is more balanced than
Yc.

Algorithm.

1) Let Q := ∅.

2) If |mc,i − mc,j| = 0 for all 1 6 i, j 6 r, output Yc and Q. Otherwise, choose
J, L ∈ {1, . . . , r} such that Y ′c := Yc − {xc,J}+ {xc,L} is more balanced than Yc.

2That is, Y ′
c is the multiset Yc except with xc,J having multiplicity mc,J−1 and xc,L having multiplicity

mc,L + 1.
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3) Add p copies of H with colouring c to Yc. That is, xc,i now has multiplicity mc,i + p
in Yc for each 1 6 i 6 r.

4) Take Zp,c,J to be the union of {xc,J} and these p copies of H. By Fact 31 there
exists a partition of Zp,c,J into {xc,L} and r p-subsets contained in Dc.

5) Place into Q these r p-subsets contained in Dc.

6) Take Yc := Y ′c and update the value of each mc,i (that is, mc,J has decreased by 1
and mc,L has increased by 1). Go to Step 2.

Therefore, at the end of the algorithm |Yc| = rptc and |mc,i − mc,j| = 0 for all 1 6
i, j 6 r. In particular, it is easy to see that Yc now has a partition QYc into p-subsets
contained in Dc. Let t′c be the number of collections of p copies of H added during the
algorithm and t̂c := tc + t′c. Then the multiset Ŷc, defined by the table below, can be
partitioned into p-subsets contained in Dc using the partition Q ∪QYc :

Colour
class size

xc,1 xc,2 xc,3 · · · xc,r−1 xc,r

Multiplicity
in Ŷc

pt̂c − bc,1
pt̂c + bc,1 −
bc,2

pt̂c + bc,2 −
bc,3

· · · pt̂c + bc,r−2 −
bc,r−1

pt̂c +
bc,r−1

Take Xc := Ŷc. We now confirm that our multisets Xc satisfy∑
c∈CH

∑
x∈Xc

x ≡ 1 mod h.

By (1) and the definition of Xc for each c ∈ CH we have∑
c∈CH

∑
x∈Xc

x

=
∑
c∈CH

(
r−1∑
j=1

bc,j(xc,j+1 − xc,j) + pt̂c

(
r∑
j=1

xc,j

))

=

(∑
c∈CH

r−1∑
j=1

bc,j(xc,j+1 − xc,j)

)
+

(
p
∑
c∈CH

t̂c

)
h

(1)
≡ 1 mod h.

Therefore, recalling the discussion earlier in this proof, there must exist the desired col-
lection of non-negative integers {ap,c,i : c ∈ CH , 1 6 i 6 zp}, and we take ā to be the
maximum element in this collection.
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6 Proof Overview

The rest of this paper will be devoted to proving Theorem 9 and here we outline the proof.
As noted in Section 1.2, our proof follows closely Kühn and Osthus’ proof of Theorem 5
in [14].

Let H, G, η and σ be as in the statement of the theorem. In particular, h := |H| and
ω := (h − σ)/(r − 1). Note that it suffices to prove the result in the case when σ ∈ Q.
First we define a bottle graph B that contains a perfect H-tiling.

Definition 33. Let a, b ∈ N such that σ = a/b. Let ω(H) := (h − σ(H))/(r − 1) and
ĉ := b(r − 1)(ω(H)− σ(H)). Define B to be the r-partite bottle graph with neck σĉ and
width ωĉ (note that σĉ, ωĉ ∈ N). Observe that |B| = hĉ; σ(B) = σĉ; ω(B) = ωĉ. Further,

χcr(B) = r − 1 + σ/ω = h/ω.

Since |B| = hĉ; σ(B) = σĉ; ω(B) = ωĉ, we have that G satisfies the hypothesis of the
degree sequence Komlós theorem (Theorem 27) with B, σ(B) and ω(B) playing the roles
of H, σ and ω respectively. That is, G contains an almost perfect B-tiling. In fact, as
the reduced graph R of G almost inherits the degree sequence of G, Theorem 27 ensures
that R contains an almost perfect B-tiling B. Further note that the choice of ĉ implies
that B has a perfect H-tiling consisting of ĉ copies of H. Indeed, this follows as B has a
perfect tiling of a− σ(H)b copies of Kh,...,h and hb− ar copies of H, where Kh,...,h is the
complete r-partite graph with each vertex class having size h.

Ideally one would like to use B as a framework to build the perfect H-tiling in G.
However, as explained shortly, we need more flexibility in our tiling in R. Therefore, we
introduce the following ‘modified’ version of B.

Definition 34. Let s ∈ N be sufficiently large and λ ∈ R+ be sufficiently small where
σ(1 + λ)s/ω ∈ N. Recall that σ < ω. Let B̂ be the r-partite bottle graph with neck
σ(1 + λ)s/ω and width s.3 Moreover, we choose λ and s such that B̂ contains a perfect
B-tiling. Hence B̂ contains a perfect H-tiling. Note that

χcr(B̂) = r − 1 + σ(1 + λ)/ω.

Since λ is chosen to be small (and so χcr(B̂) is very close to χcr(B)), one can still
apply Theorem 27 on inputs B̂ and R. That is, R contains an almost perfect B̂-tiling B̂.
Denote the copies of B̂ in B̂ by B̂1, B̂2, . . . , B̂k̂. By removing a small number of vertices

from each cluster in R, we can ensure the edges of each B̂i correspond to superregular
pairs. Let V0 denote the set of all vertices in G not contained in the clusters lying in the
tiling B̂.

For each 1 6 i 6 k̂, let Ĝi be the r-partite subgraph of G whose jth vertex class is
the union of all those clusters contained in the jth vertex class of B̂i, for each 1 6 j 6 r.
Let G∗i be the complete r-partite graph on the same vertex set as Ĝi. We introduce the
graph B̂ (rather than just working with B) since B̂ has the following crucial property:

3We have that σ(1 + λ)/ω < 1 by our choice of λ and that σ < ω.
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For each 1 6 i 6 k̂ we can arbitrarily delete a small number of vertices from G∗i (and
correspondingly Ĝi) and, provided |V (G∗i )| is now divisible by h, the resulting graph
satisfies the hypothesis of Lemma 26. That is, this graph contains a perfect H-tiling.
Then the Blow-up lemma (Lemma 24) implies that each Ĝi contains a perfect H-tiling.

We make use of this property of B̂ as follows: In Section 7.2 we remove copies of H
from G that cover all vertices in V0, as well as a small (possibly zero) number of vertices
from each Ĝi; call this H-tiling (formed from these copies of H)H1. Deleting these covered
vertices from each Ĝi, if |V (Ĝi)| (= |V (G∗i )|) is still divisible by h for each 1 6 i 6 k̂ then
each Ĝi now contains a perfect H-tiling (by our argument above). However, for some i,
we may have that |V (Ĝi)| is not divisible by h. So in Section 7.3 we remove a further
bounded number of copies of H, forming an H-tiling H2, to ensure |V (Ĝi)| (= |V (G∗i )|)
is divisible by h for each 1 6 i 6 k̂. Thus, we now have that each Ĝi contains a perfect
H-tiling Ĥi. Combining the tilings H1,H2, Ĥ1, . . . , Ĥk̂ yields a perfect H-tiling in G, as
desired.

Our argument in Section 7.3 will split into two cases, the first being when χ(H) > 3
and the latter when H is bipartite. This is where our proof differs the most from that
in [14] as we must make use of Theorem 30 to find suitable copies of H to ensure each
|V (Ĝi)| is divisible by h.

7 Proof of Theorem 9

7.1 Applying the regularity lemma

Note that it suffices to prove the theorem in the case when σ ∈ Q. Let n be sufficiently
large and fix constants that satisfy the following hierarchy

0 < 1/n� 1/M ′ � ε� d� η1 � β � α� λ� η, σ/ω, 1− σ/ω, 1/h. (2)

As discussed in Section 6, we choose s ∈ N sufficiently large and define B̂ to be the
r-partite bottle graph with neck σ(1 + λ)s/ω and width s. As before, we choose λ and s
such that B̂ contains a perfect B-tiling, which implies that B̂ contains a perfect H-tiling.
Note again that

χcr(B̂) = r − 1 + σ(1 + λ)/ω.

Moreover, choose η1 and M ′ such that

η1 � 1/|B̂| and M ′ > n0(η1, σ(B̂), B̂),

where n0 is defined as in Theorem 27. Let G be an n-vertex graph as in the statement
of Theorem 9. Apply Lemma 19 with parameters ε, d and M ′ to G to obtain clusters
V1, . . . , Vk, an exceptional set V0 and a pure graph G′, where q := |V1| = · · · = |Vk|
and k > M ′. Let R be the corresponding reduced graph. Using (2), we may apply
Lemma 22 with parameters M ′, n, ε, d, η, h, ω, σ to conclude that R has degree sequence
dR,1 6 dR,2 6 · · · 6 dR,k where

dR,i >

(
1− ω + σ

h

)
k +

σ

ω
i+

ηk

2
for all 1 6 i 6 ωk

h
. (3)
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For a graph F , recall that σ(F ) denotes the size of the smallest possible colour class in
any χ(F )-colouring of F and ω(F ) := (|F | − σ(F ))/(χ(F ) − 1). Since λ � η, we have
that

dR,i >

(
1− ω(B̂) + σ(B̂)

|B̂|

)
k +

σ(B̂)

ω(B̂)
i for all 1 6 i 6 ω(B̂)k

|B̂| . (4)

Since |V (R)| = k > M ′ > n0(η1, σ(B̂), B̂) and (4) holds, we apply Theorem 27 to
find a B̂-tiling B̂ covering all but at most η1k vertices in R. Denote the copies of B̂ in B̂
by B̂1, B̂2, . . . , B̂k̂. Now delete all clusters not contained in some B̂i from R and add the
vertices in these clusters to V0. Therefore now

|V0| 6 εn+ η1n 6 2η1n.

From now on, we denote by R the subgraph of the reduced graph induced by all the
remaining clusters and redefine k := |V (R)|. Since η1 � η, (3) implies that R has degree
sequence dR,1 6 dR,2 6 · · · 6 dR,k where

dR,i >

(
1− ω + σ

h

)
k +

σ

ω
i+

ηk

4
for all 1 6 i 6 ωk

h
. (5)

For each B̂i in B̂, let Bi be a perfect B-tiling in B̂i (recall that earlier we chose s and
λ such that B̂ contains a perfect B-tiling). Let B :=

⋃
Bi and observe that B is a perfect

B-tiling in R. To aid with calculations we will sometimes work with B instead of B̂.
Let q′ := (1−ε|B̂|)q. By Proposition 23, for all 1 6 i 6 k̂ we can remove ε|B̂|q vertices

from each cluster Va belonging to B̂i so that each edge VaVb in B̂i now corresponds to a
(2ε, d/2)-superregular pair (Va, Vb)G′ . Further, all clusters now have size q′ and for each
edge VaVb in B̂i the pair (Va, Vb)G′ is a 2ε-regular pair with density at least d/2 (by Fact
20).

Add all the vertices we removed from the clusters to V0 and observe that now, since
ε� η1, 1/|B̂|,

|V0| 6 3η1n. (6)

From now on, we will refer to the subclusters of size q′ as the clusters of R.

By considering a random partition of each cluster Va, and applying a Chernoff bound,
one can obtain the following partition of each cluster.

Claim 35. Let Va be a cluster. Then there exists a partition of Va into a red part V red
a

and a blue part V blue
a such that

||V red
a | − |V blue

a || 6 εq′

and
||NG(x) ∩ V red

a | − |NG(x) ∩ V blue
a || < εq′ for all x ∈ V (G).

the electronic journal of combinatorics 27(3) (2020), #P3.48 22



Apply Claim 35 to every cluster to yield a partition of V (G) − V0 into red and blue
vertices. In the next section, we will remove vertices of particular copies of H in G from
their respective clusters and do so in such a way that we avoid all the red vertices of
G. After removing these vertices, we will be able to conclude that each (modified) pair
(Va, Vb)G′ is (5ε, d/5)-superregular4 since V red

a and V red
b had no vertices removed from

them. After the next section, we will only remove a bounded number of vertices from
the clusters, which will not affect the superregularity of pairs of clusters in any significant
way.

7.2 Covering the exceptional vertices

As in [14], given x ∈ V0, we call a copy of B ∈ B useful for x if there exist r−1 clusters in
B, each belonging to a different vertex class of B, such that x has at least αq′ neighbours
in each cluster. Denote by kx the number of copies of B in B that are useful for x. The
following calculation demonstrates that

kxβq
′ > |V0|.

By (2) and (6), we have that

kx|B|q′ + (|B| − kx)(|B|q′ − (1− α)q′ĉ(ω + σ))

> dG(x)− |V0|

>

(
1− ω + σ

h
+
η

2

)
q′|B||B|,

which implies

(|B| − kx)(−(1− α)q′ĉ(ω + σ)) >

(
−ω + σ

h
+
η

2

)
q′hĉ|B|.

Rearranging, we get

kx >
|B|
(
hη
2
− α(ω + σ)

)
(ω + σ)(1− α)

.

Since α� η, we have that

kx >
η|B|

4
.

Now as |B|q′ > n
2|B| and η1 � β, η, 1/h we have that

kxβq
′ > η|B|βq′/4 > 3η1n > |V0|.

Hence we can assign greedily each vertex x ∈ V0 to a copy Bx that is useful for x and do
so in such a way that at most βq′ vertices in V0 are assigned to the same copy B ∈ B.

4Where VaVb is any edge in any B̂i in B̂.
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Then for each copy Bx ∈ B that is useful for some x ∈ V0 we can apply Lemma 21 to find
a copy of H containing x which contains no red vertices. We do this as follows:

For each x, since ε� α and x has at least αq′ neighbours in r−1 clusters belonging to
different vertex classes of Bx, Claim 35 implies that x has at least αq′/4 blue neighbours
in each of these r − 1 clusters. Further, we can find αq′/4 blue vertices in a cluster
belonging to the vertex class of Bx that does not necessarily contain any neighbours of
x. Then it is easy to see that we can find subclusters S1, . . . , Sr of r clusters in Bx such
that: all vertices in S1 ∪ . . .∪ Sr are blue vertices; |Si| = αq′/4 for each i; every vertex in
S1 ∪ . . . ∪ Sr−1 is a neighbour of x in G. By Fact 20, each pair (Si, Sj), 1 6 i < j 6 r,
corresponds to an (8ε/α)-regular

pair inG′ with density at least d/3. Using Lemma 21 with parameters 8ε/α, d/3, αq′/4,
h− 1, we find a copy of H containing x. Since each B ∈ B has been assigned to at most
βq′ vertices in V0 and β � α (from (2)), we may repeat the above argument to find copies
of H that contain each exceptional vertex in such a way that the copies are disjoint and
contain no red vertices. Denote the H-tiling induced by these copies of H by H1. Remove
all the vertices lying in these copies of H from their respective clusters. Observe that
currently, for each i,

(1− βh)q′ 6 |Vi| 6 q′.

7.3 Making the blow-up of each B ∈ B divisible by h

For a subgraph S ⊆ R, let VG(S) denote the union of the clusters in S. We aim to
apply Lemma 24 to each B̂i in B̂ to find an H-tiling that covers every vertex of VG(B̂i).
Combining these H-tilings with H1 will result in a perfect H-tiling in G as desired. Recall
that, for each 1 6 i 6 k̂, Ĝi is the r-partite subgraph of G′ whose jth vertex class is the
union of all those clusters contained in the jth vertex class of B̂i, for each 1 6 j 6 r.
Further, recall that G∗i is the complete r-partite graph on the same vertex set as Ĝi. To
apply Lemma 24 to each B̂i in B̂ we require that each G∗i contains a perfect H-tiling.
To guarantee the existence of these perfect H-tilings we will apply Lemma 26. To use
Lemma 26 on G∗i we require that |V (Ĝ∗i )| is divisible by h. When we first chose our B̂-
tiling this was the case. Indeed, as each B̂i contained a perfect H-tiling and every cluster
Vi was the same size, |V (G∗i )| was divisible by h. However, in the last section we took
out vertices from G in a greedy way, changing the sizes of the clusters in R. Hence we
cannot guarantee that |V (G∗i )| is still divisible by h for each i. Now we will take out a
further bounded number of copies of H in G to ensure |V (G∗i )| is divisible by h for each
1 6 i 6 k̂. In fact, we will ensure |VG(B)| is divisible by h for each B ∈ B.

We now split into two cases: when r > 3 and when r = 2. When r > 3 we have
that hcfχ(H) = 1 and this property will be central to our argument. For r = 2, we have
that hcfc(H) = 1 and hcfχ(H) 6 2. The former property will provide us an easy way
of removing copies of H from V (G) to ensure |VG(B)| is divisible by h for each B ∈ B.
Further, we will not need to use the property that hcfχ(H) 6 2 in our argument. The only
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time we (implicitly) use the property that hcfχ(H) 6 2 will be when we apply Lemma 26.

7.3.1 Case 1: r > 3

For a subgraph S of R, let VR(S) denote the vertex set of S. To assist in our argument, we
define an auxiliary graph F whose vertices are the copies of B in B and for B1, B2 ∈ V (F ),
we let B1B2 be an edge in F if and only if there exists a vertex x in VR(B1) and r − 1
vertices in VR(B2), all in different vertex classes of B2, (or vice versa) such that these r
vertices induce a Kr in R. Assume F is connected and let B1B2 be an edge in F . Then
we may apply Lemma 21 to find h− 1 disjoint copies of H which each have one vertex in
VG(B1) and all other vertices in VG(B2) (or vice versa). This means that we can remove
at most h − 1 copies of H to ensure VG(B1) is divisble by h. Continuing in this way we
can ‘shift the remainders mod h’ along a spanning tree of F to ensure |VG(B)| is divisible
by h for each B ∈ B. (Indeed, since n is divisible by h we have that

∑
B∈B |VG(B)| is

divisible by h.)
So assume F is not connected. Let C be the set of all components of F . For C ∈ C

we will write VR(C) for the set of vertices in R belonging to copies of B in C and VG(C)
for the union of the clusters corresponding to the vertices in VR(C). In what follows our
aim is to remove a bounded number of copies of H to ensure that for each component
C ∈ C we have that |VG(C)| is divisible by h. Then we can apply our previous argument
to spanning trees of each component to achieve that |VG(B)| is divisible by h for each
B ∈ B.

Call vertices in R of degree at least

(1− ω/h+ η/4)k (7)

big. If a vertex is not big, call it small. Note by (5) that all but at most ωk/h− 1 vertices
in R are big.

Claim 36. Let C1, C2 ∈ C, C1 6= C2 and let a ∈ VR(C2). Then

|NR(a) ∩ VR(C1)| <
(

1− ω + σ

h
+
η

4

)
|VR(C1)|.

Proof. Recall that B has width ωĉ. Suppose Claim 36 is false. Then there exists some
B0 ∈ B such that B0 ∈ C1 and

|NR(a) ∩B0| >
(

1− ω + σ

h
+
η

4

)
|B0| = (r − 2)ωĉ+

ηhĉ

4
.

Thus a must have neighbours in at least r − 1 vertex classes of B0. We can therefore
construct a copy of Kr in R which consists of a together with r − 1 of its neighbours in
B0. But by definition of the auxiliary graph F , we must have that B0 is adjacent in F
to the copy of B in B that contains a. This contradicts that C1 and C2 were different
components of F . Thus Claim 36 holds.
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Claim 37. There exist components C1, C2 ∈ C, C1 6= C2, a big vertex x1 ∈ V (R) and
another (not necessarily big) vertex x2 ∈ V (R) such that x1 ∈ V (C1), x2 ∈ V (C2) and
x1x2 ∈ E(R).

Proof. Take some big vertex x ∈ V (R). Then x is in VR(Cx) for some component Cx of
F . We have |Cx| > (1− ω/h+ η/4)k, as otherwise x has a neighbour in R outside of Cx
and we are done. Since r > 3,

|R \ VR(Cx)| 6 (ω/h− η/4)k < (1− ω/h+ η/4)k.

If R \ VR(Cx) contains any big vertex y, then y has a neighbour in VR(Cx) since
|R \ VR(Cx)| < (1 − ω/h + η/4)k and we are done. Hence assume all big vertices are in
VR(Cx). Then all vertices in R \ VR(Cx) are small vertices. Let z be a small vertex in
R \ VR(Cx). Since r > 3,

dR(z) > (1− (ω + σ)/h+ η/4)k > (ω/h+ η/4)k.

Since there are at most ωk/h− 1 small vertices in R, we have that z has a neighbour w
which is a big vertex. But then w ∈ VR(Cx). Thus Claim 37 holds.

Claim 38. There exists a copy K ′ of Kr in R which has vertices in at least two components
of F .

Proof. By Claim 37, there exist components C1, C2 ∈ C, a big vertex x1 ∈ V (R) and
another vertex x2 ∈ V (R) such that x1 ∈ VR(C1), x2 ∈ VR(C2) and x1x2 ∈ E(R). By (5)
and (7), x1 and x2 have a common neighbourhood of size at least

((r − 3)ω/h+ η/2)k.

If r = 3, then we choose x3 in the common neighbourhood of x1 and x2, and we are
done. So assume r > 4. Since there are at most ωk/h small vertices, we can choose a big
vertex x3 in the common neighbourhood of x1 and x2. Then x1, x2 and x3 have a common
neighbourhood of size at least

((r − 4)ω/h+ 3η/4)k.

If r = 4, then we choose x4 in the common neighbourhood of x1, x2 and x3 and we are
done. Otherwise r > 5 and we continue as before. Thus Claim 38 holds.

For such a copy K ′ of Kr in R, we now show that we can take out a bounded number
of copies of H from the clusters corresponding to the vertices of K ′ in such a way that
that leaves one of the components C ∈ C with |VG(C)| divisible by h. We use Theorem 30
and Lemma 21 to achieve this. We will then repeat this process to ensure |VG(B)| is
divisible by h for each B ∈ B.

Claim 39. There exists t ∈ N such that by removing at most t+ (|B| − |C|)(h− 1) copies
of H from G we can ensure |VG(B)| is divisible by h for each B ∈ B.
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Proof. Firstly, for each component C ∈ C we will remove copies of H to ensure |VG(C)| is
divisible by h. Apply Claim 38 to find a copy K ′ of Kr in R which has vertices in at least
two components of F . Let C∗ be a component of F which contains at least one vertex of
K ′. Let p be the number of vertices of K ′ contained in C∗ and observe that 1 6 p 6 r−1.
Let 0 6 g 6 h − 1 such that |VG(C∗)| ≡ g mod h. If g = 0 then |VG(C∗)| is divisible
by h and we consider the graphs F1 := F − V (C∗) and R1 := R − VR(C∗). So assume
1 6 g 6 h − 1. Observe that we can apply Lemma 21 to find any bounded number of
disjoint copies of H in G in the clusters of K ′ (see the end of Section 7.2). For any copy
H ′ of H in G in the clusters of K ′ there are precisely p colour classes of some colouring
c of H ′ contained in the clusters of K ′ in VG(C∗). Moreover, given any colouring c of H
and p-subset P contained in Dc (recall Definition 29) we can find any bounded number
of disjoint copies H ′ of H in G with colouring c in the clusters of K ′ so that the colour
classes of H ′ in VG(C∗) correspond to the p-subset P . So there exists j ∈ {1, . . . , zp}
such that P = Ap,c,j (recall this notation from Definition 29). Thus, removing such a
copy H ′ of H from G would result in removing precisely Sp,c,j vertices from VG(C∗). By
Theorem 30, there exist a collection of non-negative integers {ap,c,i : c ∈ CH , 1 6 i 6 zp}
and ā ∈ N such that

ap,c,i 6 ā for all c ∈ CH , 1 6 i 6 zp,

and

g ·
∑
c∈CH

zp∑
i=1

ap,c,iSp,c,i ≡ g mod h.

Hence we can remove

g ·
∑
c∈CH

zp∑
i=1

ap,c,i 6 (h− 1)ā|CH |zp

suitable disjoint copies of H in G in the clusters of K ′ to make |VG(C∗)| divisible by h.
Next we consider graphs F1 := F − V (C∗) and R1 := R − VR(C∗). Let k1 := |R1|.

Claim 36 and (5) together give us that R1 has degree sequence dR1,1 6 . . . 6 dR1,k1 where

dR1,i >

(
1− ω + σ

h

)
k1 +

σ

ω
i+

ηk1

4
for all 1 6 i 6 ωk1

h
.

Suppose |C| > 3. Arguing as in Claims 37 and 38 we can find a copy K ′1 of Kr in R1

which has vertices in at least two components of F1.
Let C∗∗ be a component of F which contains at least one vertex of K ′1. As before by

removing at most (h−1)ā|CH |zp copies of H from the clusters of K ′1 we can make |VG(C∗)|
divisible by h. Since |G| is divisible by h, we can continue in this way to make |VG(C)|
divisible by h for each component C ∈ C. We then apply the ‘shifting the remainders
mod h’ argument mentioned earlier during the ‘F connected’ case to guarantee that |B| is
divisible by h for each B ∈ B. In this process we removed at most (|C|− 1)(h− 1)ā|CH |zp
disjoint copies of H from G. Each time we use the ‘shifting the remainders mod h’
argument on a connected component C ∈ C we remove at most (|C| − 1)(h− 1) disjoint
copies of H in G. Hence overall we remove at most (|C|−1)(h−1)ā|CH |zp+(|B|−|C|)(h−1)
disjoint copies of H in G. Denote this H-tiling (formed from these copies of H) byH2.
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Observe that now
(1− 2hβ)q′ 6 |Vi| 6 q′

for each i since we only removed a bounded number of vertices from G.

7.3.2 Case 2: r = 2

As in the statement of Theorem 30, let b be the number of components of H and t1, . . . , tb
be the sizes of the components of H. By Theorem 30, there exists a collection of non-
negative integers {ai : 1 6 i 6 b} and ā ∈ N such that

ai 6 ā for all 1 6 i 6 b,

and
b∑
i=1

aiti ≡ 1 mod h.

Let B1, B2 ∈ B. If |VG(B1)| ≡ 0 mod h, define B1 := B\B1. If not, let p ∈ {1, . . . , h−1}
such that |VG(B1)| ≡ p mod h. Remove p

∑b
i=1 ai copies of H from VG(B1) ∪ VG(B2) in

the following way: For each 1 6 i 6 b, remove pai copies of H from VG(B1)∪VG(B2) such
that the component of order ti is in VG(B1) and all other components are in VG(B2).5 Since
p
∑b

i=1 aiti ≡ p mod h, by removing these p
∑b

i=1 ai copies of H from VG(B1) ∪ VG(B2)
we now have that |VG(B1)| is divisible by h. Define B1 := B \B1.

Let B′1, B
′
2 ∈ B1. If |VG(B′1)| ≡ 0 mod h, define B2 := B1 \ B′1. If not, let p′ ∈

{1, . . . , h − 1} such that |VG(B′1)| ≡ p′ mod h. Remove p′
∑b

i=1 ai copies of H from
VG(B′1) ∪ VG(B′2) in the same way as before. Define B2 := B1 \ B′1. Continuing in the
same way, we see that by removing at most

(|B| − 1)(h− 1)bā (8)

copies of H we can ensure that |B| is divisible by h for each B ∈ B. Denote this H-tiling
(formed from these copies of H) by H2.

Observe that now
(1− 2hβ)q′ 6 |Vi| 6 q′

for each i since we only removed a bounded number of vertices.

7.4 Completing the perfect tiling

As we related at the beginning of Section 7.3, we aim to apply Lemma 24 to each B̂i ⊆ R
(1 6 i 6 k̂) where the vertices of R are the now modified clusters – modified by the
removing of copies of H in previous sections. Recall that, for each 1 6 i 6 k̂, Ĝi is the
r-partite subgraph of G′ whose jth vertex class is the union of all those clusters contained

5We use Lemma 21 to do this.
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in the jth vertex class of B̂i, for each 1 6 j 6 r. Observe that in Section 7.3 we made
|Ĝi| = |VG(B̂i)| divisible by h for each i. Further,

(1− 2hβ)q′ 6 |Vi| 6 q′

for each i. Recall that G∗i is the complete r-partite graph on the same vertex set as Ĝi.
Since 0 < 2hβ � σ/ω, 1−σ/ω, 1/h by (2), we can apply Lemma 26 to conclude that each
G∗i contains a perfect H-tiling.

Furthermore, pairs of clusters that correspond to edges of B̂i are still (6ε, d/6)-
superregular. Indeed, in Section 7.2 we removed copies of H which avoided red vertices,
resulting in each pair of clusters (in a copy of H) being (5ε, d/5)-superregular. Then, in
Section 7.3.1, or Section 7.3.2 if r = 2, we removed only a constant number of vertices
from each cluster. Hence each pair of clusters (in a copy of H) is (6ε, d/6)-superregular.

We now have all we need to apply Lemma 24 to find a perfect H-tiling Ĥi in Ĝi for
each 1 6 i 6 k̂. Then

H1 ∪H2 ∪ Ĥ1 ∪ . . . ∪ Ĥk̂

is a perfect H-tiling in G. Hence we have proved Theorem 9.
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[13] J. Komlós and M. Simonovits, Szemerédi’s Regularity Lemma and its applications
in graph theory, Combinatorics: Paul Erdős is eighty vol. II (1996), 295–352.
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