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Abstract

Consider a two-player game between players Builder and Painter. Painter begins
the game by picking a coloring of the edges of Kn, which is hidden from Builder. In
each round, Builder points to an edge and Painter reveals its color. Builder’s goal
is to locate a particular monochromatic structure in Painter’s coloring by revealing
the color of as few edges as possible. The fewest number of turns required for
Builder to win this game is known as the restricted online Ramsey number. In this
paper, we consider the situation where this “particular monochromatic structure” is
a large matching or a large tree. We show that in any t-coloring of E(Kn), Builder
can locate a monochromatic matching on at least n−t+1

t+1 edges by revealing at most
O(n log t) edges. We show also that in any 3-coloring of E(Kn), Builder can locate
a monochromatic tree on at least n/2 vertices by revealing at most 5n edges.

Mathematics Subject Classifications: 05C57

1 Introduction

For families of graphs G1, . . . ,Gt, the Ramsey number, R(G1, . . . ,Gt), is the least integer
n such that any t-coloring of E(Kn) contains a copy of some Gi ∈ Gi in color i for
some i ∈ [t]. If G1 = G2 = · · · = Gt = G, then we abbreviate Rt(G) = R(G1, . . . ,Gt).
Furthermore, if Gi = {Gi}, then we write R(G1, . . . , Gt) = R(G1, . . . ,Gt). Determining
the growth of the Ramsey number R2(Kn) is a central, wide-open problem in extremal
combinatorics.
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Decades of study have spawned a myriad of generalizations and variants of the Ramsey
numbers. In this paper, we consider a variant called the restricted online Ramsey numbers,
which is defined through a two-player game between players Builder and Painter.

Let G1, . . . ,Gt be families of graphs and fix n > R(G1, . . . ,Gt). Painter begins the game
by picking a coloring of the edges of Kn, which is hidden from Builder. In each round,
Builder points to an edge of Kn and Painter reveals the color of that edge. Builder wins
the game once she locates a copy of some Gi ∈ Gi in color i of Painter’s coloring.

Builder’s questions are called queries and edges that Builder has queried previously
in the game are called exposed. The restricted online Ramsey number, R̃(G1, . . . ,Gt;n),
is the least integer ` for which Builder can guarantee winning the game by querying at
most ` edges of Kn, regardless of Painter’s strategy.

The restricted online Ramsey numbers are themselves a variant on the online Ramsey
numbers, which were introduced independently by Beck [1] and Kurek and Ruciński [9].
The (unrestricted) online Ramsey numbers are defined through the same Builder–Painter

game as above, but do not restrict the number of vertices in play; thus, R̃(G1, . . . ,Gt;∞)
can be used to denote the online Ramsey number. Restricted online Ramsey numbers
were originally alluded to in [4] and were recently studied in their own right by Gonzalez,
He and Zheng [7].

For any n > N := R(G1, . . . ,Gt), including n =∞, we arrive at the following straight-
forward bounds:

N

2
6 R̃(G1, . . . ,Gt;n) 6

(
N

2

)
(1)

It is therefore natural to wonder whether R̃(G1, . . . ,Gt;n) is linear in N , quadratic in N ,
or somewhere in between.

In the case of cliques, setting N = R2(Kk), Conlon [3] showed that R̃2(Kk;∞) 6
(1− ε)k

(
N
2

)
for some fixed ε > 0 and k sufficiently large; however, in the restricted setting,

the best known upper bound is R̃2(Kk;N) 6
(
N
2

)
−Ω(N logN), due to Gonzalez, He and

Zheng [7]. This suggests that, in general, determining restricted online Ramsey numbers
is substantially more difficult than determining their unrestricted counterparts.

In this paper, we focus on the restricted online Ramsey numbers of matchings and
trees. Let rK2 denote the matching on r edges and let Tn denote the family of all trees
on n vertices. Recall the following well-known Ramsey-type results.

Theorem 1 (Cockayne and Lorimer [2]). For t > 2 and positive integers r1, . . . , rt,

R(r1K2, . . . , rtK2) = max
i
ri + 1 +

t∑
i=1

(ri − 1).

Theorem 2 (Folklore). For any graph G, either G or the complement of G is connected.
In other words, R2(Tn) = n.

Theorem 3 (Gerencsér and Gyárfás [6]). R3(Tn) = 2n−2 if n is even and R3(Tn) = 2n−1
if n is odd.
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Observe that for any r, t, we trivially have R̃t(rK2;∞) = R̃t(Tr;∞) = (t−1)(r−1)+1;
however, the restricted version of the problem is more challenging. Despite this, we show
that the restricted online Ramsey numbers for these graphs are indeed linear in their
respective Ramsey numbers.

Here and throughout this paper, we use lg = log2 and employ the convention that
lg 0 = 0 so that our results can be stated uniformly.

Theorem 1′. Fix t > 2 and positive integers r1, r2, . . . , rt. If n > R(r1K2, . . . , rtK2),
then

R̃(r1K2, . . . , rtK2;n) 6
2t− 1 + (t− 3) lg(t− 2)

t+ 1
n.

In particular, Builder can win the game using n queries for two colors, 5
4
n queries for

three colors, and in general, Builder can win the game using
(
2 + lg(t− 2)

)
n queries for

t colors.
Turning now to trees, the following result was communicated to us by Micek and

Pegden.

Theorem 2′ (Micek and Pegden [10]). If n > 2, then R̃2(Tn;n) = 2n− 3.

Since the above result is unpublished, we present a proof in Section 3.1 for complete-
ness. We extend this result to 3-colorings in Section 3.2. Define k(n) := n

2
+ 1 if n ≡ 2

(mod 4) and k(n) :=
⌈
n
2

⌉
otherwise. Observe that Theorem 3 states that any 3-coloring

of E(Kn) contains a monochromatic tree on k(n) vertices.

Theorem 3′. If n > 3, then R̃3(Tk(n);n) 6 5(n− 1).

The proofs of Theorems 1′, 2′ and 3′ do not rely on Theorems 1, 2 and 3, and thus
provide self-contained proofs of the existence of the respective monochromatic graphs as
well.

With the exception of Theorem 2′, our upper bounds are not necessarily tight. In-
deed, in Theorem 1′ with t = 4, it is actually possible for Builder to locate one of these
monochromatic matchings by querying only 7

5
n edges, as opposed to the claimed bound

of 8
5
n queries. We do not know whether or not the bound in Theorem 3′ is tight.
However, we can prove a different form of tightness by extending the restricted online

Ramsey numbers to consider the Builder–Painter game on the edges of Kn when n <
R(G1, . . . ,Gt). We consider two natural extensions.

The locating game. In this game, Builder must either locate one of the monochromatic
graphs or determine that Painter’s coloring cannot contain any of these graphs.

Suppose that after ` queries, Builder has exposed color classes C1, . . . , Ct. Builder has
won the game if either

1. For some i ∈ [t], Ci contains a copy of some Gi ∈ Gi, or

2. For every χ : E(Kn)→ [t] with Ci ⊆ χ−1(i), the coloring χ does not contain a copy
of any Gi ∈ Gi in color i for any i ∈ [t].
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Define R̃(G1, . . . ,Gt;n) to be the smallest ` for which Builder can guarantee to win
the locating game on Kn by querying at most ` edges. This is an immediate extension of
the original definition of R̃ since Case 2 can never occur if n > R(G1, . . . ,Gt). Observe,
however, that the lower bound in (1) does not necessarily hold when n < R(G1, . . . ,Gt).

The cornering game. In this game, Painter is required to guarantee the existence of one
of the monochromatic graphs and Builder must simply determine which color contains it.

Call a coloring χ : E(Kn)→ [t] valid if it contains a copy of some Gi ∈ Gi in color i for
some i ∈ [t]. Suppose that after ` queries, Builder has exposed color classes C1, . . . , Ct.
Builder has won the game if there is some fixed c ∈ [t] such that every valid coloring χ
with Ci ⊆ χ−1(i) contains a copy of some Gc ∈ Gc in color c. In other words, Builder
has won the game if she has determined that Painter’s coloring must contain one of the
monochromatic graphs in color c.

Define R̃′(G1, . . . ,Gt;n) to be the smallest ` for which Builder can guarantee to win the

cornering game on Kn by querying at most ` edges. It is not immediately clear that R̃′ is
an extension of R̃, but we will show in Section 4 that R̃′(G1, . . . ,Gt;n) = R̃(G1, . . . ,Gt;n)
whenever n > R(G1, . . . ,Gt).

Observe that we always have the inequality R̃(G1, . . . ,Gt;n) > R̃′(G1, . . . ,Gt;n). With
these extensions in hand, we show the following.

Theorem 1′′. Fix t, r > 2. If n = Rt(rK2)− 1, then R̃t(rK2;n) =
(
n
2

)
and R̃′t(rK2;n) >

Ω(n2).

Theorem 3′′. If n > 3, then R̃3(Tk(n)+1;n) > R̃′3(Tk(n)+1;n) > Ω(n2).

This paper is organized as follows. In Section 2, we prove Theorems 1′ and 1′′. We
then prove Theorem 2′ in Section 3.1 and prove Theorems 3′ and 3′′ in Section 3.2. In
each of these sections, we focus first on describing Builder’s strategy and then describe
Painter’s strategy. We conclude with a list of open questions in Section 4.

2 Monochromatic matchings

Builder’s strategy. We begin by presenting the key lemma which motivates Builder’s
strategy. Throughout this paper, a forest is assumed to have no isolated vertices, i.e.
every connected component is a tree with at least one edge. For a forest F , we denote
the set of connected components of F by comp(F ).

Definition 4. Let F be a forest and let χ : E(F )→ [t]. F is said to be a good forest (with
respect to χ) if

• χ is a proper edge-coloring of F , and

• there is some color c ∈ [t] such that every component of F contains an edge of color
c.
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Lemma 5. Fix t > 2 and let r1, . . . , rt be positive integers. Suppose that F is a forest
and χ : E(F ) → [t] is a t-coloring. If F is a good forest with respect to χ and |V (F )| >
maxi ri +

∑
i(ri − 1), then, for some i ∈ [t], F contains a matching of size ri in color i.

Proof. Denote by mi the number of edges of color i in F , so
∑

imi = e(F ). Since F is
a good forest, χ is a proper coloring of E(F ), so the largest matching in color i in F has
size precisely mi. Hence, we need only show that mi > ri for some i ∈ [t].

By assumption, there is some color c ∈ [t] which appears in each component of F , so
mc > | comp(F )|. Therefore,

mc +
∑
i

mi > | comp(F )|+ e(F ) = |V (F )| > max
i
ri +

∑
i

(ri − 1),

so the claim follows from the pigeonhole principle.

With this in mind, Builder’s strategy is to locate a good forest in Painter’s coloring
which covers all but at most one vertex. The following lemma presents the main tool
employed by Builder to accomplish this.

Lemma 6. Let χ : E(Kn) → [t], and suppose that Builder has exposed all edges of some
tree T ⊆ E(Kn) on m > 1 edges. Suppose T is properly edge-colored under χ and that
xy ∈ E(Kn) is an exposed edge completely disjoint from T with χ(xy) /∈ χ(T ) := {χ(f) :
f ∈ E(T )}.

There exists a procedure TreeExtend(χ, T, xy) that, through querying at most 1 +⌊
lg
(
diam(T )− 1

)⌋
extra edges, returns a tree T ∗ with the following properties:

1. V (T ∗) ⊆ V (T ) ∪ {x, y},

2. e(T ∗) ∈ {m+ 1,m+ 2},

3. χ(T ∗) ⊇ χ(T ) ∪ {χ(xy)}, and

4. T ∗ is properly edge-colored under χ.

Proof. We first define TreeExtend and then prove the claimed properties.
Recall that a vertex v of a tree T is called a center if v is at a distance at most⌈

diam(T )/2
⌉

from every other vertex of T , where diam(T ) is the diameter of T . Note
that there will be one such vertex when diam(T ) is even, and two such vertices if diam(T )
is odd. We denote the center vertex of T by center(T ), where an arbitrary choice is made
if there are two such vertices. Additionally, for an edge xy ∈ E(T ), define T (x, y) to be
the subtree of T which is formed by rooting T at y and removing all descendants of x.

1: procedure TreeExtend(χ, T, xy)
2: Fix a proper 2-coloring η : V (T )→ {x, y} of T . For v ∈ V (T ), write ηv = η(v)
3: T ′ ← T
4: v ← center(T )
5: loop
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6: Query the edge vηv
7: if χ(vηv) = χ(xy) then
8: return T + vηv
9: else if T + vηv is properly colored then
10: return T + vηv + xy
11: else
12: There is some edge vv′ ∈ E(T ′) with χ(vv′) = χ(vηv)
13: if v′ is a leaf of T then
14: return T − vv′ + vηv + xy
15: else if v′ is a leaf of T ′ then
16: return T − vv′ + vηv + xy + v′ηv′
17: else
18: T ′ ← T ′(v, v′)
19: v ← center(T ′(v, v′))
20: end if
21: end if
22: end loop
23: end procedure

We show first that TreeExtend(χ, T, xy) does in fact return T ∗ and bound the
number of queries made in the process.

A new edge is queried only when reaching the beginning of the loop. If diam(T ′) ∈
{1, 2}, then the procedure will return T ∗ before reaching Line 17, thus requiring only one
additional query. Furthermore, if we reach Line 17, then we will have diam(T ′(v, v′)) 6⌈
diam(T ′)

2

⌉
since v = center(T ′). From this we conclude that TreeExtend(χ, T, e) returns

T ∗ by querying at most 1 +
⌊
lg
(
diam(T )− 1

)⌋
extra edges, recalling that lg 0 = 0.

We now verify the claimed properties of T ∗. Set c = χ(xy) and consider the four
situations in which TreeExtend(χ, T, xy) can return T ∗.

• T ∗ is returned on Line 8. Here V (T ∗) = V (T ) ∪ {ηv} ⊆ V (T ) ∪ {x, y} and e(T ∗) =
m + 1. Additionally, χ(vηv) = c, so since c /∈ χ(T ), we know that T ∗ is properly
edge-colored and χ(T ∗) = χ(T ) ∪ {c}. Finally, T ∗ is in fact a tree since adding the
edge vηv does not create a cycle.

• T ∗ is returned on Line 10. Here V (T ∗) = V (T ) ∪ {x, y} and e(T ∗) = m + 2.
Additionally, we know that χ(vηv) 6= c, so since T + vηv is properly edge-colored,
we know that T ∗ is also properly edge-colored and χ(T ∗) = χ(T ) ∪ {χ(vηv), c} ⊇
χ(T ) ∪ {c}. Finally, T ∗ is a tree since we do not create a cycle upon adding the
edges vηv and xy.

• T ∗ is returned on Line 14. Here we have V (T ∗) = (V (T ) \ {v′}) ∪ {x, y} and
e(T ∗) = m+ 1. Now, since we have χ(vv′) = χ(vηv) for some vv′ ∈ E(T ′), we know
that, since T ′ is a subtree of T , χ(vv′) = χ(vηv) 6= c since c /∈ χ(T ). Thus, T ∗ is
properly edge-colored since we removed the edge vv′, and also χ(T ∗) = χ(T ) ∪ {c}
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since χ(vηv) = χ(vv′). Finally, T ∗ is a tree since v′ is a leaf of T , so T − vv′ is still
at tree, and then adding the edges vηv and xy does not create a cycle.

• T ∗ is returned on Line 16. Here we have V (T ∗) = V (T )∪{x, y} and e(T ∗) = m+ 2.
Now, since v′ is a leaf of T ′ but not a leaf of T , this means that we must have
previously queried the edge v′ηv′ and found that χ(v′ηv′) = χ(vv′). Since η is a
proper 2-coloring of V (T ) and vv′ ∈ E(T ), we must have ηv 6= ηv′ , so T ∗ is indeed
properly edge-colored, and χ(T ∗) = χ(T )∪ {c}. Finally, T ∗ is again a tree since we
added the path vηvηv′v

′ and removed the edge vv′.

We state a consequence for later reference.

Corollary 7. Let χ, T, xy be as in Lemma 6 and set T ∗ = TreeExtend(χ, T, xy).

• If e(T ) = 1, then T ∗ either has |χ(T ∗)| = 2 and is a path with 2 edges, or has
|χ(T ∗)| = 3 and is a path with 3 edges.

• If e(T ) = 2, then T ∗ either has |χ(T ∗)| > 4, or has |χ(T ∗)| = 3 and is a star with 3
edges.

We now have all of the necessary tools to describe Builder’s full strategy and prove
Theorem 1′.

Proof of Theorem 1′. Builder maintains and grows a good forest F . While there are
still at least 2 vertices x, y uncovered by F , Builder queries the edge xy. If its color
χ(xy) is already present among all components of F , Builder adds this edge (as a 2-
vertex component) to F , and repeats. Otherwise, there is some connected component
T ∈ comp(F ) which does not have an edge of color χ(xy).

Here, Builder uses TreeExtend(χ, T, xy) to return a tree T ∗ and replaces F by
F − T + T ∗. By Lemma 6, F − T + T ∗ is also a good forest and covers at least one
more vertex than F , so this process must eventually terminate. Furthermore, the process
terminates when F covers all but at most one vertex of Kn, and thus, by Lemma 5,
Builder has located a copy of riK2 in color i for some i ∈ [t]. Let F ∗ be the forest found
by Builder.

We now count the total number of queries used to build F ∗. For integers m, k > 2,
define q(m, k) := 2k−1+(k−3) lg(m−2) and define also q(1, 1) := 1. For T ∈ comp(F ∗),
let q(T ) denote the number of queries used by Builder to construct T .

Claim 8. If e(T ) = m and |χ(T )| = k, then q(T ) 6 q(m, k).

Proof. If k = 1, then also e(T ) = 1, so certainly q(T ) = 1 = q(1, 1). Thus suppose k > 2.
Since TreeExtend always appends at least one new color to a tree, we see that, for

some ` 6 k, there were trees T1, . . . , T` and edges e1, . . . , e` with T1 being a single edge,
T` = T and Ti+1 = TreeExtend(χ, Ti, ei) for all i ∈ [` − 1]. Certainly q(T1) = 1, and,
by Lemma 6, if di := diam(Ti), then

q(Ti+1) 6 q(Ti) + 1 +
(
1 + blg(di − 1)c

)
,
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where the extra +1 comes from querying the edge ei. Therefore,

q(T ) 6 1 +
`−1∑
i=1

(
2 + blg(di − 1)c

)
= 2`− 1 +

`−1∑
i=2

blg(di − 1)c.

By Lemma 6, we know that e(Ti+1) ∈ {e(Ti)+1, e(Ti)+2}, so certainly di 6 e(Ti) 6 m−1
for all i ∈ [`− 1].

We now break into two cases based on T2:

• |χ(T2)| = 2: Since T2 = TreeExtend(χ, T1, e1), we know that T2 must be a path
on 2 edges by Corollary 7; thus d2 = 2. As such,

q(T ) 6 2`− 1 +
`−1∑
i=3

blg(di − 1)c 6 2k − 1 + (k − 3) lg(m− 2) = q(m, k).

• |χ(T2)| > 3: Here, again by Corollary 7, we must actually have |χ(T2)| = 3 and T2
is a path on 3 edges, so d2 = 3. Additionally, in this situation, we must also have
` 6 k − 1, and so we bound

q(T ) 6 2`+
`−1∑
i=3

blg(di − 1)c 6 2k − 2 + (k − 4) lg(m− 2) 6 q(m, k).

For positive integers m, k, let Fm,k denote the forest formed by all trees T ∈ comp(F ∗)
with e(T ) = m and |χ(T )| = k. By Lemma 6 and Corollary 7, the only values of (m, k) for
which Fm,k can be nonempty are: (1, 1), (2, 2), (3, 3) and (m, k) where 4 6 k 6 m 6 2k−3.

For 4 6 k 6 m 6 2k − 3, a quick calculation shows that

q(m, k)

m+ 1
>
q(m+ 1, k)

m+ 2
=⇒ max

m:k6m62k−3

q(m, k)

m+ 1
=
q(k, k)

k + 1
.

Finally, another short calculation yields q(k,k)
k+1

6 q(t,t)
t+1

for all k ∈ [t].
Thus, by Claim 8, we find that the total number of queries used to locate F ∗, and

thus the monochromatic matching, is bounded above by∑
T∈comp(F ∗)

q(T ) 6
∑
m,k

| comp(Fm,k)|q(m, k) =
∑
m,k

|V (Fm,k)|
q(m, k)

m+ 1

6
q(t, t)

t+ 1

∑
m,k

|V (Fm,k)| 6
1

t+ 1

(
2t− 1 + (t− 3) lg(t− 2)

)
n.

Remark 9. For any fixed t > 4, one can embark on a more sensitive analysis to improve
the upper bound of 1

t+1

(
2t−1+(t−3) lg(t−2)

)
n. For example, when t = 4, we can arrive

at an upper bound of 7
5
n as opposed to 8

5
n by working through Claim 8 more carefully.

However, as t grows, it becomes increasingly difficult to carry out such an analysis.
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Remark 10. We can improve slightly the upper bound of n queries when t = 2. Indeed,
with the strategy described above, the number of queries is at most 1

2
|V (F1,1)|+ |V (F2,2)|,

which is equal to n only when |V (F2,2)| = n. However, |V (F2,2)| is a multiple of 3, so the
bound can be improved to n− 1 whenever 3 - n.

For t = 3, similar reasoning will improve also the upper bound of 5
4
n by an additive

constant depending on the value of n (mod 4).

Painter’s strategy. We now describe Painter’s strategy in both the locating and cor-
nering games for hiding a monochromatic rK2 from Builder when n = Rt(rK2) − 1 =
(t+ 1)r − t.

Proof of Theorem 1′′. Consider partitioning V (Kn) = V1t· · ·tVt where |V1| = 2r−1 and
|Vi| = r−1 for all i > 2. Let χ : E(Kn)→ [t] be given by χ(xy) = max{i : Vi∩{x, y} 6= ∅}.

Certainly χ does not contain a monochromatic rK2. For an edge e ∈ E(Kn) and
a color c ∈ [t], let χe,c denote the coloring of E(Kn) obtained by giving e color c and
coloring the rest of the edges as in χ. Notice that if e is not completely contained in V1,
then χe,1 has a monochromatic rK2 in color 1, and if e is completely disjoint from Vc for
some c > 2, then χe,c has a monochromatic rK2 in color c.

Consider first the locating game wherein Painter is not required to guarantee the
existence of a monochromatic rK2. As Builder queries edges, Painter colors the edge as
in χ until there is only one unexposed edge, call it e. Certainly there is some c ∈ [t] such
that χe,c has an rK2 in color c, so since χ does not have any monochromatic rK2, Builder
must query all

(
n
2

)
edges of Kn in order to determine whether or not Painter’s coloring

has a monochromatic matching of size r.
Consider now the cornering game wherein Painter is required to guarantee the exis-

tence of a monochromatic rK2 and Builder needs only determine which color has said
matching. Again, Painter will color the edges that Builder queries as in χ until the very
last edge, which she then gives a color which will form a monochromatic rK2. However,
against this strategy, Builder can sometimes deduce which color will have this matching
before reaching the very last edge.

If t = 2, then Painter’s coloring has an rK2 in color 2 if and only if some edge in
V1 gets color 2 (and otherwise the coloring must have an rK2 in color 1). Therefore, to
determine which color contains the matching, Builder must either query every edge in V1
or query every edge not completely contained in V1, Hence, Builder must query at least

min

{(
|V1|
2

)
,

(
n

2

)
−
(
|V1|
2

)}
=

1

9
(2n+ 1)(n− 1)

edges.
For t = 3, Builder must query all edges not in E[V2, V3] (the edges with one vertex

in V2 and the other in V3); otherwise, there is some unexposed edge which is either
completely contained in V1 or meets V1 in only one vertex and is disjoint from either V2
or V3. Therefore, Builder must query at least(

n

2

)
− |V2||V3| =

1

16
(7n+ 1)(n− 1)
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edges.
Lastly, for t > 4, since every edge is disjoint from at least two of V1, V2, V3, V4, Builder

must query all
(
n
2

)
edges to determine which color contains the matching.

3 Monochromatic trees

3.1 Two colors

Here we give the proof of Theorem 2′, which was communicated to us by Micek and
Pegden [10].

Builder’s strategy. Let χ : E(Kn) → [2]. Builder begins by choosing v ∈ V (Kn)
arbitrarily and queries all n− 1 edges incident to v. For i ∈ {1, 2}, set C0

i = {v} ∪ {u ∈
V (Kn) : χ(uv) = i}. Builder proceeds recursively as follows: if there is some x ∈ Cr

1 \ Cr
2

and y ∈ Cr
2 \ Cr

1 , Builder queries the edge xy and sets Cr+1
χ(xy) = Cr

χ(xy) ∪ {x, y} and

Cr+1
3−χ(xy) = Cr

3−χ(xy).

Notice that, for every r, Cr
i is a connected component in color i, so if ever |Cr

i | = n
for either i = 1 or i = 2, then Builder has located a spanning tree in color i. Set a(r) =
|Cr

1 |+ |Cr
2 |, so a(0) = n+ 1 and if a(r) > 2n− 1, then it must be the case that |Cr

i | = n
for either i = 1 or i = 2. If Builder has not located a monochromatic spanning tree by
step r, then since Cr

1 ∪Cr
2 = V (Kn), we must have a(r+ 1) = a(r) + 1. We conclude that

Builder can locate a monochromatic spanning tree using at most (n−1)+(n−2) = 2n−3
queries.

Painter’s strategy. Painter will color the first n− 2 queried edges with color 1, color
the next n− 2 queried edges with color 2, and then color the remaining edges arbitrarily.
Since a spanning tree has n − 1 edges, Builder cannot have located a monochromatic
spanning tree within the first 2(n − 2) queries, and thus must query at least 2n − 3
edges.

3.2 Three colors

Builder’s strategy. We begin with the key lemma which motivates Builder’s strategy.
Recall that k(n) := n

2
+ 1 if n ≡ 2 (mod 4) and k(n) :=

⌈
n
2

⌉
otherwise.

Lemma 11. For n > 3, suppose that there are U1, . . . , U6 ⊆ V (Kn) (some of which may
be empty) with E(Kn) =

⋃6
i=1

(
Ui

2

)
. If U1 ∩ U2 = ∅, then |Ui| > k(n) for some i ∈ [6].

Proof. Assume for the sake of contradiction that |Ui| < k := k(n) for each i ∈ [6]. Since
k − 1 6 bn/2c, and U1 ∩ U2 = ∅, we can find A ⊇ U1 and B ⊇ U2 with A ∩ B = ∅ and
|A| = dn/2e and |B| = bn/2c.

Consider the edges between A and B, denoted by E[A,B]. Since |Ui| 6 k − 1, by
convexity we must have ∣∣∣∣(Ui2

)
∩ E[A,B]

∣∣∣∣ 6 ⌊(k − 1)2

4

⌋
,
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for every i. However, the edges induced by U3, . . . , U6 must cover all edges between A and
B, so we must have

4

⌊
(k − 1)2

4

⌋
>

⌊
n2

4

⌋
,

contradicting the definition of k = k(n) for any value of n (mod 4).

Hence, Builder will work to find six subsets of V (Kn), each being contained within a
connected component of some color class, wherein each pair of vertices are contained in
one of these sets. The following lemma presents the primary tool in Builder’s strategy.

Lemma 12. Let χ : E(Kn)→ [3] and suppose that Builder has queried some edges giving
rise to graphs C1, C2, C3 where Ci is the graph formed by the exposed edges of color i.

Suppose that V1 ⊆ V (C1) and V2 ⊆ V (C2) are subsets of connected components of
C1 and C2, respectively. There exists a procedure CompExtend(χ, V1, V2) which re-
turns a tuple (X1, X2, X3) of subsets of V (Kn) using at most 2|V1| + 2|V2| additional
queries. If C∗i denotes the graph formed by the exposed edges of color i after calling
CompExtend(χ, V1, V2), then (X1, X2, X3) satisfies:

1. X1, X2, X3 ⊆ V1 ∪ V2,

2. X1 ⊇ V1 and X2 ⊇ V2,

3. for all i ∈ [3], Xi is a subset of some connected component of C∗i , and

4. one of the following:

(a) X1 = V1 ∪ V2,
(b) X2 = V1 ∪ V2, or

(c) X3 ⊇ (V1 \X2) ∪ (V2 \X1).

Proof. We first define CompExtend and then prove the claimed properties.

1: procedure CompExtend(χ, V1, V2)
2: X1 ← V1
3: X2 ← V2
4: X3 ← ∅
5: loop
6: if there is u ∈ X1 \ (X2 ∪X3) and v ∈ (X2 ∩X3) \X1 then
7: Query the edge uv
8: Xχ(uv) ← Xχ(uv) ∪ {u, v}
9: else if there is u ∈ X2 \ (X1 ∪X3) and v ∈ (X1 ∩X3) \X2 then
10: Query the edge uv
11: Xχ(uv) ← Xχ(uv) ∪ {u, v}
12: else if X3 ⊆ X1 ∩X2 and there is u ∈ X1 \X2 and there is v ∈ X2 \X1 then
13: Query the edge uv
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14: if χ(uv) ∈ {1, 2} then
15: Xχ(uv) ← Xχ(uv) ∪ {u, v}
16: else
17: X3 ← {u, v}
18: end if
19: else
20: return (X1, X2, X3)
21: end if
22: end loop
23: end procedure

Items (1) and (2) are straightforward to check. To verify Item (3), notice that in Lines 8, 11
and 15, if we extended Xi to include some vertex u, then this is because there is some
v ∈ Xi with χ(uv) = i. In particular, since V1, V2 were subsets of connected components of
C1, C2, respectively, we have that at every stage, Xi is a subset of a connected component
in the currently exposed edges of color i.

Item (4) follows from the observation that this is the only way that the procedure will
ever break the loop and return (X1, X2, X3). Thus, to verify Item (4), we simply must
show that the procedure does indeed terminate. We do so by showing that the procedure
terminates after at most 2|V1| + 2|V2| + 1 loops, implying also that it queried at most
2|V1|+ 2|V2| additional edges.

For an integer r, let Xr
i denote the value of Xi in CompExtend(χ, V1, V2) before

running through the loop for the (r + 1)st time, so X0
1 = V1, X

0
2 = V2 and X0

3 = ∅.
Notice that we always have Xr

1 ⊆ Xr+1
1 and Xr

2 ⊆ Xr+1
2 and Xr

1 ∪Xr
2 = V1 ∪ V2 ⊇ Xr

3 .
Set a(r) := 2|Xr

1 | + 2|Xr
2 | + |Xr

3 \ (Xr
1 ∩Xr

2)|. Certainly a(0) = 2|V1| + 2|V2| and for
any r,

a(r) = 2|Xr
1 ∪Xr

2 |+ 2|Xr
1 ∩Xr

2 |+ |Xr
3 \ (Xr

1 ∩Xr
2)|

= 2|Xr
1 ∪Xr

2 |+ |Xr
1 ∩Xr

2 |+ |Xr
3 ∪ (Xr

1 ∩Xr
2)|

6 3|Xr
1 ∪Xr

2 |+ |Xr
1 ∩Xr

2 | 6 4|V1 ∪ V2| 6 4|V1|+ 4|V2|.

We claim that if CompExtend(χ, V1, V2) has not output (X1, X2, X3) after the (r+ 1)st
loop (that is, the procedure will run through the loop for an (r+2)nd time), then a(r+1) >
a(r) + 1, thus implying the claim. We break into the following cases depending on how
loop r + 1 terminates:

1. If the procedure reaches Line 8, then one of the following occurs:

(a) Xr+1
3 = Xr

3 ∪ {u}. Here, since u /∈ Xr
2 ∪Xr

3 , we have |Xr+1
3 \ (Xr+1

1 ∩Xr+1
2 )| =

|Xr
3 \ (Xr

1 ∩Xr
2)|+ 1, so a(r + 1) = a(r) + 1.

(b) |Xr+1
i | > |Xr

i |+1 for some i ∈ {1, 2}. Thus, even though |Xr+1
3 \(Xr+1

1 ∩Xr+1
2 )|

may decrease by 1, we still have a(r + 1) > a(r) + 2− 1 = a(r) + 1.

2. If the procedure reaches Line 11, then a(r+1) > a(r)+1 by a symmetric argument.
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3. If the procedure reaches Line 15, then we have |Xr+1
i | > |Xr

i |+ 1 for some i ∈ {1, 2}
and also |Xr+1

3 \ (Xr+1
1 ∩Xr+1

2 )| = |Xr
3 \ (Xr

1 ∩Xr
2)| = 0, so a(r + 1) = a(r) + 2.

4. Finally, if the procedure reaches Line 17, then Xr+1
i = Xr

i for i ∈ {1, 2} and
Xr+1

3 = {u, v}. Since u, v /∈ Xr
1 ∩ Xr

2 , we have |Xr+1
3 \ (Xr+1

1 ∩ Xr+1
2 )| = 2 while

|Xr
3 \ (Xr

1 ∩Xr
2)| = 0, so again a(r + 1) = a(r) + 2.

We now have all of the necessary tools describe Builder’s full strategy and prove
Theorem 3′.

Proof of Theorem 3′. Let χ : E(Kn)→ {r, g, b} be a 3-coloring. Builder begins by choos-
ing v ∈ V (Kn) arbitrarily and queries all n − 1 edges incident to v. Let R = {u ∈
V (Kn) \ {v} : χ(vu) = r} and define G and B analogously for colors g and b. Note
that R,G,B are subsets of the vertices of some connected components in the currently
exposed edges in colors r, g, b, respectively. Now, Builder uses CompExtend(χ,R,G),
CompExtend(χ,G,B) and CompExtend(χ,B,R) (with the appropriate relabeling of
the colors) to find tuples (R1, G2, B3), (G1, B2, R3) and (B1, R2, G3), respectively, as in
Lemma 12. This requires at most(

2|R|+ 2|G|
)

+
(
2|R|+ 2|B|

)
+
(
2|B|+ 2|G|

)
= 4
(
|R|+ |B|+ |G|

)
= 4(n− 1)

additional queries, thus bringing the total number of queries to at most 5(n− 1).
We claim that Builder has located a monochromatic tree on at least k(n) vertices.

Suppose that Cr, Cg, Cb are the graphs formed by the exposed edges in colors r, g, b,
respectively. If R1 ∪ R2 ∪ R3 is a subset of a connected component of Cr, set R∗1 =
R1 ∪ R2 ∪ R3 ∪ {v} and R∗2 = ∅, and otherwise set R∗1 = R1 ∪ R2 ∪ {v} and R∗2 = R3.
Define G∗i and B∗i analogously for i ∈ {1, 2}.

In any case, by Lemma 12, we know that for each i ∈ {1, 2}, R∗i is a subset of the
vertices of a connected component of Cr, G

∗
i is a subset of the vertices of a connected

component of Cg, and B∗i is a subset of a connected component of Cb, thus we need only
show that at least one of these sets has size at least k(n). We do this by appealing to
Lemma 11.

By definition, R∗1 ∩R∗2 = G∗1 ∩G∗2 = B∗1 ∩B∗2 = ∅, so we need only show that

E(Kn) =

(
R∗1
2

)
∪
(
R∗2
2

)
∪
(
G∗1
2

)
∪
(
G∗2
2

)
∪
(
B∗1
2

)
∪
(
B∗2
2

)
,

i.e. every pair of vertices of Kn are contained together in one of these six sets. Let
x, y ∈ V (Kn) be two distinct vertices. If, say, x = v, then y ∈ R ∪ B ∪ G, and so x, y
are contained together in one of R∗1, G

∗
1, B

∗
1 . If we have x, y ∈ R, then certainly x, y ∈ R∗1,

and similarly if x, y ∈ G or x, y ∈ B.
Thus, suppose that, without loss of generality, x ∈ R, y ∈ G. Certainly x ∈ R1 ⊆ R∗1

and y ∈ G2 ⊆ G∗1, so suppose that x /∈ G∗1 and y /∈ R∗1. Then by Item 4 in Lemma 12, we
must have B3 ⊇ (R\G2)∪(G\R1), so x, y ∈ B3. Hence, either x, y ∈ B∗1 or x, y ∈ B∗2 .
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Painter’s strategy. Painter’s strategy here is very similar to her strategy in the proof
of Theorem 1′′.

Proof of Theorem 3′′. Since R̃3(Tk(n)+1;n) > R̃′3(Tk(n)+1;n), it suffices to give only a strat-
egy for the cornering game.

Let χ be a 3-coloring of E(Kn) formed by starting with a proper edge-coloring of
K4 using three colors, “blowing up” each vertex into a cluster of size roughly n/4, and
then coloring the edges within the clusters arbitrarily. Formally speaking, start with a
partition [n] = V1 t V2 t V3 t V4 with |Vi| ∈

{
bn/4c, dn/4e

}
for all i, and let χ be the

3-coloring of E(Kn) given by

• χ(e) = r if e ∈ E[V1, V2] ∪ E[V3, V4],

• χ(e) = b if e ∈ E[V1, V3] ∪ E[V2, V4],

• χ(e) = g if e ∈ E[V1, V4] ∪ E[V2, V3], and

• χ(e) is arbitrary otherwise.

It is straightforward to verify that χ does not contain a monochromatic tree on k(n)+1
vertices.

For an edge e and color c ∈ {r, b, g}, let χe,c denote the coloring where e gets color
c and every other edge is colored as in χ. Notice that if e is any edge not completely
contained in some Vi, then χe,c actually contains a spanning tree in color c whenever
c 6= χ(e).

When Builder queries an edge e, Painter colors e as in χ, unless e is the last unexposed
edge which is not completely contained in one of the Vi’s. In this situation, Painter gives
e either color c1 or c2 where c1, c2 6= χ(e).

Thus, Painter’s coloring will always contain a monochromatic tree on k(n)+1 vertices
(in fact, it will always contain a monochromatic spanning tree), but Builder must query
every edge not completely contained in some Vi to determine which color contains said

tree. As such, Builder must query at least
∑

i 6=j∈[4] |Vi||Vj| > 6
⌊
n
4

⌋2
edges to do so.

4 Remarks

We begin by showing that R̃′ is indeed a generalization of R̃.

Lemma 13. Fix t > 2 and let G1, . . . ,Gt be families of graphs. If n > R(G1, . . . ,Gt), then

R̃′(G1, . . . ,Gt;n) = R̃(G1, . . . ,Gt;n).

Proof. We need only show the inequality R̃(G1, . . . ,Gt;n) 6 R̃′(G1, . . . ,Gt;n). By the
assumption on n, any strategy for Painter in the locating game is also a strategy for
Painter in the cornering game.

Suppose that Builder has exposed some collection of edges, giving rise to color classes
C1, . . . , Ct, and that Builder has won the cornering game by determining, without loss
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of generality, that color 1 must contain a copy of some G1 ∈ G1. Consider the coloring
χ : E(Kn) → [t] defined by χ(e) = i if e ∈ Ci and χ(e) = t otherwise. Since χ could be
Painter’s hidden coloring and C1 = χ−1(1), it must be the case that C1 contains some
G1 ∈ G1. Therefore, Builder has additionally won the locating game.

We showed in Theorem 1′ that R̃t(rK2;n) 6 O(n log t) whenever n > (t+ 1)r− t+ 1.
While we have already remarked that the precise bound in Theorem 1′ is not necessarily
tight (Remark 9), we wonder if it is tight up to a constant:

Question 14. Fix t, r > 2 and set n = (t+ 1)r − t+ 1. Is R̃t(rK2;n) > Ω(n log t)?

Notice that, by Lemma 13, it does not matter whether we consider R̃ or R̃′ in this
question.

We additionally do not know the correct answer even in the case of only 2 colors. In
this situation, since n = 3r − 1 6≡ 0 (mod 3), we have R̃2(rK2;n) 6 n− 1 (Remark 10).

Question 15. For r > 1 and n = 3r − 1, is it the case that R̃2(rK2;n) = n− 1?

Turning now to trees, we showed in Theorem 3′ that R̃3(Tk(n);n) 6 5(n − 1). We
wonder if this result can be improved:

Question 16. What is the smallest c such that in any 3-coloring of E(Kn), Builder can
locate a monochromatic tree on k(n) vertices by querying at most

(
c+ o(1)

)
n edges?

Again, thanks to Lemma 13, it does not matter whether we consider R̃ or R̃′ here.
Theorem 3′ shows that c 6 5; furthermore, certainly c > 3/2 since Painter can simply
color the first k(n) − 1 edges red, the next k(n) − 1 edges blue, and the next k(n) − 1
edges green.

Theorems 2 and 3 were extended by Gyárfás [8] to show that any t-coloring of E(Kn)
must contain a monochromatic tree on at least n

t−1 vertices. Füredi [5] showed that this
bound can be improved slightly in the case where an affine plane of order t− 1 does not
exist. These suggest the natural question:

Question 17. What is the least number of queries necessary for Builder to locate a
monochromatic tree on at least n

t−1 vertices in a t-coloring of E(Kn)?

We suspect that R̃t(Tn/(t−1);n) 6 Ot(n), which was the case for both 2 and 3 colors.
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