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Abstract

Given a finite set X and a function f : X → X, we define the degree of non-

invertibility of f to be deg(f) =
1

|X|
∑
x∈X
|f−1(f(x))|. This is a natural measure of

how far the function f is from being bijective. We compute the degrees of noninvert-
ibility of some specific discrete dynamical systems, including the Carolina solitaire
map, iterates of the bubble sort map acting on permutations, bubble sort acting
on multiset permutations, and a map that we call “nibble sort.” We also obtain
estimates for the degrees of noninvertibility of West’s stack-sorting map and the
Bulgarian solitaire map. We then turn our attention to arbitrary functions and
their iterates. In order to compare the degree of noninvertibility of an arbitrary
function f : X → X with that of its iterate fk, we prove that

max
f :X→X
|X|=n

deg(fk)

deg(f)γ
= Θ(n1−1/2

k−1
)

for every real number γ > 2 − 1/2k−1. We end with several conjectures and open
problems.
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1 Introduction

Functions between finite sets play a fundamental role in classical enumerative and alge-
braic combinatorics, as they are often used to transfer combinatorial information from
one set of objects to another; such functions are typically bijective. A different branch
of combinatorics studies the iteration of maps f : X → X, where X is some finite set;
this is the field of combinatorial dynamics. In the spirit of combinatorial dynamics, but
with relevance to enumerative combinatorics, we introduce and explore a natural way of
measuring how far a map is from being injective. We state the definition for arbitrary
maps between finite sets, but we will focus our attention in most of the article on discrete
dynamical systems. In this case, we are actually measuring how far the function is from
being bijective.

Definition 1. Let X and Y be finite sets, and let f : X → Y be a function. The degree
of noninjectivity of f is the quantity

deg(f) =
1

|X|
∑
x∈X

|f−1(f(x))|.

When X = Y , we call deg(f) the degree of noninvertibility of f . We often write

deg(f : X → Y )

when we wish to explicitly specify the domain X and codomain Y .

It is straightforward to verify that

deg(f) =
1

|X|
∑
y∈Y

|f−1(y)|2;

this is the formulation that we will use in the remainder of the article. For brevity, we
will often simply call deg(f) the “degree” of f . For a function f : X → Y , we necessarily
have 1 6 deg(f) 6 |X|. The lower bound is attained if and only if f is injective, and
the upper bound is attained if and only if f is a constant function. More generally, the
degree of a k-to-1 map is precisely k. Notice that |X| deg(f) is the number of pairs
(x, x′) ∈ X ×X such that f(x) = f(x′). Equivalently, if x is chosen randomly from the
uniform distribution on X, then deg(f) is the expected number of elements x′ ∈ X such
that f(x′) = f(x). If we define a probability distribution ν on X by ν(x) = |f−1(x)|/|X|,
then log(|X|/ deg(f)) is the Rényi entropy of ν of order 2. The quantity deg(f)− 1 was
also termed the “coefficient of coalescence” of f in [1].

In Section 2, we analyze the degrees of some specific families of discrete dynamical
systems of combinatorial interest. The first types of systems are “sorting maps” that
act on permutations of length n; these are the bubble sort map, the (West) stack-sorting
map, and a map that we call “nibble sort” (which swaps the first pair of adjacent entries
in a nonidentity permutation that are in decreasing order). We also consider analogues
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of bubble sort and nibble sort acting on words. Another type of system we consider is
defined via chip-firing on a cycle graph and can be interpreted as a dynamical system on
the set of binary strings of length n. Those last two types of systems act on partitions of
a fixed positive integer n; these are the Bulgarian solitaire map and its close relative, the
Carolina solitaire map.

Section 3 focuses on comparing deg(f) with deg(fk), where fk denotes the kth iter-
ate of f . The original motivation for doing this comes from a desire to show that the
submultiplicativity condition deg(f ◦ g) 6 deg(f) deg(g) can fail horribly, even in the
specific case in which f = g. For an explicit small example of this failure, consider the
map f : {1, 2, 3} → {1, 2, 3} given by f(1) = 2 and f(2) = f(3) = 3, which satisfies
deg(f) = 5/3 and deg(f 2) = 3. We will prove that for every fixed positive integer k and
real number γ > 2− 1/2k−1, we have

max
f :X→X
|X|=n

deg(fk)

deg(f)γ
= Θ(n1−1/2k−1

).

Setting k = γ = 2 shows that the ratio deg(f 2)/ deg(f)2 can be as big as Θ(
√
n) (but no

bigger).
We collect several open problems and conjectures in Section 4.
Before we proceed, let us mention the following more refined estimates for the degree,

which will be useful in the remainder of the article.

Lemma 2. If X and Y are finite sets and f : X → Y is a function, then

|X|
|f(X)|

6 deg(f) 6 max
y∈Y
|f−1(y)|.

Proof. The Cauchy-Schwarz inequality tells us that

deg(f) =
1

|X|
∑

y∈f(X)

|f−1(y)|2 > 1

|X|
1

|f(X)|

 ∑
y∈f(X)

|f−1(y)|

2

=
1

|X| |f(X)|
|X|2

=
|X|
|f(X)|

.

For the upper bound, let M = max
y∈Y
|f−1(y)|. We have

deg(f) =
1

|X|
∑
y∈Y

|f−1(y)|2 6 1

|X|
∑
y∈Y

|f−1(y)| ·M = M.

We also pause to relate our work to a natural equivalence relation on endofunctions
of a finite set. Given sets X, Y, Y ′, Z of the same cardinality, we say that two functions
f : X → Y and g : Y ′ → Z are pseudoconjugate if there exist bijections h : Y → Z
and h̃ : X → Y ′ such that h ◦ f = g ◦ h̃. This notion will appear in Sections 2.6,
where we will see that two combinatorially-defined maps nib : {0, 1}n → {0, 1}n and
χ : {0, 1}n → {0, 1}n are pseudoconjugate even though they are not actually conjugate.
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Proposition 3. Let X, Y, , Y ′, Z be sets of the same cardinality. Two functions f : X →
Y and g : Y ′ → Z are pseudoconjugates of each other if and only if for all k, the number
of elements of Y with k preimages under f equals the number of elements of Z with k
preimages under g.

Proof. First suppose f and g are pseudoconjugate, and let h : Y → Z and h̃ : X → Y ′ be
bijections such that h◦f = g ◦ h̃. For every y ∈ Y , we have |f−1(y)| = |h̃−1(g−1(h(y)))| =
|g−1(h(y))|. This implies that for all k, the number of elements of Y with k preimages
under f equals the number of elements of Z with k preimages under g.

To prove the converse, suppose that for all k, the number of elements of Y with k
preimages under f equals the number of elements of Z with k preimages under g. This
means that there exists a bijection h : Y → Z such that |f−1(y)| = |g−1(h(y))| for all
y ∈ Y . For each y ∈ Y , there is a bijection αy : f−1(y) → g−1(h(y)), so that f(x) = y

implies αy(x) ∈ g−1(h(y)) and g(αy(x)) = h(y) = h(f(x)). Now simply define h̃ : X → Y ′

by h̃(x) = αf(x)(x) for all x ∈ X. We readily check that g(h̃(x)) = g(αf(x)(x)) = h(f(x))
for every x ∈ X, so f and g are pseudoconjugate.

It is immediate from the previous proposition that two pseudoconjugate maps must
have the same degree.

2 Specific Discrete Dynamical Systems

In this section, we consider specific families of discrete dynamical systems that are indexed
by positive integers. In order to define these maps, we recall the following standard
definitions.

A permutation is an ordering of a finite set of positive integers. We view permutations
as words. Let Sn be the set of permutations of the set [n] := {1, . . . , n}. The normalization
of a permutation π = π1 · · · πn is the permutation in Sn obtained by replacing the ith-
smallest entry in π with i for all i ∈ [n]. A descent of a permutation π = π1 · · · πn is an
index i ∈ [n − 1] such that πi > πi+1. Let Des(π) be the set of descents of π. Given a
tuple of positive integers a = (a1, . . . , ar), we define Wa to be the set of all words over
the alphabet [r] that contain exactly ai copies of the letter i for all i. A composition of a
positive integer n is a tuple c = (c1, . . . , c`) of positive integers that sum to n. The entries
c1, . . . , c` are called the parts of c. A partition of a positive integer n is a composition of n
whose parts appear in nonincreasing order. Let Comp(n) and Part(n) denote, respectively,
the set of compositions of n and the set of partitions of n.

2.1 Bubble Sort and Its Iterates

Suppose π is a permutation of length n and i ∈ [n − 1]. If i ∈ Des(π), let ti(π) be the
permutation obtained from π by swapping the ith and (i+ 1)st entries in π. If i 6∈ Des(π),
let ti(π) = π. The operators t1, . . . , tn−1 play an important role in algebraic combinatorics
because they generate the 0-Hecke algebra of the symmetric group Sn [12].
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Let B(π) = tn−1 ◦ tn−2 ◦ · · · ◦ t1(π). The function B is called the bubble sort map. An
alternative recursive description of B is as follows. First, B sends the empty permutation
to itself. If π is a permutation with largest entry m, then we can write π = LmR for some
permutations L and R. Then B(π) = B(L)Rm. For example,

B(416352) = B(41) 3526 = 143526.

By a slight abuse of notation, we will use the same letter B to denote the restriction
of B to Sn, which we can view as a discrete dynamical system on Sn. We refer the
interested reader to [4] and [16, pages 106–110] for additional information and interesting
properties of the bubble sort map. For instance, Knuth reports that for k 6 n − 1, the
number of permutations of length n that are completely sorted after k iterations of B is
(k + 1)n−k−1(k + 1)!; from our point of view, this is a formula for the cardinality of the
k-fold preimage of the identity permutation.

For every fixed positive integer k, we will give an exact formula for the degree of
the iterate Bk : Sn → Sn. We first need the following preliminary definitions. Given a
permutation π = π1 · · · πn ∈ Sn, let ej(π) be the number of entries of π that appear to
the left of j and are bigger than j. The tuple (e1(π), . . . , en(π)) is called the inversion
table of π. For example, the inversion tables of 416352 and 143526 are (1, 4, 2, 0, 1, 0)
and (0, 3, 1, 0, 0, 0), respectively. Let In denote the set of tuples (e1, . . . , en) such that
0 6 ei 6 n− i for all i. It is not difficult to show that the map π 7→ (e1(π), . . . , en(π)) is
a bijection from Sn to In. A left-to-right maximum of π is an entry j such that ej(π) = 0.
Let lmax(π) denote the number of left-to-right maxima of π. The tail length of π, denoted
tl(π), is the largest integer ` ∈ {0, . . . , n} such that πi = i for all i ∈ {n − ` + 1, . . . , n}.
For example, tl(23145) = 2, tl(23154) = 0, and tl(12345) = 5.

Lemma 4. Let k be a nonnegative integer. For every permutation π, we have

|B−k(π)| =

{
0, if tl(π) < k;

k!(k + 1)lmax(π)−k, if tl(π) > k.

Proof. It is known (and straightforward to prove using the recursive description mentioned
above) that bubble sort has the effect of decreasing each nonzero entry in the inversion
table of a permutation by 1. In other words, ej(B(σ)) = max{0, ej(σ)− 1} for all j. This
implies that e`(B

k(σ)) = 0 for each ` ∈ {n − k + 1, . . . , n} and e`(B
k(σ)) 6 n − k − `

for each ` ∈ {1, . . . , n − k}. These two conditions are equivalent to the statement that
tl(Bk(σ)) > k (indeed, the second condition says that (e1(σ), . . . , en−k(σ)) is the inversion
table of a permutation in Sn−k). Thus, permutations with tail lengths less than k have
0 preimages under Bk. Now suppose tl(π) > k. Choosing σ ∈ B−k(π) is equivalent
to choosing the inversion sequence of σ. To do this, we must first increase each of the
nonzero entries in (e1(π), . . . , en−k(π)) by k. Next, we must increase each of the lmax(π)−k
entries in (e1(π), . . . , en−k(π)) that are equal to 0 by some integer in {0, . . . , k}. There are
(k+ 1)lmax(π)−k ways to do this. Finally, for each ` ∈ {n− k+ 1, . . . , n}, we must increase
the entry e`(π) (which is 0) by some integer in {0, . . . , n− `}. The total number of ways
to do this for all ` ∈ {n− k + 1, . . . , n} is k!.
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Theorem 5. For every positive integer k, we have

deg(Bk : Sn → Sn) =
(n+ k2 + k)!(k!)2

n!(k2 + 2k)!
.

Proof. A well-known result due to Rényi [19] states that the number of elements of Sn

with ` left-to-right maxima is given by the unsigned Stirling number of the first kind

[
n
`

]
.

These numbers have the generating function

n∑
`=0

[
n
`

]
x` = x(x+ 1)(x+ 2) · · · (x+ n− 1).

Given π ∈ Sn with tl(π) > k, we can write π = τ(n − k + 1)(n − k + 2) · · ·n for some
τ ∈ Sn−k with lmax(τ) = lmax(π)− k. Invoking Lemma 4, we find that

deg(Bk : Sn → Sn) =
1

n!

∑
π∈Sn

|B−k(π)|2 =
1

n!

∑
π∈Sn
tl(π)>k

(k!)2((k + 1)2)lmax(π)−k

=
1

n!

∑
τ∈Sn−k

(k!)2((k + 1)2)lmax(τ) =
(k!)2

n!

n−k∑
`=0

[
n− k
`

]
((k + 1)2)`

=
(k!)2

n!
(k+1)2((k+1)2+1)((k+1)2+2) · · · ((k+1)2+n−k−1) =

(n+ k2 + k)!(k!)2

n!(k2 + 2k)!
.

When k = 1, Theorem 5 tells us that the degree of B : Sn → Sn is
(n+ 1)(n+ 2)

6
.

There is an alternative way of generalizing this result that makes use of the probabilistic
interpretation of the degree mentioned at the Section 1. Namely, the bubble sort map is
associated with a random variable Un on Sn defined by Un(π) = |B−1(B(π))|. The degree
deg(B : Sn → Sn) is just the expected value of Un. The following theorem computes all
of the moments of this random variable.

Theorem 6. For m > 1, the mth moment of Un (with respect to the uniform distribution
on Sn) is given by

1

n!

∑
π∈Sn

|B−1(B(π))|m =
n−1∏
j=1

2m+1 + n− j − 1

n− j + 1
.

Proof. For each j ∈ [n − 1], define a function Vj : {0, . . . , n − j} → R by Vj(t) = 2 if
t ∈ {0, 1} and Vj(t) = 1 otherwise. As mentioned in the proof of Lemma 4, the bubble sort
map has the effect of decreasing by 1 each of the positive entries in the inversion table
of a permutation. It follows that for π ∈ Sn, we have |B−1(B(π))| =

∏n−1
j=1 Vj(ej(π)).

Choosing π ∈ Sn uniformly at random is equivalent to choosing the entries ej = ej(π) ∈

the electronic journal of combinatorics 27(3) (2020), #P3.51 6



{0, . . . , n− j} (for j ∈ [n− 1]) independently and uniformly at random (note that en(π)
is always 0). Therefore, the expected value of Un(π)m is the same as the expected value
of
∏n−1

j=1 Vj(ej)
m. The expected value of Vj(ej)

m is

2

n− j + 1
· 2m +

n− j − 1

n− j + 1
· 1m =

2m+1 + n− j − 1

n− j + 1
,

so the desired result follows from the fact that e1, . . . , en−1 are chosen independently.

2.2 Bubble Sort for Words

Throughout this subsection, fix a tuple a = (a1, . . . , ar) of positive integers, where r > 2.
We are interested in the obvious analogue of the bubble sort map acting on Wa. Recall
that this is the set of words with exactly ai copies of the letter i for all i (these are
also called permutations of the multiset {1a1 , . . . , rar}). Given a word w = w1 · · ·w` over
the alphabet of positive integers and i ∈ [` − 1] with wi > wi+1, let ti(w) be the word
obtained by swapping the positions of wi and wi+1 in w. If wi 6 wi+1, let ti(w) = w. Let
B(w) = t`−1 ◦ t`−2 ◦ · · · ◦ t1(w). We can consider this generalization of bubble sort as a
discrete dynamical system on Wa.

Theorem 7. The degree of B :Wa →Wa is given by

deg(B :Wa →Wa) =
r−1∏
j=1

(
2

aj
aj+1 + aj+2 + · · ·+ ar + 1

+ 1

)
.

Proof. The proof is by induction on the length r of the tuple a = (a1, . . . , ar). Let us first
assume r = 2. Every word in W(a1,a2) can be written in the form 1γ021γ12 · · · 21γa2 , where
(γ0, γ1, . . . , γa2) is a tuple of nonnegative integers that sum to a1. In fact, this establishes
a bijection between W(a1,a2) and the set of (a2 + 1)-tuples of nonnegative integers that
sum to a1. Bubble sort transforms the word corresponding to the tuple (γ0, γ1, . . . , γa2)
to the word corresponding to the tuple (γ0 + γ1, γ2, . . . , γa2 , 0). The number of preimages
under B of the word corresponding to (γ0 + γ1, γ2, . . . , γa2 , 0) is γ0 + γ1 + 1 (since this is
the number of ways to write γ0 + γ1 as a sum of two nonnegative integers). Now let γi be
the average value of γi over W(a1,a2). By symmetry, γi is independent of i. We know that∑a2

i=0 γi = a1, so γi =
a1

a2 + 1
. It follows that deg(B : W(a1,a2) → W(a1,a2)), which is the

average value of γ1 + γ2 + 1 over W(a1,a2), is 2
a1

a2 + 1
+ 1.

We now assume a = (a1, . . . , ar), where r > 3. Let a′ = (a1, . . . , ar−2, ar−1 + ar)
and a′′ = (ar−1, ar). There is a natural projection ψ : Wa → Wa′ obtained by replacing
each occurrence of the letter r in a word with the letter r − 1. We also have a map
ϕ : Wa → Wa′′ that decreases each letter in a word by r − 2 and then deletes all of the
nonpositive letters. For example, with a = (2, 1, 2, 3), we have

ψ(14234413) = 13233313 and ϕ(14234413) = 21221.
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It is straightforward to check from these definitions that ψ and ϕ commute with the
action of bubble sort. That is, (ψ(B(w)), ϕ(B(w))) = (B(ψ(w)),B(ϕ(w))). Moreover,
the map Wa →Wa′ ×Wa′′ given by w 7→ (ψ(w), ϕ(w)) is a bijection. This means that if
(ψ(w), ϕ(w)) = (w′, w′′), then |B−1(w)| = |B−1(w′)| · |B−1(w′′)|. Consequently,

deg(B :Wa →Wa) =
1

|Wa|
∑
w∈Wa

|B−1(w)|2

=
1

|Wa′ |
1

|Wa′′ |
∑

(w′,w′′)∈Wa′×Wa′′

|B−1(w′)|2|B−1(w′′)|2

= deg(B :Wa′ →Wa′) deg(B :Wa′′ →Wa′′).

We know from the r = 2 case that deg(B : Wa′′ → Wa′′) = 2
ar−1
ar + 1

+ 1, so the desired

result follows by induction on r.

2.3 The Stack-Sorting Map

The stack-sorting map was originally defined in West’s Ph.D. dissertation [21] as a de-
terministic variant of a “stack-sorting algorithm” introduced in Knuth’s book The Art of
Computer Programming [15]. It has a recursive definition very similar to the that of the
bubble sort map. First, s sends the empty permutation to itself. If π is a permutation
with largest entry m, then we can write π = LmR for some permutations L and R. Then
s(π) = s(L)s(R)m. For example,

s(416352) = s(41) s(352) 6 = s(1) 4 s(3) s(2) 56 = 143256.

For each positive integer n, we can view s as a discrete dynamical system on Sn. We refer
the reader to [2, 3, 6, 8] and the references therein for more information about this map.

In [6–8], the first author found methods for computing the number of preimages of
an arbitrary permutation under the stack-sorting map. Unfortunately, it seems quite
difficult to use these methods in order to find an explicit formula for deg(s : Sn → Sn).
However, we will still be able to show that deg(s : Sn → Sn) grows exponentially in n.
This is in stark contrast to Theorem 5, which shows that for each fixed k, the degree of
Bk : Sn → Sn grows polynomially in n. Roughly speaking, this says that the stack-sorting
map is much further from being invertible than any iterate of the bubble sort map.

Theorem 8. The limit lim
n→∞

deg(s : Sn → Sn)1/n exists and satisfies

1.12462 6 lim
n→∞

deg(s : Sn → Sn)1/n 6 4.

Proof. For convenience, let dn = deg(s : Sn → Sn). Note that n!dn is the number of
pairs (π, π′) ∈ Sn × Sn such that s(π) = s(π′). Suppose π, π′ ∈ Sm−1 and σ, σ′ ∈ Sn−1
are such that s(π) = s(π′) and s(σ) = s(σ′). Let A be an (m − 1)-element subset of
{1, . . . ,m + n − 2}. Let π̃ and π̃′ be the permutations of A whose normalizations are π
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and π′, respectively. Let σ̃ and σ̃′ be the permutations of {1, . . . ,m + n − 2} \ A whose
normalizations are σ and σ′, respectively. We have s(π̃) = s(π̃′) and s(σ̃) = s(σ̃′), so

s(π̃(m+ n− 1)σ̃) = s(π̃)s(σ̃)(m+ n− 1) = s(π̃′)s(σ̃′)(m+ n− 1) = s(π̃′(m+ n− 1)σ̃′).

This shows that π̃(m+ n− 1)σ̃ and π̃′(m+ n− 1)σ̃′ are two elements of Sm+n−1 with the
same image under s. The map sending the tuple (π, π′, σ, σ′, A) to the pair (π̃(m + n −
1)σ̃, π̃′(m+ n− 1)σ̃′) is injective, so

((m− 1)!dm−1)((n− 1)!dn−1)

(
m+ n− 2

m− 1

)
6 (m+ n− 1)!dm+n−1.

Rearranging, this shows that

dm−1dn−1 6 (m+ n− 1)dm+n−1. (1)

We will make use of a generalization of Fekete’s lemma due to de Bruijn and Erdős [5],
which states that if a sequence of positive real numbers (am)m>1 satisfies aman 6 am+n

whenever 1/2 6 n/m 6 2, then lim
n→∞

a
1/n
n exists and equals sup

n>1
a
1/n
n . Now let an =

dn−1
n2

for

n > 8 and an = 0 for 1 6 n 6 7. It is not difficult to check that m2n2 > (m+n)2(m+n−1)
whenever m,n > 8 and 1/2 6 n/m 6 2. Therefore, it follows from (1) that

aman =
dm−1dn−1
m2n2

6
(m+ n− 1)dm+n−1

(m+ n)2(m+ n− 1)
= am+n

whenever m,n > 8 and 1/2 6 n/m 6 2. The inequality aman 6 am+n also certainly holds
whenever m or n is at most 7. According to the aforementioned generalization of Fekete’s
lemma, lim

n→∞
a
1/n
n exists and equals sup

n>1
a
1/n
n . It now follows from the definition of an that

lim
n→∞

d
1/n
n exists and equals sup

n>1
a
1/n
n . We can use a computer to verify that a

1/10
10 > 1.12462,

so this proves the lower bound in the theorem.
To prove the upper bound, we use the fact that |s−1(π)| 6 Cn for all π ∈ Sn, where

Cn =
1

n+ 1

(
2n

n

)
is the nth Catalan number (see Exercise 23 in [2, Chapter 8]). It follows

from Lemma 2 that deg(s : Sn → Sn) 6 Cn, so

lim
n→∞

deg(s : Sn → Sn)1/n 6 lim
n→∞

C1/n
n = 4.

2.4 Nibble Sort

Recall the definition of the maps ti : Sn → Sn from Section 2.1. In this section, we consider
the nibble sort map nib : Sn → Sn defined by nib(π) = tmin(Des(π))(π) if π 6= 123 · · ·n and
nib(123 · · ·n) = 123 · · ·n. In other words, if π ∈ Sn \{123 · · ·n} has initial descent i, then
nib(π) is the permutation obtained from π by swapping the entries πi and πi+1.
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In the previous two subsections, we found that deg(B : Sn → Sn) grows quadratically
in n while deg(s : Sn → Sn) grows exponentially in n. Since the map nib does not change
its input very much (it just nibbles a little bit), one might expect deg(nib : Sn → Sn)
to grow much slower than deg(B : Sn → Sn). In fact, deg(nib : Sn → Sn) approaches a
constant as n→∞.

Theorem 9. For every n > 1, we have

deg(nib : Sn → Sn) =
(n− 1)(n− 2)2 + n2

n!
+

n−2∑
k=1

k(k3 − k + 1)

(k + 2)!
.

Furthermore,
lim
n→∞

deg(nib : Sn → Sn) = 4e− 9 ≈ 1.87313.

Proof. We need to compute | nib−1(π)| for each π ∈ Sn. For this, we consider some cases.
The case in which π = 123 · · ·n is simple since

| nib−1(123 · · ·n)| = |{123 · · ·n}∪ {123 · · · (i− 1)(i+ 1)i(i+ 2) · · ·n : 1 6 i 6 n− 1}| = n.

If Des(π) = {n−1}, then nib−1(π) is the set of permutations obtained from π by swapping
the entries πi and πi+1 for some i ∈ [n−2]. There are precisely n−1 permutations π such
that Des(π) = {n−1}, and we have seen that each such permutation has n−2 preimages
under nib. In total, the cases π = 123 · · ·n and Des(π) = {n − 1} contribute the term
(n− 1)(n− 2)2 + n2

n!
to deg(nib : Sn → Sn).

Now fix k 6 n− 2. We are going to count permutations π ∈ Sn with min(Des(π)) = k
and πk < πk+2. This is equivalent to counting permutations whose first k+ 2 entries have
normalization 123 · · · (j−1)(j+1) · · · (k+1)j(k+2) for some j ∈ [k]. For each fixed j, the
probability that the first k+ 2 entries of a permutation chosen uniformly at random from

Sn have this normalization is
1

(k + 2)!
. Since there are k choices for j, the probability that

the first k+2 entries of a random permutation have one of these normalizations is
k

(k + 2)!
.

Therefore, the number of such permutations is
n!k

(k + 2)!
. For each such permutation π,

nib−1(π) is the set of permutations obtained from π by swapping the entries πi and πi+1

for some i ∈ [k − 1] ∪ {k + 1}; thus, | nib−1(π)| = k. This case gives a contribution of
k3

(k + 2)!
to deg(nib : Sn → Sn).

A probabilistic argument similar to the one used in the previous paragraph shows

that the number of permutations in Sn with smallest descent k is
n!k

(k + 1)!
(this is also

known: see OEIS sequence A092582 [18]). Therefore, the number of permutations π ∈ Sn
satisfying min(Des(π)) = k and πk > πk+2 is

n!k

(k + 1)!
− n!k

(k + 2)!
=
n!k(k + 1)

(k + 2)!
. For each
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such π, nib−1(π) is the set of permutations obtained from π by swapping the entries πi
and πi+1 for some i ∈ [k − 1]; thus, | nib−1(π)| = k − 1. This final case contributes
(k − 1)2k(k + 1)

(k + 2)!
to deg(nib : Sn → Sn).

Combining these contributions yields

deg(nib : Sn → Sn) =
(n− 1)(n− 2)2 + n2

n!
+

n−2∑
k=1

(
k3

(k + 2)!
+

(k − 1)2k(k + 1)

(k + 2)!

)

=
(n− 1)(n− 2)2 + n2

n!
+

n−2∑
k=1

k(k3 − k + 1)

(k + 2)!
.

Consequently,

lim
n→∞

deg(nib : Sn → Sn) =
∞∑
k=1

k(k3 − k + 1)

(k + 2)!
.

Using Mathematica (or by explicitly computing exponential generating functions of poly-

nomial sequences), one can check that
∞∑
k=1

k(k3 − k + 1)

(k + 2)!
= 4e− 9.

2.5 Nibble Sort for Binary Words

There is a natural analogue of the nibble sort map (which we also denote by nib) that acts
on binary strings. Namely, if w ∈ {0, 1}n, then nib(w) is obtained from w by replacing the
first occurrence of the factor 10 in w with 01. If no such factor exists, then nib(w) = w.
For example, nib(001110) = nib(010101) = 001101 and nib(00011) = 00011. In what
follows, we let 0α denote the word 00 · · · 0 consisting of α copies of the letter 0. The word
1α is defined similarly.

Theorem 10. For every n > 2, the degree of nib : {0, 1}n → {0, 1}n is 3/2.

Proof. Let Z be the set of words in {0, 1}n of the form 0γ11v for some integer γ > 1 and
some word v ∈ {0, 1}n−γ−2. Let Z ′ = Z ∪ {0n−11}. We claim that if a word w ∈ {0, 1}n
satisfies | nib−1(w)| > 2, then in fact | nib−1(w)| = 2 and | nib−1(w) ∩ Z ′| = 1.

To see this, we first consider the case in which one of the elements of nib−1(w) is w
itself. This means that w = 0α1β for some α, β > 0. The assumption that | nib−1(w)| > 2
tells us that w 6∈ {0n, 1n}, so α, β > 1. It is now straightforward to verify that nib−1(w) =
{w, 0α−1101β−1}. Since w is in Z ′ and 0α−1101β−1 is not, the claim is satisfied in this case.

Next, assume w 6∈ nib−1(w). Each preimage of w is obtained by changing an occurrence
of the factor 01 in w to 10. Thus, w must have at least two occurrences of 01, and must
therefore have the form w = x01y01z for some words x, y, z such that nib(x10y01z) =
nib(x01y10z) = w. Because nib(x01y10z) = w, the word x01y does not contain an
occurrence of the factor 10; hence, x = 0α−1 and y = 1β−1 for some α, β > 1. This
means that w = 0α−1011β−101z = 0α1β01z. Note that there is no way to obtain an
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element of nib−1(w) from w by changing an occurrence of 01 in z to 10. It follows that
nib−1(w) = {0α−1101β−101z, 0α1β10z}, and the claim is satisfied once again.

We have seen that every element of {0, 1}n has at most 2 preimages under nib, so we
can write {0, 1}n = A0 ∪ A1 ∪ A2, where Ai = {w ∈ {0, 1}n : | nib−1(w)| = i}. We obtain
a map A2 → Z ′ by sending each w ∈ A2 to the unique element of nib−1(w) ∩ Z ′. This
map is clearly injective; we claim that it is also surjective. Proving this claim amounts
to showing that nib(u) ∈ A2 for every u ∈ Z ′. If u is of the form 0γ1δ for some γ, δ > 1,
then nib(u) = nib(0γ−1101δ−1) = u, so nib(u) ∈ A2. If u is not of this form, then it must
be of the form 0γ1δ0x for some γ > 1, some δ > 2, and some word x. In this case, we
have nib(u) = 0γ1δ−101x = nib(0γ−1101δ−201x), so nib(u) ∈ A2 in this case as well. This
proves the surjectivity, so we now know that |A2| = |Z ′|.

Let Y be the set of all words of the form 0γ10v for some integer γ > 1 and some
v ∈ {0, 1}n−γ−2. There is an obvious bijection between Y and Z. Furthermore, Y ∪ Z ∪
{0n, 0n−11} is precisely the set of words in {0, 1}n that begin with the letter 0. It follows
that |Z| = 2n−2 − 1, so |A2| = |Z ′| = 2n−2. Because 2n = | nib−1({0, 1}n)| = |A1|+ 2|A2|,
we have |A1| = 2n−1. Finally,

deg(nib : {0, 1}n → {0, 1}n) =
1

2n
(
|A0| · 02 + |A1| · 12 + |A2| · 22

)
=

3

2
.

2.6 Binary Chip-Firing on a Cycle

In this subsection, we study a map on binary strings defined in terms of chip-firing on
a cycle graph with n + 1 vertices. In this set-up, there are two special vertices of the
cycle, called the source and the sink, that are adjacent to each other. Suppose we have a
configuration of chips sitting on the non-sink vertices of the cycle. Whenever a non-sink
vertex has at least 2 chips on it, the vertex fires 1 chip to each of its neighbors; whenever
a chip arrives at the sink, it disappears. Firings take place until no more firings are
possible; it is known that the order of firings does not affect the final configuration of
chips. Notice that a configuration is stable (i.e., no firings can occur) if and only if every
non-sink vertex has either 0 or 1 chip on it. By “unwrapping” the cycle, we can identify
the set of stable configurations with the set of configurations of chips on an n-vertex path
graph in which each vertex has either 0 or 1 chip. We imagine that the vertices of this
path are drawn on a horizontal line so that the source is the leftmost vertex. In this
set-up, whenever one of the endpoint vertices fires, it sends one of its chips to its neighbor
in the path, while another one of its chips disappears. We can naturally identify the set
of stable configurations with the set {0, 1}n of binary strings of length n.

Starting with a stable configuration of chips, we add 1 chip to the source vertex and
then repeatedly fire vertices until reaching another stable configuration. This procedure
defines a function χ : {0, 1}n → {0, 1}n. For example, suppose n = 3, and let us begin
with the string 110. We add 1 to the first entry to get 210. The leftmost vertex fires,
resulting in the configuration represented by 020. Now the second vertex fires, resulting
in the configuration represented by 101, which is stable. Thus, χ(110) = 101.

Theorem 11. For every n > 2, the degree of χ : {0, 1}n → {0, 1}n is 3/2.

the electronic journal of combinatorics 27(3) (2020), #P3.51 12



Proof. Let Ai = {w ∈ {0, 1}n : |χ−1(w)| = i}. A straightforward analysis of how a
binary string can have preimages under χ shows that every string can have at most 2
preimages. Furthermore, a string has exactly 2 preimages if and only if it is 1n−10 or it is
of the form 1k01x for some k ∈ {1, . . . , n − 2} and some x ∈ {0, 1}n−k−2. It follows that
|A2| = 1 +

∑n−2
k=1 2n−k−2 = 2n−2. We also have

2 · 2n−2 + 1 · |A1|+ 0 · |A0| =
∑

w∈{0,1}n
|χ−1(w)| = 2n,

so |A1| = 2n−1. Therefore

deg(χ : {0, 1}n → {0, 1}n) =
1

2n
(
|A0| · 02 + |A1| · 12 + |A2| · 22

)
=

3

2
.

Remark 12. The maps nib : {0, 1}n → {0, 1}n and χ : {0, 1}n → {0, 1}n have exactly the
same degrees, even though these maps are not conjugate. In other words, there does not
exist a bijection g : {0, 1}n → {0, 1}n such that nib ◦g = g ◦ χ. Indeed, the map nib has
fixed points while χ does not. However, these two maps are pseudoconjugate (recall the
terminology introduced at the end of Section 1). To see this, note that by Proposition 3,
it suffices to prove that for all k, the number of elements of {0, 1}n with k preimages
under nib equals the number of elements of {0, 1}n with k preimages under χ. The proofs
of Theorems 10 and 11 show that for each of the maps nib : {0, 1}n → {0, 1}n and
χ : {0, 1}n → {0, 1}n, there are 2n−1 elements of {0, 1}n with 1 preimage, 2n−2 elements
of {0, 1}n with 2 preimages, and no elements of {0, 1}n with more than 2 preimages.

2.7 Bulgarian and Carolina Solitaire

Bulgarian solitaire is a function B that sends partitions of n to partitions n. It was
introduced around 1980 and has been studied extensively ever since because of its many
fascinating dynamical properties (see [9, 11, 13, 14] and the references therein). Given a
partition λ = (λ1, . . . , λ`) of n, we define B(λ) to be the partition obtained by putting
the numbers `, λ1−1, . . . , λ`−1 in nonincreasing order and deleting any 0’s. For example,
B(8, 3, 3, 1, 1) = (7, 5, 2, 2).

Carolina solitaire, a variant of Bulgarian solitaire introduced in [11] and studied further
in [14,20], is a map that sends compositions of n to compositions of n. Given a composition
c = (c1, . . . , c`) of n, we define C (c) to be the composition obtained by deleting all of the
0’s from the tuple (`, c1 − 1, . . . , c` − 1). For example, C (3, 1, 3, 7, 1, 8) = (6, 2, 2, 6, 7).

It appears that computing deg(B : Part(n) → Part(n)) exactly, or even asymptot-
ically, is quite difficult. By contrast, we will compute deg(C : Comp(n) → Comp(n))
exactly.

Theorem 13. We have lim inf
n→∞

deg(B : Part(n) → Part(n)) > 2. For every positive

integer n, we have

deg(B : Part(n)→ Part(n)) 6

1 +
√

8
3
n+ 1

2

 .
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Proof. Consider a partition λ = (λ1, . . . , λ`) of n. It is straightforward to check that
|B−1(λ)| is the number of distinct elements of the list λ1, . . . , λ` that are at least `−1. The
rank of a partition λ = (λ1, . . . , λ`) is defined to be λ1 − `. Thus, the image B(Part(n))
consists of the partitions of n with rank at least −1 (these were enumerated in [14]).
Considering the involution of Part(n) that sends a partition to its conjugate, we see that
for each integer r, the number of partitions of n with rank r is equal to the number of
partitions of n with rank −r. In addition, the main result in [10] shows that the number
of partitions of n with rank −1 or 0 is o(|Part(n)|). It follows that |B(Part(n))| ∼
1

2
|Part(n)| as n→∞. The first statement in the theorem now follows from Lemma 2.

To prove the desired upper bound, let us fix a positive integer u. Let N be the
smallest positive integer such that there exists a partition λ = (λ1, . . . , λ`) of N with
|B−1(λ)| > u. We now invoke the description of |B−1(λ)| mentioned in the previous
paragraph. If any of the parts of λ are at most ` − 2, then we can delete these parts to
obtain a new partition λ̃ of an integer Ñ with |B−1(λ̃)| > u and Ñ < N . This contradicts
the minimality of N , so we must have λ` > ` − 1. We may now assume that ` = u and
that all of the parts of λ are distinct. Indeed, if this were not the case, then we could
again delete a part of λ to obtain a new partition of an integer smaller than N with at
least u preimages under B. It follows that λi > λ` + ` − i > 2` − i − 1 for all i. Thus,

N = λ1 + · · ·+λ` > (2`−2)+(2`−3)+ · · ·+(`−1) = 3
`(`− 1)

2
= 3

u(u− 1)

2
. This shows

that for every positive integer n, max
λ∈Part(n)

|B−1(λ)| 6 wn, where wn is the largest integer

such that 3
wn(wn − 1)

2
6 n. It is straightforward to verify that wn =

1 +
√

8
3
n+ 1

2

,

so the desired result now follows from Lemma 2

At the moment, we do not see a way to improve the estimates for deg(B : Part(n)→
Part(n)) in the previous theorem. However, we computed |B−1(B(λ))| for 100 random
partitions of 1000 and also for 100 random partitions of 100000. In the first case, the
data had a mean of 2.95 and a standard deviation of 0.22. In the second case, the mean
and standard deviation were 2.85 and 0.17. This data hints that the asymptotics of these
degrees might be remarkably simple.

Conjecture 14. lim
n→∞

deg(B : Part(n)→ Part(n)) = 3.

We now turn our attention to Carolina solitaire. Define a sequence of integers (ηn)n>0

by the generating function equation∑
n>0

ηnx
n =

1− x√
1− 4x+ 4x2 − 4x3 + 4x4

.

This is sequence A217661 in [18].
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Theorem 15. Preserving the above notation, we have

deg(C : Comp(n)→ Comp(n)) =
ηn

2n−1

for all n > 1. Thus,

deg(C : Comp(n)→ Comp(n)) ∼ 1− ρ√
π(1− 3ρ+ 2ρ2 − ρ3)n

(
1

2ρ

)n
,

where ρ ≈ 0.33933 is the smallest positive real root of the polynomial 1−4x+4x2−4x3+4x4.

Proof. Suppose c = (c1, . . . , c`) is a composition of n. The preimages of c under C are
the compositions that have c1 − (` − 1) parts equal to 1 and whose other parts are (in
order) c1 + 1, . . . , c` + 1. For example, the preimages of (4, 7, 2) are (8, 3, 1, 1), (8, 1, 3, 1),
(8, 1, 1, 3), (1, 8, 3, 1), (1, 8, 1, 3), (1, 1, 8, 3). In general, the number of preimages of c

is

(
c1

`− 1

)
. The number of compositions of n with first part c1 and with ` parts is(

n− c1 − 1

`− 2

)
. Finally, it is well known that |Comp(n)| = 2n−1. Thus,

deg(C : Comp(n)→ Comp(n)) =
1

2n−1

n∑
c1=1

n−c1∑
`=1

(
n− c1 − 1

`− 2

)(
c1

`− 1

)2

.

It is known (see the comments in the OEIS entry A217661 [18]) that

ηn =

n−c1∑
`=1

n−c1∑
`=1

(
n− c1 − 1

`− 2

)(
c1

`− 1

)2

,

so this proves the first statement of the theorem. The asymptotic formula for deg(C :
Comp(n)→ Comp(n)) follows from the asymptotic formula for ηn, which appears in the
OEIS entry A217661.

3 Iterates of a Function

Now that we have examined the degrees of several specific discrete dynamical systems, we
will shift our focus to a problem with a more extremal-combinatorics flavor. Let us fix an
integer k > 2. In this section, we compare the degree of an arbitrary function f : X → X
with the degree of its iterates fk : X → X. Here X is a finite set of size n. We first
observe that

1

nγ−1
6

deg(fk)

deg(f)γ
6 n

for every real γ > 0. Indeed, the upper bound follows from the fact that deg(fk) 6 n and
deg(f) > 1. To prove the lower bound, notice that if x, x′ ∈ X satisfy f(x) = f(x′), then
fk(x) = fk(x′). This proves that deg(fk) > deg(f), so

deg(fk)

deg(f)γ
>

1

deg(f)γ−1
>

1

nγ−1
.
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Furthermore, the lower bound is attained by a constant function. The main result we will
prove below is that if γ > 2− 1/2k−1, then the upper bound can be replaced by n1−1/2k−1

.
In addition, we will construct an example showing that if γ and k are fixed, then this
upper bound is tight up to a constant factor. Hence, for every integer k > 2 and real

number γ > 2− 1/2k−1, we have determined how large the ratio
deg(fk)

deg(f)γ
can be, up to a

constant factor.

Theorem 16. Let k > 2 be an integer, and let γ > 0 be a real number. As n → ∞, we
have

max
f :X→X
|X|=n

deg(fk)

deg(f)γ
>

1 + o(1)

(k + 1)γ
n1−1/2k−1

.

If γ > 2− 1/2k−1, then

max
f :X→X
|X|=n

deg(fk)

deg(f)γ
6 n1−1/2k−1

.

Remark 17. One special case of Theorem 16 tells us how badly the degree of noninvert-
ibility can fail to satisfy the submultiplicativity inequality deg(f ◦ g) 6 deg(f) deg(g) in
the specific case in which f = g. Indeed, if we set k = γ = 2, then the theorem tells us
that

1 + o(1)

9

√
n 6 max

f :X→X
|X|=n

deg(f 2)

deg(f)2
6
√
n.

The first part of Theorem 16 will follow from the next proposition.

Proposition 18. Fix k > 2. For n > 1, there exist sets Xn with |Xn| = n and functions
fn : Xn → Xn such that

deg(fn) = k + 1 + o(1) and deg(fkn) = n1−1/2k−1

(1 + o(1)) as n→∞.

Proof. Let T (m0) be the rooted tree that is isomorphic to a path with m0 edges (so
each non-leaf vertex has exactly one child). Let T (m0,m1) be the rooted tree whose root
has m0 subtrees, each of which is isomorphic to T (m1). In general, let T (m0, . . . ,mp)
be the rooted tree in which the root has m0 subtrees, each of which is isomorphic to
T (m1, . . . ,mp). Thus, T (m0, . . . ,mp) has 1 + m0 + m0m1 + · · · + m0m1 · · ·mp vertices.

Consider a sufficiently large integer b, and let Tb = T (b0, . . . , bk), where bi =
⌊
b1/2

i
⌋

for

0 6 i 6 k − 1 and bk = bk−1 =
⌊
b1/2

k−1
⌋
. Let X(b) be the set of vertices in Tb. We obtain

a function Fb : X(b) → X(b) by sending the root of Tb to itself and sending every non-root
vertex in Tb to its parent (see Figure 1). Let

nb = |X(b)| = 1 + b0 + b0b1 + · · ·+ b0b1 · · · bk,

and note that nb = b2(1 + o(1)) (here and in what follows, the asymptotic notation is
taken as b → ∞). Our first goal will be to estimate the degrees of Fb and F k

b . We will

the electronic journal of combinatorics 27(3) (2020), #P3.51 16



then prove that for every sufficiently large n, we can find an n-element set Xn, a function
fn : Xn → Xn, and a suitable function Fb such that deg(Fb) approximates deg(fn) and
deg(F k

b ) approximates deg(fkn).

Figure 1: The map F5 when k = 2. In this case, b = b0 = 5 and b1 = b2 = 2.

We define the depth of a vertex v in Tb to be the smallest nonnegative integer t such
that F t

b (v) is the root of Tb. The root of Tb is the only vertex of depth 0; it has b0
preimages under Fb and 1 +

∑k−1
i=0 b0b1 · · · bi preimages under F k

b . For 1 6 t 6 k − 1,
there are b0b1 · · · bt−1 vertices of depth t, each of which has bt preimages under Fb and
btbt+1 · · · bk−1 preimages under F k

b . There are b0b1 · · · bk−1 vertices of depth k, each of
which has 1 preimage under Fb and 1 preimage under F k

b . For k + 1 6 t 6 k + bk − 1,
there are b0b1 · · · bk−1 vertices of depth t, each of which has 1 preimage under Fb and has
0 preimages under F k

b . Finally, there are b0b1 · · · bk−1 vertices of depth k+ bk (the leaves),
each of which has 0 preimages under Fb and under F k

b . Combining this information, we
find that

deg(Fb) =
1

nb

[
b20 + b0b

2
1 + b0b1b

2
2 + · · ·+ b0b1 · · · bk−1b2k +

bk+k−1∑
t=k

b0b1 · · · bk−1 · 12

]

=
1

nb
[b20 + b0b

2
1 + b0b1b

2
2 + · · ·+ b0b1 · · · bk−1b2k + b0b1 · · · bk−1bk]

=
1

b2(1 + o(1))
(k + 1)b2(1 + o(1)) = k + 1 + o(1) (2)

and

deg(F k
b )=

1

nb

(1 +
k−1∑
i=0

b0b1 · · · bi

)2

+
k−1∑
t=1

b0b1 · · · bt−1(btbt+1 · · · bk−1)2 + b0b1 · · · bk−1 · 12


=

1

nb
(b0b1 · · · bk−1)2 (1 + o(1)) =

1

nb
(b2−1/2

k−1

)2(1 + o(1)) = n
1−1/2k−1

b (1 + o(1)). (3)

Now let n be a sufficiently large integer, and let b be the unique integer such that
nb 6 n < nb+1. Let Xn = X(b) ∪ Yn, where Yn is a set of size n− nb that is disjoint from
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X(b). Define fn : Xn → Xn by fn(x) = Fb(x) for x ∈ X(b) and fn(y) = y for y ∈ Yn. It is
straightforward to check that

nb deg(Fb) 6 n deg(fn) 6 nb+1 deg(Fb+1),

so it follows from (2) that
nb
n

(k + 1 + o(1)) 6 deg(fn) 6
nb+1

n
(k + 1 + o(1)). Since

nb = b2(1 + o(1)) and nb+1 = b2(1 + o(1)), we have
nb
n

= 1 + o(1) and
nb+1

n
= 1 + o(1).

Consequently,
deg(fn) = k + 1 + o(1).

A similar argument shows that

deg(fkn) = n1−1/2k−1

(1 + o(1)).

In an earlier draft of this article, we proved that for f : X → X with |X| = n, the

inequality
deg(fk)

deg(f)γ
6 β

2−1/2k−1

k n1−1/2k−1
holds, where βk depends only on k and satisfies

βk ∼ k/4 as k → ∞. We are very grateful to Yan Sheng Ang, who showed us the proof
of the following theorem. This theorem is more general than our original result, and it

immediately implies an improved upper bound for
deg(fk)

deg(f)γ
(without the β

2−1/2k−1

k factor).

We have seen that the submultiplicativity inequality deg(f ◦ g) 6 deg(f) deg(g) does not
hold in general; the next theorem can be viewed as a corrected version of this inequality.

Theorem 19. Let X be an n-element set. For all functions f, g : X → X, we have the
inequality

deg(f ◦ g) 6
√
n
√

deg(f) deg(g).

Furthermore, equality holds if and only if f is a constant function and g is a bijection.

Proof. Let f(g(X)) = {x1, . . . , xr}. For 1 6 i 6 r, let f−1(xi) = {yi1, . . . , yiai}. For
1 6 i 6 r and 1 6 j 6 ai, let bij = |g−1(yij)|. We have

n deg(f ◦ g) =
r∑
i=1

|g−1(f−1(xi))|2 =
r∑
i=1

(
ai∑
j=1

1 · bij

)2

6
r∑
i=1

ai

ai∑
j=1

b2ij, (4)

where we have applied the Cauchy-Schwarz inequality in the last step. Since

n deg(f) >
r∑
i=1

|f−1(xi)|2 =
r∑
i=1

a2i , (5)

we have
n deg(f) > a2i for all 1 6 i 6 r. (6)

Consequently,

n deg(f ◦ g) 6
r∑
i=1

ai

ai∑
j=1

b2ij 6
√
n
√

deg(f)
r∑
i=1

ai∑
j=1

b2ij.
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Because g(X) ⊆ f−1(f(g(X))) = {yij : 1 6 i 6 r, 1 6 j 6 ai}, we have n deg(g) =
r∑
i=1

ai∑
j=1

b2ij. This shows that

n deg(f ◦ g) 6
√
n
√

deg(f)n deg(g),

and the desired inequality follows.
If f is a constant function and g is a bijection, then the inequality in the theorem is an

equality because deg(f) = deg(f ◦g) = n and deg(g) = 1. To prove the converse, suppose
the inequality is an equality. This means the inequality in (5) must be an equality, so
f(X) = {x1, . . . , xr}. The inequality in (6) must also be an equality for all 1 6 i 6 r.
Referring to (5), we see that this forces r = 1. Thus, f(X) = {x1}, so f is a constant
function. It follows that a1 = |f−1(x1)| = n, so {y11, . . . , y1n} = X. Finally, the inequality
in (4) is an equality. This can only happen if the numbers b1j are equal for all 1 6 j 6 n.
This, in turn, forces g to be a bijection.

Proof of Theorem 16. As mentioned above, the first statement of the theorem follows
from Proposition 18. To prove the second statement, note that it suffices to prove the
case in which γ = 2− 1/2k−1. Choose f : X → X. We want to prove that

deg(fk) 6 deg(f)2−1/2
k−1

n1−1/2k−1

for all k > 1.

This is certainly true if k = 1, so we may assume k > 2 and induct on k. By Theorem 19
and our induction hypothesis, we have

deg(fk) = deg(fk−1 ◦ f) 6
√
n
√

deg(fk−1) deg(f) 6
√
n
√

deg(f)2−1/2k−2n1−1/2k−2 deg(f)

=
√
n deg(f)1−1/2

k−1

n1/2−1/2k−1

deg(f) = deg(f)2−1/2
k−1

n1−1/2k−1

.

4 Future Directions

In this section, we list some possible directions for extending the investigation of degrees
of noninvertibility. Of course, a natural place to start would be to consider other specific
families of combinatorially interesting discrete dynamical systems. Even restricting our
attention to the specific families considered in Section 2, there are several problems that
remain open.

To state our first problem, we require the maps ti : Sn → Sn from Section 2.1. The
monoid H0(Sn) = 〈t1, . . . , tn−1〉 generated by the operators t1, . . . , tn−1 is known as the
0-Hecke monoid1 of Sn [12]. Each element T ∈ H0(Sn) is a function from Sn to Sn given
by T = tir ◦ · · · ◦ ti1 for some i1, . . . , ir ∈ [n − 1] (we allow the list i1, . . . , ir to contain
repeats). We say T is eventually constant if there exists a positive integer k such that T k

is the constant function that sends every permutation in Sn to the identity permutation

1Knuth calls the elements of H0(Sn) primitive sorting maps [16].
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123 · · ·n. One can show that T is eventually constant if and only if every element of [n−1]
appears at least once in the list i1, . . . , ir. Notice that the bubble sort map B : Sn → Sn
is an eventually constant element of H0(Sn). It would be interesting to study the degrees
of other eventually constant elements of the 0-Hecke monoid of Sn.

For example, if roddn (respectively, revenn ) denotes the largest odd (respectively, even)
element of [n−1], then we define Todd = troddn

◦· · ·◦t5◦t3◦t1 and Teven = trevenn
◦· · ·◦t6◦t4◦t2.

We then let
Talt = Teven ◦ Todd and Ttla = Todd ◦ Teven.

Note that the map Talt is known as the odd-even sort [16, 17]. The following conjecture
states that among all eventually constant elements of H0(Sn), bubble sort is the closest
to being invertible, while Ttla is the farthest.

Conjecture 20. If T ∈ H0(Sn) is eventually constant, then

deg(B : Sn → Sn) 6 deg(T : Sn → Sn) 6 deg(Ttla : Sn → Sn).

It would be interesting to have a proof of either (if not both) of the inequalities in

Conjecture 20. We know by Theorem 8 that deg(B : Sn → Sn) =
n(n+ 1)

6
. However, we

do not know deg(Ttla : Sn → Sn). What is fascinating is that while deg(B : Sn → Sn)
grows quadratically in n, deg(Talt : Sn → Sn) and deg(Ttla : Sn → Sn) grow exponentially.
Indeed, one can show that |Talt(Sn)| and |Ttla(Sn)| are both equal to the number of up-
down permutations of length n. It then follows from Lemma 2 and the known asymptotic
formula for the number of up-down permutations of length n (see sequence A000111

in [18]) that deg(Talt : Sn → Sn) and deg(Ttla : Sn → Sn) are both at least
n!

|Ttla(Sn)|
∼

π

4

(π
2

)n
.

Problem 21. Find improved asymptotic estimates (or even exact formulas!) for

deg(Talt : Sn → Sn) and deg(Ttla : Sn → Sn).

Let us remark that deg(Talt : Sn → Sn) = deg(Ttla : Sn → Sn) when n is odd
(this equality can fail when n is even). In fact, for n odd, Talt and Ttla are dynamically
equivalent. To see this, define the reverse complement of a permutation π = π1 · · · πn to
be the permutation rc(π) = (n + 1 − πn)(n + 1 − πn−1) · · · (n + 1 − π1). One can show
that Talt(rc(π)) = rc(Ttla(π)) whenever π ∈ Sn and n is odd.

We now turn our attention to the stack-sorting map s.

Problem 22. Improve the estimates for lim
n→∞

deg(s : Sn → Sn)1/n from Theorem 8.

Using the “decomposition lemma” described in [6], we have computed |s−1(s(π))|1/n
for several random permutations in Sn in order to gauge the size lim

n→∞
deg(s : Sn → Sn)1/n.

We first computed this quantity for 1000 random permutations with n = 100; the mean
and standard deviation were 1.69 and 0.09. We then tried 100 random permutations with
n = 300; the mean and standard deviation were 1.70 and 0.06.
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Conjecture 23. The value of the limit lim
n→∞

deg(s : Sn → Sn)1/n lies in the interval

(1.68, 1.73).

Let us also recall Conjecture 14 from Section 2.7, which states that

lim
n→∞

deg(B : Part(n)→ Part(n)) = 3.

Theorem 16 pins down, up to a constant factor, the asymptotics of max
f :X→X
|X|=n

deg(fk)

deg(f)γ

as n → ∞. It would be nice to improve the constants appearing in this theorem. Of
particular interest is when γ = 2 − 1/2k−1 since this is the minimum γ for which the
second statement of the theorem applies. Thus, we have the following more specific
problem.

Question 24. For fixed k > 2, does the limit

lim
n→∞

max
f :X→X
|X|=n

deg(fk)

deg(f)2−1/2k−1

1

n1−1/2k−1

exist? If so, what is its value?

Even answering Question 24 for k = 2 would be quite interesting. So far, we know
from Theorem 16 that, if this limit exists, its value is between 3−3/2 ≈ 0.19245 and 1.
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