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Abstract

We introduce the Almost Intersection Property for pairs of possibly infinite
matroids on the same groundset. We prove that if such a pair satisfies the Almost
Intersection Property then it satisfies the Matroid Intersection Conjecture of Nash-
Williams. We also present some corollaries of that result.

Mathematics Subject Classifications: 05B35

1 Introduction

The finitary case of the following Matroid Intersection Conjecture has been introduced by
Nash-Williams (see [1]). It is a generalization of the well known Edmonds’ Intersection
Theorem.

Conjecture 1.1. If M and N are matroids on a common groundset E, then there exist
disjoint I, J ⊆ E such that clM(I) ∪ clN(J) = E and I ∪ J is independent in both M
and N .

For the rest of this section assume that M and N are matroids on a common ground
set E. A packing for (M,N) is a pair (S, T ) of disjoint subsets of E such that clM(S) =
clN(T ) = E. A covering for (M,N) is a pair (A,B) of subsets of E that are independent
in M,N , respectively, and A ∪ B = E. We say that (M,N) has the Packing/Covering
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Property iff there exists a partition E = P t C such that (M�P , N�P ) has a packing
and (M.C,N.C) has a covering. Bowler and Carmesin [3] proved the following result
showing that the Matroid Intersection Conjecture is equivalent to a conjecture involving
the Packing/Covering Property.

Fact 1.2 (Bowler and Carmesin [3]). (M,N) satisfies the Matroid Intersection Conjecture
if and only if (M,N∗) has the Packing/Covering Property.

We say that the pair (M,N) has the Almost Intersection Property when there exist
almost disjoint I, J ⊆ E such that clM(I)∪clN(J) is almost equal to E and I∪J is almost
independent in both M and N . We mean here that the sets I ∩ J , E r (clM(I) ∪ clN(J))
and (I ∪ J) rK are all finite for some K ⊆ E that is independent in both M and N .

We say that (S, T ) is an almost packing of (M,N) iff S and T are spanning in M
and N , respectively, and S ∩ T is finite. Analogously, we say that (I, J) is an almost
covering of (M,N) iff I and J are independent in M and N , respectively and Er (I ∪ J)
is finite. If there exists a partition E = P tQ of E such that (M\Q,N\Q) has an almost
packing and (M/P,N/P ) has an almost covering, then we say that (M,N) has the Almost
Packing/Covering Property.

If F ⊆ E, then say that (M,N) has the Packing/Covering Property modulo F iff there
exists a partition ErF = P tC such that (M,N) /F\C has a packing and (M,N) \F/P
has a covering. The following proposition will be proved in the next section.

Proposition 1.3. (M,N) has the Almost Intersection Property if and only if (M,N∗)
has the Packing/Covering Property modulo a finite set.

The main result of this paper is the following theorem.

Theorem 1.4. If (M,N) has the Almost Intersection Property, then it satisfies the Ma-
troid Intersection Conjecture.

Note that Theorem 1.4 immediately implies Edmonds’ Intersection Theorem (the finite
case of the Matroid Intersection Conjecture).

Theorem 1.4 follows from Fact 1.2, Proposition 1.3 and the following result.

Theorem 1.5. The following are equivalent.

1. (M,N) has the Packing/Covering Property.

2. (M,N) has the Almost Packing/Covering Property.

3. (M,N) has the Packing/Covering Property modulo a finite subset of E

This result also has the following corollary:

Corollary 1.6. If (M,N) has the Packing/Covering Property and A,B ⊆ E are finite,
then (M,N) /A\B also has the Packing/Covering Property.
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2 Preliminaries

We follow the notation and terminology of [6] and [5]. In particular, the following state-
ments about a set I ⊆P (E) are independence axioms :

(I1) ∅ ∈ I .

(I2) I is closed under taking subsets.

(I3) If I, J ∈ I with I maximal in I and J not maximal, there exist an x ∈ I rJ such
that J ∪ {x} ∈ I .

(IM) If I ⊆ X ⊆ E and I ∈ I , then the set {J ∈ I : I ⊆ J ⊆ X} has a maximal
element.

When a set I ⊆P (E) satisfies the independence axioms, we call the pair M = (E,I )
a matroid on E = E(M) and refer to the elements of I = I (M) as the independent sets
of M . The following background of matroids will be used in this paper: For F, S ⊆ E,
we have

S is spanning in M/F if and only if S ∪ F is spanning in M .

Proof of Proposition 1.3. Assume first that there exists a partition E = P tQ t F such
that F is finite, (M,N∗) /F\Q has a packing and (M,N∗) \F/P has a covering. Then
P and Q can be partitioned as P = S t T and Q = B t A with T ⊆ clM(S ∪ F ),
S ⊆ clN∗(T ∪ F ), A ⊆ clN(B ∪ F ) and B ⊆ clM∗(A ∪ F ). Moreover, we can assume
without loss of generality that S is independent in M and B is independent in N (see
Figure 2.1).

F

A B

S T

M∗

M

N

N∗

Figure 2.1: The sets F , S, T , A and B.

Since T ∪ F is spanning in N∗\Q, it follows that S is independent in N/Q implying
that S ∪B is independent in N . Similarly S ∪B is independent in M . Let I = S ∪F and
J = B∪F . Then I, J are almost disjoint and I ∪J is almost independent in both M and
N . Moreover, clM(I) ∪ clN(J) = E. It follows that (M,N) has the Almost Intersection
Property.
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Now assume that (M,N) has the Almost Intersection Property. Let I, J ⊆ E be
almost disjoint and such that clM(I) ∪ clN(J) is almost equal to E and I ∪ J is almost
independent in both M and N . Without loss of generality, we can assume that I is
independent in M and J is independent in N . Let I ′ ⊆ IrJ and J ′ ⊆ Jr I be such that
I ∪ J ′ is a basis of M�I∪J and J ∪ I ′ is a basis of N�I∪J . Note that (I ∪ J) r (I ′ ∪ J ′) is
finite. Let P ′, Q′ ⊆ E r (I ∪ J) be disjoint and such that E r (I ∪ J ∪ P ′ ∪Q′) is finite
with P ′ ⊆ clM(I) and Q′ ⊆ clN(J). Let P = I ′ ∪ P ′, Q = J ′ ∪Q′ and F = E r (P ∪Q)
(see Figure 2.2).

F

J ′ Q′

I ′ P ′

J

I

Q

P

Figure 2.2: A packing for (M,N∗) /F\Q and a covering for (M,N∗) \F/P .

Note that F is finite and P ⊆ clM(I ′ ∪ F ). Moreover, since I ′ ∪ J is independent
in N and J spans every element of Q, it follows that I ′ is independent in N/Q and
hence P ′ ∪ F is spanning in (N/Q)∗ = N∗\Q. It follows that (I ′, P ′) is a packing for
(M,N∗) /F\Q. Similarly, (J ′, Q′) is a packing for (N,M∗) /F\P and hence it is a covering
for (M,N∗) \F/P .

3 The Main Result

Throughout this section we assume that M and N are matroids on a common ground set
E.

A semi-packing for (M,N) is a pair (B,D) of subsets of E that are spanning in M and
N , respectively, with a minimal possible intersection. More precisely, if (B′, D′) is another
pair of subsets of E that are spanning in M and N , respectively, and B′ ∩ D′ ⊆ B ∩ D
then B′ ∩ D′ = B ∩ D. A semi-covering for (M,N) is defined analogously as a pair of
independent subsets with a maximal possible union. It is easy to see the following result:

Lemma 3.1. Let F ⊆ E be finite. We have the followings:

1. If (M,N) has an almost packing, then (M,N) has a semi-packing.

2. If (M,N) has an almost covering, then (M,N) has a semi-covering.

3. If (M,N) /F has a packing, then (M,N) has an almost packing.
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Figure 3.1: The sets B, D, B′ and D′.

4. If (M,N) \F has a covering, then (M,N) has an almost covering.

Let B and D be independent in M and N , respectively. A (B,D)-exchange M -chain
is a finite sequence (e1, e2, . . . , en) of elements of E such that for each i ∈ {1, 2, . . . , n− 1}
the elements ei and ei+1 are distinct and:

• if i is odd, then there exists a circuit C of M with ei, ei+1 ∈ C ⊆ B ∪ {ei};

• if i is even, then there exists a circuit C of N with ei, ei+1 ∈ C ⊆ D ∪ {ei}.

We say that such a chain is from e1 to en.
A (B,D)-exchange N-chain is defined analogously with the words “even” and “odd”

interchanged. A (B,D)-exchange chain refers to either of these notions.
The following lemma is proved in [2].

Lemma 3.2. Let B and D be independent in M and N , respectively. If there exists a
(B,D)-exchange M-chain from d ∈ E r (B ∪D) to e ∈ B ∩D, then there exist B′ and
D′ that are independent in M and N , respectively, such that B′ ∩ D′ = (B ∩D) r {e},
clM(B) ⊆ clM(B′) and clN(D) ⊆ clN(D′).

The following lemma is the key technical result that will be used in the proof of the
main result.

Lemma 3.3. If (M,N) has a semi-packing, then it has the Packing/Covering Property.

Proof. Let (B,D) be a semi-packing for (M,N). Without loss of generality, we can assume
that B and D are bases of M and N , respectively. Let B′ be the set of all e ∈ B to which
there exists a (B,D)-exchange chain from an element of E r (B ∪D). Similarly, let D′

consist of those e ∈ D to which there exists a (B,D)-exchange chain from E r (B ∪D)
(see Figure 3.1).

Note that B′ ∩ D = ∅ and D′ ∩ B = ∅, since if e ∈ B ∩ D and there is a (B,D)-
exchange M -chain from d ∈ E r (B ∪D) to e, then Lemma 3.2 implies that there exist
B′′ and D′′ that are bases of M and N , respectively, such that

B′′ ∩D′′ = (B ∩D) r {e} .
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Since B′′∩D′′ is a proper subset of B∩D and (B,D) is a semi-packing we get a contradic-
tion. Similarly, the existence of a (B,D)-exchange N -chain would lead to a contradiction.

Let
P = B′ ∪D′ ∪ (E rB ∪D) ,

(see Figure 3.1). We claim that (B′, D′) is a packing for (M�P , N�P ). If e ∈ Er (B ∪D),
then the definition of exchange chains implies that e is spanned by B′ in M and by D′

in N . If e ∈ B′, then e is spanned by D in N so there exists a circuit C of N with
{e} ∈ C ⊆ D ∪ {e}. Since e ∈ B′, it follows that there exists a (B,D)-exchange chain
from E r (B ∪D) to each element of C r {e} implying that C r {e} ⊆ D′. Thus e is
spanned by D′ in N . Similarly, each element of D′ is spanned by B′ in M completing the
proof that (B′, D′) is a packing for (M�P , N�P ).

Let Q = ErP (see Figure 3.1). B̂ = B∩Q and D̂ = D∩Q. We claim that
(
B̂, D̂

)
is

a covering of (M.Q,N.Q). Clearly B̂∪D̂ = Q. Since B = B′∪B̂ is independent in M and
B′ spans P in M , it follows that B̂ is independent in M.Q. Similarly, D̂ is independent
in N.Q completing the proof of the lemma.

Since (M,N) has the Packing/Covering Property if and only if (M∗, N∗) does, we also
get the following corollary:

Corollary 3.4. If (M,N) has a semi-covering, then it has the Packing/Covering Prop-
erty.

The proof of the following lemma is routine.

Lemma 3.5. Let I be independent in M and F ⊆ E be finite. Then there exists I ′ ⊆ I
that is independent in M/F with I r I ′ finite.

Corollary 3.6. If (M,N) has an almost covering and F ⊆ E is finite, then (M/F,N/F )
has an almost covering.

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. It is clear that 1. implies 2., which implies 3. It suffices to show
that 3. implies 1.

Assume that (M,N) has the Packing/Covering Property modulo finite F ⊆ E. Let
P t Q be a partition of E r F such that (M,N) /F\Q has a packing and (M,N) \F/P
has a covering. Since F is finite, it follows that (M\Q,N\Q) has an almost packing
and hence it has a semi-packing. Consequently, Lemma 3.3 implies that (M\Q,N\Q)
has the Packing/Covering Property. Let E r Q = P ′ t Q′ be a partition of E r Q such
that (M�P ′ , N�P ′) has a packing (S, T ) and (M,N) \Q/P ′ has a covering (A,B) (see
Figure 3.2).
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F

P ′
S T

BA

I J Q

P

Figure 3.2: A packing (S, T ) for (M�P ′ , N�P ′) and a covering (A,B) for (M,N) \Q/P ′.

A covering of (M,N) \F/P is an almost covering of (M/P,N/P ) and P ′ r P is fi-
nite so Corollary 3.6 implies that (M/ (P ∪ P ′) , N/ (P ∪ P ′)) has an almost covering
(I, J). Since F is finite, it follows that ((A ∪ I) r F, (B ∪ J) r F ) is an almost covering
of (M/P ′, N/P ′). Since (M/P ′, N/P ′) has a semi-covering, Corollary 3.4 implies that it
has the Packing/Covering Property.

Let P ′′ tQ′′ be a partition of E r P ′ such that (M,N) /P ′\Q′′ has a packing (S ′, T ′)
and (M,N) /P ′/P ′′ has a covering (A′, B′) (see Figure 3.3).

Q′′

P ′′

P ′

A′ B′

S T

S ′ T ′

Figure 3.3: A packing (S ′, T ′) for (M,N) /P ′\Q′′ and a covering (A′, B′) for
(M,N) /P ′/P ′′.

Then (S ∪ S ′, T ∪ T ′) is a packing for (M\Q′′, N\Q′′) implying that (M,N) has the
Packing/Covering Property.

4 Consequences

Our results imply the following strengthening of Edmonds’ Intersection Theorem.

Corollary 4.1. If M has finite rank and N is arbitrary, then (M,N) satisfies the Matroid
Intersection Conjecture.
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Proof. Let M be a matroid of finite rank, and N be an arbitrary matroid. Observe that
(M∗, N) has an almost covering. Hence (M∗, N) has a semi-covering and Corollary 3.4
implies that (M∗, N) has the Packing/Covering Property. By Fact 1.2 the pair (M,N)
satisfies the Matroid Intersection Conjecture.

A matroid M on E is nearly finitary iff for every A ⊆ E that contains no finite
circuits of M there exists a finite F ⊆ A such that Ar F is independent in M . Assume
that M and N are matroids on the same ground set E. Let M ∨ N be the set system
M ∨N = (E,I (M ∨N)), where

I (M ∨N) = {I ∪ J : I ∈ I (M), J ∈ I (N)} .

The following result is proved in [2].

Theorem 4.2. If M and N are nearly finitary, then M ∨N is a nearly finitary matroid.

In [2] it is proved that if M ∨N∗ is a matroid, then (M,N) satisfies the Intersection
Conjecture. In particular, the following result holds. We can use Corollary 3.4 to provide
an alternative proof.

Theorem 4.3. If M and N are nearly finitary, then (M,N) has the Packing/Covering
Property.

Proof. By Theorem 4.2, M ∨ N is a matroid. If I and J are independent in M and N ,
respectively, with I ∪ J being a basis of M ∨N , then (I, J) is a semi-covering of (M,N).
By Corollary 3.4, (M,N) has the Packing/Covering Property.

In [4] “patchwork matroids” are introduced and proved to satisfy the following char-
acterization. Here K4B = (K rB) ∪ (B rK).

Theorem 4.4. The matroid M is patchwork if and only if for every K ⊆ E one of the
following conditions holds:

1. K is independent in M .

2. K is spanning in M .

3. There exists a basis B of M with finite K4B.

Lemma 3.3 implies the following result.

Theorem 4.5. If M is patchwork and N is arbitrary, then (M,N) has the Packing/
Covering Property.

Proof. Let D be a basis of N and K = ErD. If K is independent in M , then (M,N) has
a covering. If K is spanning in M , then (M,N) has a packing. Otherwise, by Theorem
4.4, there exists a basis B of M with finite K4B. Then (B,D) is an almost packing for
(M,N). Hence (M,N) has a semi-packing and Lemma 3.3 implies that (M,N) has the
Packing/Covering Property.
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