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Abstract

Given a family of lattice polytopes, a common endeavor in Ehrhart theory is the
classification of those polytopes in the family that are Gorenstein, or more generally
level. In this article, we consider these questions for s-lecture hall polytopes, which
are a family of simplices arising from s-lecture hall partitions. In particular, we
provide concrete classifications for both of these properties purely in terms of s-
inversion sequences. Moreover, for a large subfamily of s-lecture hall polytopes, we
provide a more geometric classification of the Gorenstein property in terms of its
tangent cones. We then show how one can use the classification of level s-lecture
hall polytopes to construct infinite families of level s-lecture hall polytopes, and to
describe level s-lecture hall polytopes in small dimensions.

Mathematics Subject Classifications: 52B20, 05A17, 13H10, 13P99

1 Introduction

Let P ⊂ Rn be a convex lattice polytope. It is a common question in Ehrhart theory to
determine whether P is a Gorenstein polytope, that is, whether the associated semigroup
algebra of P is Gorenstein. Gorenstein polytopes are also of interest within geometric
combinatorics, as Gorenstein polytopes can be characterized in purely geometric terms.
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Particularly, P is Gorenstein if and only there is some integer dilate cP which is a reflexive
polytope [DNH97]. Likewise, the Gorenstein property is equivalent to the interesting
enumerative property that the Ehrhart h∗-polynomial of P has palindromic coefficients
[Sta78]. Gorenstein polytopes are also of interest in algebraic geometry for a variety of
reasons, including connections to mirror symmetry (see, e.g., [Bat94] and [CLS11, Section
8.3]). Roughly speaking, a pair of reflexive lattice polytopes gives rise to a mirror pair
of Calabi–Yau manifolds. We recommend [Cox15] for an excellent survey article about
reflexive polytopes and their connection to mirror symmetry. Subsequently, classifications
of the Gorenstein property have been extensively studied and are known for many families
including order polytopes [Sta86, Hib87], twinned poset polytopes [HM16], and r-stable
(n, k)-hypersimplices [HS16].

Gorenstein algebras are intimately related to level algebras. We say that P is a
level polytope if its associated semigroup algebra is a level algebra, a generalization of
Gorenstein algebras. Classifying level polytopes has not been studied to nearly the same
degree as detecting the Gorenstein property (see, e.g., [EHHSM15, HY18a]). However, in
addition to the independent interest in level algebras, if P is level, we obtain nontrivial
inequalities on the coefficients of the Ehrhart h∗-polynomial, which are not satisfied for
general lattice polytopes (see, e.g., [Sta96]).

One family of well-studied polytopes are the s-lecture hall polytopes. For a given
s ∈ Zn>1, the s-lecture hall polytope is the simplex defined by

P(s)
n :=

{
λ ∈ Rn : 0 6

λ1
s1

6
λ2
s2

6 · · · 6 λn
sn

6 1

}
.

In the literature, s-lecture hall polytopes are also sometimes called s-lecture hall sim-
plices. These polytopes arise from the extensively investigated s-lecture hall partitions,
introduced by Bousquet-Mélou and Eriksson [BME97a, BME97b]. To quote Savage and
Schuster from [SS12]: “Since their discovery, s-lecture hall partitions and their generaliza-
tions have emerged as fundamental tools for interpreting classical partition identities and
for discovering new ones.” Though many algebraic and geometric properties of s-lecture
hall polytopes are known (see, e.g., [Sav16]), there is not an explicit full characterization
of the Gorenstein property and there are no known levelness results to date.

Our focus is to determine a classification of the Gorenstein and level properties in s-
lecture hall polytopes. In particular, we provide a full characterization for the Gorenstein
property. We also give another more geometric characterization in the case that s has
at least one index i, 1 < i 6 n, such that gcd(si−1, si) = 1. These main results on the
Gorenstein property are as follows:

Theorem 1. Let s ∈ Zn>1. Then P
(s)
n is Gorenstein if and only if there exists c ∈ Zn+1

satisfying c1 = 1,
cjsj−1 = cj−1sj + gcd(sj−1, sj)

for j > 1, and
cn+1sn = 1 + cn.
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The next result is not as general, but it guarantees that, under the condition that
gcd(si−1, si) = 1 for some 1 < i 6 n, if the two vertex cones of P

(s)
n at (0, 0, . . . , 0)

and at (s1, s2, . . . , sn) are Gorenstein, then P
(s)
n is Gorenstein. While we will use this

geometric perspective in the proof, we give an equivalent reformulation highlighting that
the Gorenstein condition is an explicit condition on s.

Theorem 2. Let s ∈ Zn>1 be such that gcd(si−1, si) = 1 for some 1 < i 6 n. The polytope

P
(s)
n is Gorenstein if and only if for all j > 2

gcd(sj−1, sj)

sj−1
+

j−1∑
k=1

gcd(sk−1, sk)

sk−1sk
and

gcd(sn−j+2, sj)

sn−j+1

+

j−1∑
k=1

gcd(sn−k+2, sn−k+1)

sn−k+2sn−k+1

(1)

are integers where s0 = sn+1 = 1.

Remark 3. It is straightforward to show that P
(s)
n is Gorenstein if and only if P

(1,s)
n+1 is

Gorenstein, as P
(1,s)
n+1 is the lattice pyramid over P

(s)
n . Since P

(1,s)
n+1 satisfies the conditions

of Theorem 2, one can apply Theorem 2 to any s-lecture hall polytope.

Moreover, we provide a characterization for levelness. For a given s, let I
(s)
n := {e ∈

Zn>0 : 0 6 ei < si} be the set of s-inversion sequences. Given e ∈ I
(s)
n , let asc(e) be

the ascent number of e and let I
(s)
n,k denote the set of inversion sequences with ascent

number k. Furthermore, for two inversion sequences e1, e2 ∈ I
(s)
n , we say that e1 + e2

is the inversion sequence formed by componentwise addition where the ith component is
considered modulo si. These notions will be defined more thoroughly later sections. Our
characterization is the following theorem:

Theorem 4. Let s = (s1, s2, . . . , sn) and let r = max{asc(e) : e ∈ I
(s)
n }. Then P

(s)
n is

level if and only if for any e ∈ I
(s)
n,k with 1 6 k < r there exists some e′ ∈ I

(s)
n,1 such that

(e+ e′) ∈ I
(s)
n,k+1.

The structure of this manuscript is as follows. In Section 2, we provide all necessary
background, definitions, notation, and terminology. The focus of Section 3 is proving the
Gorenstein classifications. In Section 4, we prove the characterization of the level prop-
erty. We conclude in Section 5 with some potential ways to improve and extend these
results and other future directions.

2 Background

In this section, we provide the necessary terminology and background literature for our
results. Specifically, we review lattice polytopes and Ehrhart theory, Gorenstein algebras
and level algebras, and the polyhedral geometry of s-lecture hall partitions. Subsequently,
some or all of these subsections may be safely skipped by the experts.
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2.1 Lattice polytopes and Ehrhart theory

A polytope P ⊂ Rn is the convex hull of finitely many points in Rn, i.e,

P = conv{v1, . . . ,vr} :=

{
r∑
i=1

λivi : λi > 0,
∑

λi = 1,vi ∈ Rn

}
.

The inclusion-minimal set V such that P = conv{v : v ∈ V } is called the vertex set, and
its elements are called the vertices of P . The polytope P is a lattice polytope if V ⊂ Zn.
The Ehrhart polynomial i(P, t) : Z>1 → Z>1 of P is the function

i(P, t) := #(tP ∩ Zn)

which agrees with polynomial in the variable t of degree d = dim(P ) by a result of Ehrhart
[Ehr62]. The Ehrhart series of P is the rational generating function

1 +
∑
t>1

i(P, t)zt =
h∗(P, z)

(1− z)d+1
,

where the numerator is the polynomial

h∗(P, z) =
d∑
j=0

h∗j(P )zj,

which we call the Ehrhart h∗-polynomial of P . The coefficient vector
h∗(P ) = (h∗0(P ), h∗1(P ), . . . , h∗d(P )) is known as the h∗-vector. If the polytope is clear
from context, we will simplify our notation to (h∗0, h

∗
1, . . . , h

∗
d). By a result of Stanley

[Sta80], we know that h∗j(P ) ∈ Z>0 for all j. Many additional properties are known about
Ehrhart h∗-polynomials (see, e.g, [BR15, Hib92]). Classifying the set of h∗-vectors is one
of the most important open problems in Ehrhart theory. Therefore, inequalities for the
coefficients are of special interest, see [Sta09, Sta16, Hib90, Sta91]. Hofscheier, Katthän,
and Nill proved a structural result about h∗-vectors, see [HKN18, Theorem 3.1], where
they showed that if the integer points of a lattice polytope P span the integer lattice,
then h∗(P, z) cannot have internal zeros. There are even some universal inequalities for
h∗-vectors, i.e., inequalities independent of the degree and the dimension of the polytope,
see [BH18].

Given a lattice polytope P with vertex set V (P ), define the cone over P to be

cone(P ) := spanR>0
{(v, 1) : v ∈ V (P )} ⊂ Rn × R.

Let v be a vertex of P . The vertex cone of P at v is defined as

Tv(P ) := {v + λ(x− v) : x ∈ P, λ > 0}.

The vertex cone Tv(P ) is also known as the tangent cone of P at v. Let F be a facet of
a lattice polytope P (cone(P ), respectively) corresponding to 〈aF ,x〉 = bF , where aF is
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primitive. If |〈aF ,x〉 − b| = d, then we say that x ∈ P (or x ∈ cone(P ), respectively) has
lattice distance d to F .

Let k be an algebraically closed field of characteristic zero. We define the affine
semigroup algebra of P to be

k[P ] := k[cone(P ) ∩ Zn+1] = k[xp · ym : (p,m) ∈ cone(P ) ∩ Zn+1] ⊂ k[x±11 , . . . , x±1n , y].

This algebra is known to be a finitely generated, local k-algebra with a natural Z>0-
grading arising from the y-degree (see, e.g., [MS05]). Moreover, k[P ] is Cohen-Macaulay
[Hoc72]. Given the observation that the lattice points (p,m) ∈ cone(P )∩Zn+1 in the cone
are in clear bijection with elements in mP ∩ Zn, the Ehrhart polynomial is the Hilbert
function for the algebra k[P ].

We say that P satisfies the integer decomposition property (or IDP for short) if for
any x ∈ tP ∩Zn, there exist t lattice points {p1,p2, . . . ,pt} ∈ P ∩Zn such that p1 +p2 +
· · ·+pt = x. Equivalently, P satisfies the IDP if the semigroup algebra k[P ] is generated
entirely in degree 1.

Suppose that P is a simplex and has vertex set {v0, · · · ,vd}. The (half-open) funda-
mental parallelepiped of P is the bounded region of cone(P ) defined as

ΠP :=

{
d∑
i=0

ηi(vi, 1) : 0 6 ηi < 1

}
⊂ cone(P ).

For simplices, we can use the fundamental parallelepiped to compute the Ehrhart h∗-
polynomial. In particular, the coefficients are given by

h∗i (P ) = #
{
x ∈ ΠP ∩ Zn+1 : x = (x1, . . . , xn, i)

}
,

that is, the number of lattice points at height i in ΠP . For more details and exposition,
the reader should consult [BR15].

2.2 Gorenstein algebras and level algebras

We now provide a brief review of Gorenstein and level algebras. Since we will only
be concerned with semigroup algebras of polytopes, we will restrict ourselves to this
case. For additional details and expositions, the reader should consult [BH93, Sta96] as
references.

In commutative algebra, the Gorenstein property of a graded k-algebra R is often
defined in terms of the canonical module ωR. In the case of a semigroup algebra k[P ] of
a lattice polytope P , Stanley [Sta78] explicitly describes the canonical module as

ωk[P ] = k[cone(P )◦ ∩ Zn+1]

where cone(P )◦ denotes the relative interior of the cone. We say that k[P ] is Gorenstein
if there exists c ∈ Zn+1 such that

c+ (cone(P ) ∩ Zn+1) = cone(P )◦ ∩ Zn+1,
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and c is called the Gorenstein point of cone(P ). Equivalently, k[P ] is Gorenstein if and
only if there is a c ∈ Zn+1 having lattice distance 1 to all facets of cone(P ), see [BG09,
Theorem 6.32]. Moreover, note that P is Gorenstein if and only if h∗(P, z) is a palindromic
polynomial, see [Sta78, Theorem 4.4].

One generalization of the Gorenstein property which is also of interest is the level
property. We say that k[P ] is level if ωk[P ] is generated by elements of the same degree,
that is, ωk[P ] has minimal generating set {σ1, . . . , σj} such that deg(σ1) = deg(σ2) =
· · · = deg(σj). An equivalent formulation of the level property is often more fruitful for
computational purposes. Recall for any k[P ]-module M , the socle of M is soc(M) := {u ∈
M : R+u = 0} where R+ is the ideal generated by the homogeneous non-units of k[P ].
It is equivalent to say that k[P ] is level if for any homogeneous system of parameters
θ1, . . . , θd of k[P ], all the elements of the graded vector space soc(k[P ]/(θ1, . . . , θd)) are of
the same degree, see [Sta96, Chapter III, Proposition 3.2].

We can also provide a more concrete description of the level property. We say k[P ] is
level if there exists some finite collection c1, . . . , cm ∈ Zn+1 where

m∑
i=1

(ci + (cone(P ) ∩ Zn+1)) = cone(P )◦ ∩ Zn+1,

and the additional restriction that c1n+1 = c2n+1 = · · · = cmn+1 . For a lattice polytope P ,
we say that P is Gorenstein (respectively, level) if k[P ] is Gorenstein (respectively, level).

2.3 Polyhedral geometry of s-lecture hall partitions

In this subsection, we briefly recall relevant properties and results on s-lecture hall cones
and s-lecture hall polytopes. For a more in-depth overview of some of these results and
many others, the reader should consult the excellent survey of Savage [Sav16].

Let s = (s1, s2, . . . , sn) ∈ Zn>1 be a sequence. Given any s-sequence, define the s-lecture
hall partitions to be the set

L(s)
n :=

{
λ ∈ Zn : 0 6

λ1
s1

6
λ2
s2

6 · · · 6 λn
sn

}
.

We can associate to the set of s-lecture hall partitions several discrete geometric objects,
in particular, the s-lecture hall polytope and the s-lecture hall cone. For a given s, the
s-lecture hall polytope is defined

P
(s)
n :=

{
λ ∈ Rn : 0 6

λ1
s1

6
λ2
s2

6 · · · 6 λn
sn

6 1

}
= conv{(0, . . . , 0), (0, . . . , 0, si, si+1, . . . , sn) for 1 6 i 6 n}.

The Ehrhart h∗-polynomials of P
(s)
n have been completely classified. Given s, the set

of s-inversion sequences is defined as I
(s)
n := {e ∈ Zn>0 : 0 6 ei < si}. For a given e ∈ I

(s)
n ,

the ascent set of e is

Asc(e) :=

{
i ∈ {0, 1, . . . , n− 1} :

ei
si
<
ei+1

si+1

}
,
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with the conventions s0 = 1, e0 = 0, and asc(e) := # Asc(e). With these definitions, we
can give the explicit formulation for the Ehrhart h∗-polynomials.

Theorem 5 ([SS12, Theorem 8]). For a given s ∈ Zn>1,

h∗(P(s)
n , z) =

∑
e∈I(s)n

zasc(e).

The polynomials h∗(P
(s)
n , z) are known as the s-Eulerian polynomials, because they

generalize the classical Eulerian polynomials. Let Sn denote the symmetric group of [n].
Given π = π1π2 · · · πn ∈ Sn, recall that the descent statistic of π is des(π) = #{i ∈
[n − 1] : πi > πi+1}. This statistic on permutations gives rise to one definition of the
classical Eulerian polynomial

An(z) :=
∑
π∈Sn

zdes(π).

In the special case of s = (1, 2, . . . , n), we have

h∗(P(1,2,...,n)
n , z) =

∑
e∈I(1,2,...,n)

n

zasc(e) =
∑
π∈Sn

zdes(π) = An(z).

The s-Eulerian polynomials are known to be real-rooted and, hence, unimodal [SV15].
In recent years, s-lecture hall polytopes have been the subject of much additional study

(see, e.g,. [HOT17, PS13a, PS13b, SV12]). Of particular interest are algebraic and geo-
metric structural results such as Gorenstein and IDP. The second author along with Hibi
and Tsuchiya in [HOT18] provide some Gorenstein results in particular circumstances.
Additionally, the following theorem for IDP holds.

Theorem 6 ([BS20, Theorem 2.1]). P
(s)
n has the IDP.

A proof for the case of monotonic s-sequences was given by the second author with Hibi
and Tsuchiya in [HOT18] which Brändén and Solus [BS20] show can be extended to any s
when they prove that all s-lecture hall order polytopes have the IDP. Moreover, in [BL20,

Conjecture 5.4] it is conjectured that for any s, P
(s)
n possesses a regular, unimodular

triangulation.
For a given s, the s-lecture hall cone is defined to be

C(s)n :=

{
λ ∈ Rn : 0 6

λ1
s1

6
λ2
s2

6 · · · 6 λn
sn

}
,

and whose integer points are exactly the s-lecture hall partitions. These objects are also
related to s-lecture hall polytopes in that C(s)n arises as the vertex cone of P

(s)
n at the origin

(0, . . . , 0). It is important to realize that C(s)n is not the same object as cone(P
(s)
n ). In fact,

C(s)n is the image of the map q0 : cone(P
(s)
n ) → Rn, (x, h) 7→ x, where x ∈ hP

(s)
n . The

s-lecture hall cones have been studied extensively (see, e.g., [BBK+15, BBK+16, Ols18])
and the following Gorenstein results for the s-lecture hall cones are particularly of interest
for our purposes.
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Theorem 7 ([BBK+15, Corollary 2.6], [BME97b, Proposition 5.4]). For a positive integer

sequence s, the s-lecture hall cone C(s)n is Gorenstein if and only if there exists some c ∈ Zn
satisfying

cjsj−1 = cj−1sj + gcd(sj−1, sj)

for j > 1, with c1 = 1.

Moreover, in the case of s-sequences where gcd(si−1, si) = 1 holds for all i, we have
a refinement of this theorem. We say that s is u-generated by a sequence u of positive
integers if s2 = u1s1 − 1 and si+1 = uisi − si−1 for i > 1.

Theorem 8 ([BBK+15, Theorem 2.8], [BME97b, Proposition 5.5]). Let s = (s1, . . . , sn)

be a sequence of positive integers such that gcd(si−1, si) = 1 for 1 6 i < n. Then C(s)n

is Gorenstein if and only if s is u-generated by some sequence u = (u1, u2, . . . , un−1) of

positive integers. When such a sequence exists, the Gorenstein point c for C(s)n is defined
by c1 = 1, c2 = u1, and for 2 6 i < n, ci+1 = uici − ci−1.

3 Gorenstein s-lecture hall polytopes

In this section, we will give a characterization of Gorenstein s-lecture hall polytopes. To
give such a classification, we will analyze the structure of cone(P

(s)
n ). The following lemma

gives a halfspace inequality description of this cone:

Lemma 9. With the notation from above,

cone(P(s)
n ) =

{
λ ∈ Rn+1 : Aλt > 0

}
,

where

A =


1
s1

0 0 . . . 0
−1
s1

1
s2

0 . . . 0
...

...
...

...
...

0 . . . −1
sn−1

1
sn

0

0 . . . 0 −1
sn

1

 .

Moreover, this cone is simplicial.

Proof. This directly follows from the halfspace description of P
(s)
n . Assume that P

(s)
n =

{λ : Mλt > b}, where b = (0, 0, . . . , 0, 1)t. Then on height λn+1, we have Mλt > λn+1b.
The statement now follows.

Proof of Theorem 1. Lemma 9 implies that cone
(
P

(s)
n

)
= C(s1,...,sn,1)n+1 , i.e., cone

(
P

(s)
n

)
is an s-lecture hall cone itself, which also appears implicitly in [LS14, Lemma 2.3]. Now
the claim follows from Theorem 7.

In the interest of proving the alternative characterization given by Theorem 2, we now
recall a technical lemma necessary for the proof.
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Lemma 10 ([BBK+15, Lemma 2.5]). Let C = {λ ∈ Rn : Aλ > 0} be a full dimensional
simplicial polyhedral cone where A is a rational matrix and denote the rows of A as linear
functionals α1, . . . , αn on Rn. For j = 1, . . . , n, let the projected lattice αj(Zn) ⊂ R be
generated by the number qj ∈ Q>0, so αj(Zn) = qjZ.

1. The cone C is Gorenstein if and only if there exists c ∈ Zn such that αj(c) = qj for
all j = 1, . . . , n.

2. Define a point c̃ ∈ C ∩Qn by αj(c̃) = qj for all j = 1, . . . , n. Then C is Gorenstein
if and only if c̃ ∈ Zn.

We now provide a proof of Theorem 2.

Proof of Theorem 2. Let us define ←−s := (sn, sn−1, . . . , s1). We will verify the following
two claims:

(i) If P is any Gorenstein polytope, then all of its vertex cones are Gorenstein as well.
The terms in (1) actually correspond to coordinates of the Gorenstein points of the
two vertex cones at 0 and s.

(ii) If the vertex cones of P
(s)
n at 0 and s are both Gorenstein, then P

(s)
n is Gorenstein.

This direction does not hold for general lattice polytopes.

Let P
(s)
n be Gorenstein with Gorenstein point b ∈ cone(P

(s)
n ) ∩ Zn+1. We will show

that there are integer points c and d satisfying the recursions

cjsj−1 = cj−1sj + gcd(sj−1, sj) (2)

and
dj
←−−sj−1 = dj−1

←−sj + gcd(←−−sj−1,←−sj ) (3)

for j > 1, where c1 = d1 = 1. Solving (2) and (3) for cj and dj will then lead to the
integrality conditions in (1). Since b is a Gorenstein point, it has lattice distance 1 to all

facets of cone(P
(s)
n ) by [BG09, Theorem 6.32]. For a vertex v, the vertex cone Tv(P

(s)
n ) can

be related to cone(P
(s)
n ) by considering the map qv : cone(P

(s)
n ) → Rn, (x, h) 7→ x − hv,

where x ∈ hP
(s)
n . It is straightforward to see that Tv(P

(s)
n ) = v + qv(cone(P

(s)
n )), and

Tv(P
(s)
n ) is Gorenstein if and only if qv(cone(P

(s)
n )) is Gorenstein. Moreover, as one can

quickly verify, qv preserves facet distances; if F is a facet of cone(P
(s)
n ) containing (v, 1)

and (x, h) has facet distance d to F , then qv(x, h) has facet distance d to qv(F ). Therefore,

qv(b) has lattice distance 1 to all facets of qv(cone(P
(s)
n )) and q(b) is a Gorenstein point

and thus Tv(P
(s)
n ) is Gorenstein for all. Hence, all vertex cones are Gorenstein.

In particular, the vertex cone at the vertex (0, 0, . . . , 0) is of the form

0 6
λ1
s1

6 · · · 6 λn
sn
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and it is known by Theorem 7 that this cone is Gorenstein if and only if there exists a
c ∈ Zn satisfying (2). Furthermore, the map

x 7→ −


0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
...

1 0 . . . 0 0

x+←−s .

shows that Ts(P
(s)
n ) is unimodularly equivalent to T0(P (←−s )

n ). Therefore, T0(P (←−s )
n ) is of

the form

0 6
λ1
←−s1

6 · · · 6 λn
←−sn

which is Gorenstein if and only if there exists a d ∈ Zn satisfying (3). Now solving the
recursions for cj and dj gives

cj =
gcd(sj−1, sj)

sj−1
+

j−1∑
k=1

gcd(sk−1, sk)

sk−1sk
and dj =

gcd(sn−j+2, sj)

sn−j+1
+

j−1∑
k=1

gcd(sn−k+2, sn−k+1)

sn−k+2sn−k+1
,

which proves the first claim.
Let us assume that all terms in (1) are integers. We define

cj =
gcd(sj−1, sj)

sj−1
+

j−1∑
k=1

gcd(sk−1, sk)

sk−1sk
and dj =

gcd(sn−j+2, sj)

sn−j+1
+

j−1∑
k=1

gcd(sn−k+2, sn−k+1)

sn−k+2sn−k+1
,

where s0 = sn+1 = 1. In particular, c1 = d1 = 1. Since all terms in (1) are assumed to
be integers, both c = (c1, . . . , cn) and d = (d1, . . . , dn) are integer points. By definition,
c satisfies recursion (2), and d satisfies recursion (3).

To show sufficiency, we employ Lemmata 10 and 9. Since the characterization given
in Lemma 10 essentially requires finding integer solutions to linear equations, we first
deduce some divisibility conditions that will later prove useful. Note that this gives us
the following

cnsn−1 = cn−1sn + gcd(sn−1, sn),

and
d2
←−s 1 = d1

←−s 2 + gcd(←−s 1,
←−s n)

is equivalent to
d2sn = d1sn−1 + gcd(sn−1, sn)

where d1 = 1. Subtracting both equalities, we get

(d2 + cn−1)sn = (1 + cn)sn−1.

Repeating the above process, we also have

(d3 + cn−2)sn−1 = (d2 + cn−1)sn−2
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and in general for some k, we have

(dk+1 + cn−k)sn−k+1 = (dk + cn−k+1)sn−k. (4)

If we know that i = n−k, then gcd(sn−k, sn−k+1) = 1 and we can deduce that sn−k+1|(dk+
cn−k+1) which will be necessary at a later stage of the proof..

By Lemma 10, a cone of the form Aλ > 0 is Gorenstein if and only if there is a point
c̃ ∈ cone(P

(s)
n ) ∩ Zn+1 such that αi(c̃) = qi for all i, where αi is the ith row of A and qi is

defined as in Lemma 10. Lemma 9 explicitly describes the rows, implying

q1 =
1

s1
, q2 =

1

lcm(s1, s2)
, . . . , qn =

1

lcm(sn−1, sn−2)
, qn+1 =

1

sn
.

We will show that c̃ = (c, h), where c is defined as above and where h ∈ Z>1, satisfies
αi(c̃) = qi for all i = 1, . . . , n+1. The conditions αi(c̃) = qi for i = 1, . . . , n are equivalent
to saying c1 = 1 and that

cjsj−1 = cj−1sj + gcd(sj−1, sj)

for 2 6 j 6 n. These conditions are all satisfied by assumption. However, we also need
to satisfy the condition

−cn
sn

+ c̃n+1 =
1

sn
,

or equivalently
hsn = 1 + cn.

Now, we note that from Equation (4) it follows that

sn =
(1 + cn)

(d2 + cn−1)
sn−1,

so we can rewrite
hsn−1 = d2 + cn−1.

We can iterate these substitutions repeatedly to arrive at the equality

hsn−k+1 = dk + cn−k+1.

However, since sn−k+1|(dk + cn−k+1), h is an integer. Here we are implicitly using that
c,d ∈ Zn>1, which follows from the recursive definition. So we are done.

Remark 11. We mentioned before that Theorem 2 applies to a large subfamily of s-
lecture hall polytopes. This remark will make this statement more precise. Given two
positive integers a and b, the probability that gcd(a, b) = 1 converges to 1

ζ(2)
= 6

π2 ,

where ζ(s) =
∑∞

n=1
1
ns is the Riemann ζ-function, see [HW08, Theorem 332]. Heuris-

tically, assuming that these events are independent (which they are not), we then get

that roughly
(
1− 6

π2

)n−1
-percent of sequences fall within the range of our theorem.

Computer simulations running 10, 000, 000 repetitions per dimension n with parameters
1 6 a, b 6 10, 000, 000 and 15 6 n 6 50 suggest that this estimate is fairly precise.
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Remark 12. Let s ∈ Zn be such that T0(P
(s)
n ) is Gorenstein with Gorenstein point c. In

[BBK+15, Corollary 2.7], the authors remark that the truncated sequence (s1, s2, . . . , si)
gives rise to a Gorenstein cone T0(P

((s1,s2,...,si))
i ) with Gorenstein point (c1, c2, . . . , ci). However,

the direct analogue of this statement is not true in our case. The sequence (8, 6, 10, 10, 5, 2, 4)

gives rise to a Gorenstein s-lecture hall polytope, whereas (8, 6, 10, 10, 5) does not give rise to
a Gorenstein s-lecture hall polytope, since it has 39 interior lattice points.

Theorem 2 along with Theorem 8 implies the following more specialized characteriza-
tion.

Corollary 13. Let s = (s1, s2, . . . , sn) ∈ Zn>1 such that gcd(si, si+1) = 1 for all 1 6 i < n.

Then P
(s)
n is Gorenstein if and only if s and ←−s are u-generated sequences.

We have the following corollary on the level of s-Eulerian polynomials

Corollary 14. Let s = (s1, s2, . . . , sn) ∈ Zn>1 such that gcd(si, si+1) = 1 for some 1 6 i <
n. The s-Eulerian polynomial is palindromic if and only if there exist c,d ∈ Zn satisfying

cjsj−1 = cj−1sj + gcd(sj−1, sj)

and
dj
←−−sj−1 = dj−1

←−sj + gcd(←−−sj−1,←−sj )
for j > 1 with c1 = d1 = 1.

Table 1 contains some examples of palindromic s-Eulerian polynomials. We list them
with the corresponding c and d sequences to more immediately see why s satisfies the
integrality condition specified by Theorem 2.

4 Characterization of level s-lecture hall polytopes

We now give a characterization of s-sequences that admit level P
(s)
n , which is given in

terms of the structure of s-inversion sequences. We recall two definitions from Section 1.
Let I

(s)
n,k := {e ∈ I

(s)
n : asc(e) = k} be the set of inversion sequences with exactly k ascents.

Furthermore, for inversion sequences e = (e1, e2, . . . , en), e′ = (e′1, e
′
2, . . . , e

′
n) ∈ I

(s)
n , we

define e+ e′ = (e1 + e′1 mod s1, e2 + e′2 mod s2, . . . , en + e′n mod sn).

4.1 Proof of Theorem 4

Our proof relies on understanding the link between the arithmetic structure of inversion
sequences and the semigroup structure of lattice points in Π

P
(s)
n

. To fully understand

and exploit this connection, we will need several lemmata. For notation, let V (P
(s)
n ) =

{v0, . . . ,vn} denote the set of vertices of P
(s)
n and let P(s)

n := (P
(s)
n ∩ Zn)− V (P

(s)
n ).

Lemma 15. There is an explicit bijection

ϕ : P(s)
n −→ I

(s)
n,1

where ϕ(λ1, . . . , λn) = (e1, . . . , en) given by ei = si − λi(modsi).

the electronic journal of combinatorics 27(3) (2020), #P3.50 12



sequence s corresponding c corresponding d s-Eulerian polynomial

(i) (2, 1, 3, 2, 1) (1, 1, 4, 3, 2) (1, 3, 5, 2, 5) 1 + 5z + 5z2 + z3

(ii) (3, 2, 3, 1, 2) (1, 1, 2, 1, 3) (1, 1, 4, 3, 5) 1 + 9z + 16z2 + 9z3 + z4

(iii) (1, 4, 3, 2, 3) (1, 5, 4, 3, 5) (1, 1, 2, 3, 1) 1 + 16z + 38z2 + 16z3 + z4

(iv) (3, 5, 2, 3, 1) (1, 2, 1, 2, 1) (1, 4, 3, 8, 5) 1 + 20z + 48z2 + 20z3 + z4

(v) (1, 2, 3, 4, 5) (1, 3, 5, 7, 9) (1, 1, 1, 1, 1) 1 + 26z + 66z2 + 26z3 + z4

(vi) (1, 2, 5, 8, 3) (1, 3, 8, 13, 5) (1, 3, 2, 1, 1) 1 + 50z + 138z2 + 50z3 + z4

(vii) (4, 3, 2, 5, 3) (1, 1, 1, 3, 2) (1, 2, 1, 2, 3) 1 + 30z + 149z2 + 149z3 + 30z4 + z5

(viii) (4, 7, 3, 2, 3) (1, 2, 1, 1, 2) (1, 1, 2, 5, 3) 1 + 43z + 208z2 + 208z3 + 43z4 + z5

(ix) (5, 9, 4, 3, 2) (1, 2, 1, 1, 1) (1, 2, 3, 7, 6) 1 + 82z + 457z2 + 457z3 + 82z4 + z5

(x) (3, 5, 12, 7, 2) (1, 2, 5, 3, 1) (1, 4, 7, 3, 2) 1 + 175z + 1084z2 + 1084z3 + 175z4 + z5

(xi) (3, 11, 8, 5, 2) (1, 4, 3, 2, 1) (1, 3, 5, 7, 2) 1 + 180z + 1139z2 + 1139z3 + 180z4 + z5

(xii) (2, 7, 5, 10, 4) (1, 4, 3, 7, 3) (1, 3, 2, 3, 1) 1 + 181z + 1218z2 + 1218z3 + 181z4 + z5

(xiii) (3, 8, 13, 5, 2) (1, 3, 5, 2, 1) (1, 3, 8, 5, 2) 1 + 213z + 1346z2 + 1346z3 + 213z4 + z5

Table 1: Palindromic s-Eulerian Polynomials.

Proof. Let λ = (λ1, λ2, . . . , λn) ∈P(s)
n . We have that

0 6
λ1
s1

6
λ2
s2

6 · · · 6 λn
sn

6 1.

Note that this means that λi 6 si for all i and if λi = si then λj = sj for all i 6 j 6 n.
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Additionally, note that the vertices of P
(s)
n are precisely the lattice points of the form

(0, . . . , 0, si, si+1, · · · , sn).

So, then λ can be expressed as:

λ = (0, . . . , 0, ai, ai+1, . . . , aj, sj+1, . . . , sn),

where each 0 < ak < sk.
If we apply our map λi 7→ si − λi (mod si), we get the inversion sequence

e = (0, 0, . . . , 0, si − ai, si+1 − ai+1, . . . , sj − aj, 0, . . . , 0).

It is left to verify that e ∈ I
(s)
n,1. Since we know that

0 <
ai
si

6
ai+1

si+1

6 · · · 6 aj
sj
< 1

which holds if and only if

1 >
si − ai
si

>
si+1 − ai+1

si+1

> · · · > sj − aj
sj

> 0,

we know that e contains exactly one ascent at position i− 1.
This process is certainly reversible, so we have a bijection.

Note that P(s)
n contains precisely the elements at height 1 in Π

P
(s)
n

. Next, we will

extend ϕ−1 to establish a bijection, ψ, between Π
P

(s)
n

and I
(s)
n .

Definition 16. Let ψ : I
(s)
n → Π

P
(s)
n

and let e = (e1, e2, · · · , en) ∈ I
(s)
n,k, where the k

ascents are at positions i1, i2, · · · , ik. Moreover, we set ik+1 := n. Then, for ` ∈ [k] and
i` < j 6 i`+1, we define

ψ(e)j = ` · sj − ej.

Lemma 17. The map ψ : I
(s)
n → Π

P
(s)
n
∩ Zn+1 is a bijection and ψ(I

(s)
n,k) = {x ∈ Π

P
(s)
n
∩

Zn+1 : xn+1 = k}. Moreover, if f ∈ I
(s)
n,k−1 and g ∈ I

(s)
n,1, then f + g ∈ I

(s)
n,k if and only if

ψ(f) + ψ(g) ∈ Π
P

(s)
n

.

Remark 18. The map ψ is related to the bijective map REM in [LS14]. To be precise, for

1 6 j 6 n, we have ψ(e)j = REM
−1

(e)j. There are two novel parts of Lemma 17. First,
it establishes that elements with k ascents get mapped to height k, which generalizes
[LS14, Corollary 6.2]. It is curious to compare this to [LS14, Corollary 3.8], where Liu–
Stanley define a map REM that bijectively maps integer points of Π

P
(s)
n

of height k to

elements of I
(s)
n with k descents. The second novel result is that f + g ∈ I

(s)
n,k if and only

if ψ(f) + ψ(g) ∈ Π
P

(s)
n

. This second part will be crucial in the proof of Theorem 4.
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Proof of Lemma 17. It is clear that map from Definition 16 is injective. We must verify
the following:

(A) The image of λ under the map from Definition 16 is an element of Π
P

(s)
n

.

(B) Entry-wise addition of inversion sequences is consistent with addition in the semi-

group cone(P
(s)
n ) ∩ Zn+1.

To show (A), note that it is clear that λ is at height k in Rn+1. Moreover, it is even

clear that (λ1, · · · , λn) ∈ k ·P(s)
n ∩ Zn, as i` < t < i`+1 and

et
st

>
et+1

st+1

imply that

` · st − et
k · st

6
` · st+1 − et+1

k · st+1

,

and if t = i`+1,
` · st − et
k · st

6
(`+ 1) · st+1 − et+1

k · st+1

is immediate from et+1 < st+1.
To verify that λ is in fact in Π

P
(s)
n

, we must show that neither of the following hold:

(i) (λ1, · · · , λn) ∈ (k − 1) ·P(s)
n ∩ Zn

(ii) λ = λ′ + v where (λ′1, · · · , λ′n) ∈ (k − 1) ·P(s)
n ∩ Zn and v is a vertex of P

(s)
n .

Note that (i) is impossible as we have λn = k · sn − en > (k − 1)sn because en < sn.
For (ii), suppose that we write λ = λ′ + v, where v = (0, 0, · · · , 0, sj+1, · · · , sn) with
0 6 j < n. There are two possible cases: j ∈ Asc(e) or j 6∈ Asc(e). If j ∈ Asc(e), then
ej
sj
<
ej+1

sj+1

. Consider λ′ and suppose that

(λ′1, · · · , λ′n) = (λ1, · · · , λj, λj+1 − sj+1, · · · , λn − sn) ∈ (k − 1) ·P(s)
n ∩ Zn.

Given that λj = (p− 1) · sj − ej and λj+1 = p · sj+1 − ej+1 where j is the pth ascent ip,

(p− 1) · sj − ej
(k − 1)sj

6
p · sj+1 − ej+1 − sj+1

(k − 1)sj+1

=
(p− 1) · sj+1 − ej+1

(k − 1)sj+1

.

However, this is equivalent to
ej
sj

>
ej+1

sj+1

so this cannot occur. If j 6∈ Asc(e), say that

j > ip, the location of the pth ascent ip, so λj = p · sj − ej and λj+1 = p · sj+1 − ej+1. For

(λ′1, · · · , λ′n) ∈ (k − 1) ·P(s)
n ∩ Zn,

p · sj − ej
(k − 1)sj

6
p · sj+1 − ej+1 − sj+1

(k − 1)sj+1

=
(p− 1) · sj+1 − ej+1

(k − 1)sj+1

.

This inequality is equivalent to
ej
sj

>
ej+1

sj+1

+ 1 which is a contradiction to ej < sj.
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Therefore, we have shown (A). Note that this is sufficient for showing the bijection,
as the map is clearly injective and the sets are of the same cardinality by previous work
of Savage and Schuster [SS12]. That said, the bijection can also be realized through the
fact that the map from Lemma 17 can clearly be reversed. In particular, suppose that
λ = (λ1, · · · , λn, k) ∈ Π

P
(s)
n

, we get our inversion sequence e by

ei = −λi mod si.

Note that this inversion sequence will have precisely k ascents and moreover the pth
ascent in the sequence will occur at i precisely when (p − 1) · si 6 λi < p · si and
p · si+1 6 λi+1 < (p + 1) · si+1 for some 1 6 p 6 k − 1. This is the exact reversal of the
constructive map from inversion sequences to lattice points is Π

P
(s)
n

.

To show (B), suppose that f ∈ I
(s)
n,k−1 and g ∈ I

(s)
n,1 such that f + g = e ∈ I

(s)
n,k. So

f = (f1, . . . , fj−1, fj, . . . , fh, fh+1, . . . , fn)

and
g = (0, . . . , 0, gj, . . . , gh, 0, . . . , 0)

and
e = (f1, . . . , fj−1, (fj + gj) mod sj, . . . , (fh + gh) mod sh, fh+1, . . . , fn).

Consider the corresponding lattice points for f and g in Π
P

(s)
n

:

λf = (λf1
, . . . , λfj−1

, λfj
, . . . , λfh

, λfh+1
, . . . , λfn

, k − 1)

and
λg = (0, . . . , 0, λgj

, . . . , λgh
, sh+1, . . . , sn, 1).

Adding these lattice points in the semigroup yields

λf + λg = (λf1
, . . . , λfj−1

, λfj
+ λgj

, . . . , λfh
+ λgh

, λfh+1
+ sh+1, . . . , λfn

+ sn, k).

We have two possible cases: either λf + λg ∈ Π
P

(s)
n

or λf + λg 6∈ Π
P

(s)
n

.

If λf +λg ∈ Π
P

(s)
n

, we consider the reverse map which will give the inversion sequence

(. . . , λfj−1
mod sj−1,−(λfj

+ λgj
) mod sj , . . . ,−(λfh

+ λgh
) mod sh,−(λfh+1

+ sh+1) mod sh+1, . . .)

and this inversion sequence is precisely e = f + g, as desired.
Now suppose that λf +λg 6∈ Π

P
(s)
n

. Note that we can express λf +λg = λ′+
∑n

i=1 αivi
where λ′ ∈ Π

P
(s)
n

, there is at least one αi ∈ Z>1, and λ′ is at height r < k. Additionally,

given that vi = (0, . . . , 0, si, si+1, . . . , sn), it is clear that λf + λg maps to the same
inversion sequence as λ′ by definition of the inverse map. This implies that e maps to λ′

and thus e ∈ I
(s)
n,r for r < k, which contradicts our initial assumption.
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Remark 19. We should note that in the proof about the compatibility of addition, we
consider only inversion sequences f ∈ I

(s)
n,k−1 and g ∈ I

(s)
n,1 such that f + g ∈ I

(s)
n,k, as this

is the requirement for staying inside the fundamental parallelepiped. However, this need
not always be the case. If f + g ∈ I

(s)
n,` for some ` 6 k − 1, the addition of the sequences

is still consistent with addition in the semigroup, but this occurrence is precisely when
λf + λg 6∈ Π

P
(s)
n

. In particular, λf + λg = λf+g + (0, · · · , 0, k − `), which lies in the
equivalence class λf+g, but is not the representative in Π

P
(s)
n

.

With this understanding of the arithmetic structure of I
(s)
n , we can now give a proof

of the characterization.

Proof of Theorem 4. Consider the semigroup algebra k[P
(s)
n ] := k[cone(P

(s)
n )∩Zn+1]. We

recall that k[P
(s)
n ] is level if for some homogeneous system of parameters θ1, . . . , θd of

k[P
(s)
n ], all the elements of the graded vector space soc(k[P

(s)
n ]/(θ1, . . . , θd)) are of the

same degree. Notice that P
(s)
n is a simplex and let Π

P
(s)
n

denote the (half-open) funda-

mental parallelepiped. Note that dim(k[P
(s)
n ]) = n + 1 and k[P

(s)
n ] has a natural ho-

mogeneous system of parameters, namely the monomials corresponding to the vertices,
which we denote by θ0, θ1, . . . , θn. The quotient k[P

(s)
n ]/(θ0, · · · , θn) contains precisely the

equivalence classes of lattice points in Π
P

(s)
n

. Let m1, · · · ,mα ∈ Π
P

(s)
n

be the elements at

height 1. The socle soc(k[P
(s)
n ]/(θ0, · · · , θn)) are precisely the lattice points in λ ∈ Π

P
(s)
n

such that λ + mi 6∈ Π
P

(s)
n

for all mi by Lemma 15 and Theorem 6. By Lemma 17, we
know that semigroup addition corresponds to entry-wise addition on inversion sequences.
Subsequently, this condition on inversion sequences is precisely the condition that only
elements of highest degree in Π

P
(s)
n

are in soc((k[P
(s)
n ]/(θ0, · · · , θn)), which then must

contain elements that are all the same degree.

4.2 Consequences of Theorem 4

First consider the following resulting inequalities given for the coefficients of s-Eulerian
polynomials.

Corollary 20. Let s = (s1, s2, . . . , sn) be a sequence such that P
(s)
n is level. Then the

coefficients of the s-Eulerian polynomial h∗(P
(s)
n , z) = 1 + h∗1z + · · · + h∗rz

r satisfy the
inequalities h∗i 6 h∗jh

∗
i+j for all pairs i and j such that h∗i+j > 0.

These inequalities follow from [Sta96, Chapter III. Proposition 3.3] and provide addi-
tional information of the behavior of s-Eulerian polynomials to complement the known
log-concave inequalities from [SV15]. It is worth noting that these inequalities need not
be satisfied for arbitrary s. For example, the sequence s = (2, 3, 5, 9) does not give rise

to a level polytope as there exists no element f ∈ I
(2,3,5,9)
4,1 such that f + e ∈ I

(2,3,5,9)
4,4 for

the inversion sequence e = (1, 1, 2, 4) ∈ I
(2,3,5,9)
4,3 . Moreover,

h∗(P
(2,3,5,9)
4 , z) = 1 + 48z + 154z2 + 66z3 + z4
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and we notice that h∗3 > h∗1h
∗
4.

In addition to the Gorenstein characterization given in Section 3, we also arrive at a
different characterization by considering the following restriction of Theorem 4.

Corollary 21. Let s ∈ Zn>1 and let r = max{asc(e) : e ∈ I
(s)
n }. Then P

(s)
n is Gorenstein

if and only if for any e ∈ I
(s)
n,k with 1 6 k < r there exists some e′ ∈ I

(s)
n,1 such that

(e+ e′) ∈ I
(s)
n,k+1 and |In,r| = 1.

Proof. P
(s)
n is Gorenstein if and only if P

(s)
n is level with exactly one canonical module

generator. The canonical module of k[P
(s)
n ] for P

(s)
n level has |I(s)n,r| generators, as this is

the leading coefficient of the h∗ polynomial of P
(s)
n .

We should note that in general Corollary 21 is less computationally useful than The-
orem 2. However, it is unexpected that conditions from Corollary 21 and Theorem 2 are
equivalent when there exists an index i such that gcd(si−1, si) = 1. Moreover, Corollary
21 has the added benefit of providing a characterization with no explicit restrictions on s.

In the case of s ∈ Z2
>1, the conditions of Theorem 4 must always be satisfied. Therefore,

we have the following result.

Corollary 22. The s-lecture hall polytope P
(s1,s2)
2 is level for any s = (s1, s2).

Remark 23. By [HY18b, Proposition 1.2], every lattice polygon is level. We state this
result only to illustrate that one can explicitly use Theorem 4 to determine levelness,
especially in small dimensions.

The characterization from Theorem 4 allows for the construction of new level s-lecture
hall polytopes through the following corollaries.

Corollary 24. The s-lecture hall polytope P
(s)
n is level if and only if the s-lecture hall

polytope P
(1,s)
n+1 is level.

Proof. We can express any inversion sequence e ∈ I
(1,s)
n+1 as

e = (0, e′)

where e′ ∈ I
(s)
n . Thus, e satisfies the conditions of Theorem 4 exactly when e′ satisfies

the conditions.

Remark 25. One also has that P
(s)
n is level if and only if P

(s,1)
n+1 is level by applying an

analogous argument. Corollary 24 can also be directly proven, as P
(1,s)
n+1 is the lattice

pyramid over P
(s)
n , which is level if and only if P

(s)
n is level.

Corollary 26. If both P
(s)
n and P

(t)
m are level, then P

(s,1,t)
n+m+1 is level.

Proof. Any inversion sequence e ∈ I
(s,1,t)
n+m+1 can expressed as

e = (e1, 0, e2)

where e1 ∈ I
(s)
n and e2 ∈ I

(t)
m . Subsequently, e satisfies the conditions of Theorem 4 when

e1 and e2 both satisfy the conditions of Theorem 4.
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Remark 27. s-lecture hall polytopes similar to the ones in Corollary 24 and 26 have been
studied, e.g., in [LS19]. In [LS19, Theorem 4.3], the authors show that in every dimension

n > 3, there is an s-lecture hall polytope P
(s)
n with s = (1, . . . , 1, a, 1, . . . , 1, b, 1 . . . , 1)

with k1 > 0 many leading, k2 > 1 many intermediate, and k3 > 0 many trailing 1’s such
that the Ehrhart polynomial i(P

(s)
n , t) has at least one negative coefficient.

Remark 28. It is worth noting that by combining Corollary 22 and Corollary 26 we
can create an infinite family of level s-lecture hall polytopes of arbitrary dimension. In
particular, P

(s)
n is level when s is any sequence satisfying si = 1 when i = 0 mod 3.

5 Concluding remarks and future directions

There are two immediate avenues to continue this work, namely providing a more geo-
metric classification of the Gorenstein property in the case gcd(si−1, si) > 2 for all i and
using the levelness characterization to produce more tractable results in special cases.

With regards to the Gorenstein characterization, extensive computational evidence
— using the Normaliz software [BIR+] — suggests that gcd(si, si+1) = 1 may not be
necessary. We have the following conjecture:

Conjecture 29. Let s ∈ Zn>1 be any sequence. The polytope P
(s)
n is Gorenstein if and

only if for all j > 2

gcd(sj−1, sj)

sj−1
+

j−1∑
k=1

gcd(sk−1, sk)

sk−1sk
and

gcd(sn−j+2, sj)

sn−j+1

+

j−1∑
k=1

gcd(sn−k+2, sn−k+1)

sn−k+2sn−k+1

are integers where s0 = sn+1 = 1.

Unfortunately, the condition gcd(si−1, si) = 1 for some i is necessary for our current

method of proof. It is worth noting that examples of Gorenstein P
(s)
n with the property

that gcd(si−1, si) > 2 seem to be rare. In fact, most examples are well structured so
that reductions can be made to utilize the Theorem 2. For example, the sequence s =
(2, 4, . . . , 2n) produces a Gorenstein polytope and satisfies the condition of Conjecture 29.

However, we can also realize P
(2,4,...,2n)
n = 2 · P(1,2,...,n)

n , and P
(1,2,...,n)
n is Gorenstein by

the classification and it is easy to see that h∗n−1(P
(1,2,...,n)
n ) 6= 0 and h∗n(P

(1,2,...,n)
n ) = 0.

These conditions together with results in [DNH97] all imply that P
(2,4,...,2n)
n must be a

Gorenstein polytope as well. In fact, we have not found an example of a Gorenstein P
(s)
n

with gcd(si−1, si) > 2 that cannot alternatively be shown to be Gorenstein in a similar
way.

Using the levelness characterization to produce more tractable results in special cases
may prove fruitful. Based on experimental evidence, we have the following conjecture for
levelness in a large family of s-lecture hall polytopes:

Conjecture 30. Let s ∈ Zn>1 be a sequence such that there exists some c ∈ Zn satisfying

cjsj−1 = cj−1sj + gcd(sj−1, sj)

for j > 1 with c1 = 1. Then P
(s)
n is level.
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This conjecture, if true, implies that C(s)n a Gorenstein cone is sufficient for P
(s)
n to be

level. However, it should be noted that the characterization, though more efficient than
explicitly computing the generators of the canonical module, can often be unwieldy for
complicated computations. It may, in fact, be more effective to produce an alternative
representation of the level property, perhaps in terms of local cohomology.

An additional future direction is to consider levelness in s-lecture hall cones. There is
no canonical choice of grading for the s-lecture hall cones as there is in the polytopes and
the different gradings have different computational advantages (see [BBK+15, Ols18]).
One must choose a grading before approaching this problem. Preliminary computations
with respect to certain gradings suggests that (non-Gorenstein) level s-lecture hall cones
are quite rare.
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