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Abstract
Regarding neighbor balance, we consider natural generalizations of D-complete

Latin squares and Vatican squares from the finite to the infinite. We show that
if G is an infinite abelian group with |G|-many square elements, then it is possible
to permute the rows and columns of the Cayley table to create an infinite Vati-
can square. We also construct a Vatican square of any given infinite order that is
not obtainable by permuting the rows and columns of a Cayley table. Regarding
orthogonality, we show that every infinite group G has a set of |G| mutually or-
thogonal orthomorphisms and hence there is a set of |G| mutually orthogonal Latin
squares based on G. We show that an infinite group G with |G|-many square ele-
ments has a strong complete mapping; and, with some possible exceptions, infinite
abelian groups have a strong complete mapping.

Mathematics Subject Classifications: 05B15

1 Introduction

A finite Latin square is row complete or Roman if any two distinct symbols appear in
adjacent cells within rows once in each order. If the transpose of a Latin square is row
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complete then the square is column complete; a square that is row complete and column
complete is complete. Finite row complete squares exist for all composite orders [18] and
finite complete squares are known to exist for all even orders [15] and many odd composite
orders at which a nonabelian group exists; see, for example, [22].

Vatican and D-complete squares strengthen this notion of completeness. A Latin
square is row D-complete if any two distinct symbols appear in cells that are distance d
apart in rows at most once in each order for each d 6 D. Column D-completeness
is defined analogously and a square that is both row and column D-complete is D-
complete [1]. The 1-completeness property is the same as completeness.

An (n− 1)-complete square of order n is called Vatican; that is, Vatican squares have
the pair-occurrence restriction at every possible distance.

Vatican squares are known to exist for all orders that are one less than a prime. In
addition to this, 2-complete squares are known to exist at orders 2p where p is a prime
congruent to 5, 7 or 19 modulo 24, orders 2m where 5 6 m 6 25, and order 21 [6, 23].

In this paper we extend these notions to the infinite and prove various existence
results. As in [4], we use Zermelo-Fraenkel set theory with the axiom of choice. In order
to work with infinite sets, we use the set-theoretic machinery of ordinals and transfinite
induction. An ordinal is an isomorphism type of well-ordered sets. The finite ordinals
correspond to the natural numbers (or rather the unique well-ordered sets with 0 or 1 or
2 etc. as elements), but there are also infinite ordinals. The first infinite ordinal, denoted
ω, corresponds to the well-ordered set of natural numbers. The ordinal corresponding to
the well-order of the natural numbers with an added maximal element is denoted ω + 1,
and we can keep going after this to obtain ω + 2, ω + 3, and so on, reaching the limit
ω + ω (aka ω · 2), and beyond.

As ordinals represent canonical well-orderings, they each support a notion of induction
similar to the usual one on the natural numbers. Fixing an ordinal λ, transfinite induction
up to λ allows us to prove that a property P holds for all ordinals below λ by showing,
from the hypothesis that P holds for all ordinals below some α < λ, that P holds for
α (in this formulation the induction principle is analogous to strong induction on the
natural numbers, and in fact reduces to it if we set λ = ω).

We use angle brackets to denote sequences indexed by an ordinal, for example 〈sα | α <
κ〉 is a length κ sequence of sets sα.

It follows from the axiom of choice that for any set X, there is a bijection between X
and some ordinal. In the usual set-theoretic practice, the cardinality of X is defined as
the least such ordinal.

We require a definition of an infinite Latin square that allows us to talk about spatial
relationships. This is accomplished by using a subset of an ordered field to index the
rows and columns. When that field is Q or R, the infinite Latin squares we obtain are
naturally embedded in R2.

Let F be an ordered field and let I ⊆ F. For each d ∈ F+ let I(d) = {i ∈ I | i+ d ∈ I}.
If |I| = |F| and for each d we have either |I(d)| = |F| or |I(d)| = 0, then we call I an index
set. For our purposes, we may assume that I(1) 6= ∅ without loss of generality.

Given an index set I, a Latin square on I with symbol set X is a function L : I×I → X
such that for each i ∈ I the restriction of L to I × {i} is a bijection with X, as is the
restriction to {i} × I. In other words, each symbol appears once in each “row” and once
in each “column.”
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This definition is compatible with the definition for Latin squares of arbitrary car-
dinality of Hilton and Wojciechowski [19]. In the countable case with I = N ⊆ Q or
I = Z ⊆ Q we get the “quarter-plane Latin squares” and “full-plane Latin squares”
respectively of Caulfield [5].

We sometimes exploit the fact that a cardinal κ is a set of size κ to use κ as both the
order of a Latin square and its symbol set.

The definition of completeness for infinite squares is obtained by identifying the ideas
of adjacency and being at distance 1. This is perfectly natural when I ∈ {N,Z} and
again matches the definition of Caulfield [5]. It does not seem to capture a property of
particular combinatorial interest otherwise, but when we move to generalizing Vatican
squares we get the very natural notion of pairs appearing once at all distances. Indeed,
the definition of an infinite Vatican square is arguably more natural than the finite version
as it allows every pair to appear exactly once at every distance rather than merely at
most once.

Formally, an infinite Latin square on an index set I is row complete or Roman if each
pair of distinct symbols appears exactly once in each order at distance 1 in rows. The
square is complete if the corresponding property also holds in columns. An infinite Latin
square with indexing set I is row D-complete if each pair of symbols appear exactly once
in each order at distance d in rows for each d such that I(d) 6= ∅ and 0 < d 6 D. The
square is D-complete if the corresponding property also holds in columns. Further, the
square is Vatican if for each d with I(d) 6= ∅ we have that each pair of distinct symbols
appears at distance d exactly once in each order in rows and once in each order in columns.

Our first method for constructing squares uses Cayley tables of groups. In the finite
case all known constructions for complete squares—and hence D-complete and Vatican
squares—use the notion of “sequenceability” of a group and generalisations of it [6]. In the
next section we show that similar notions are sufficient to construct infinite D-complete
and Vatican squares.

Say that an infinite group G is squareful if the set {g2 : g ∈ G} has the same cardinality
as G. If G is an abelian squareful group and I is an index set with |I| = |G|, then we
can construct an infinite Vatican square on I using the Cayley table of G. There is an
abelian squareful group of every infinite order.

In Section 3 we explore non-group-based methods. We show that there is a Vatican
square of each infinite order that cannot be produced by permuting the rows and columns
of a Cayley table. Whether a finite Vatican square with this property exists is an open
question. We also show that there is a Latin square of each infinite order such that no
permutation of its rows and columns gives a Vatican (or even Roman) square.

As infinite sets can be bijective with proper subsets of themselves, we can define a
variation on Vatican squares that only makes sense for infinite orders. Say that an infinite
Latin square on index set I is semi-Vatican if for each d with I(d) 6= ∅ we have that each
pair of distinct symbols appears at distance d exactly once in rows and once in columns.
Although this does not have a finite analogue, all known constructions for finite Vatican
squares of even order n have n/2 rows that together form a “row semi-Vatican rectangle”
and the remaining n/2 rows are the reverse of these ones.

All of the results for Vatican squares transfer to the semi-Vatican case in Section 4
with little modification. In addition to this, looking at the semi-Vatican case allows for
an explicit construction of one in the case I = R using only the tools of undergraduate
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calculus.
Moving to orthogonality, two finite Latin squares on a symbol set X are orthogonal

if for each pair (x1, x2) ∈ X × X there is exactly one position such that x1 is in that
position in the first square and x2 is in that position in the second square. This definition
carries over without modification to the infinite case (the countable version of which is
given in [9, p. 116]).

In Section 5 we see that the methods from Section 2 may be quickly adapted to
produce sets of κ mutually orthogonal Latin squares of order κ for all infinite orders κ
via Cayley tables of abelian squareful groups. This is analogous to the finite construction
of “orthomorphisms” via “R-sequencings”. We also construct orthomorphisms directly,
finding κ mutually orthogonal orthomorphisms for each group of infinite order κ and
show that many infinite groups have strong complete mappings.

2 Vatican squares from groups

Let I be an index set in an ordered field F. Let G be a group of order |I| with identity
element e. For a bijection a : I → G define a function a(d) : I(d) → G\{e} for each d ∈ F+

with I(d) 6= ∅ by
a(d)(i) = a(i)−1a(i+ d).

We call such a function a Td-sequencing for a if it is a bijection. If there is a D such
that for all d < D with I(d) 6= ∅ we have that each a(d) is a bijection, then call a a
directed TD-terrace for G. If a(d) is a bijection for all d with I(d) 6= ∅ then call a a directed
T∞-terrace for G.

These definitions closely mimic the versions for finite groups [1] (and we write these
and similar functions in bold throughout to match the convention for finite groups).
They can be used to produce Latin squares with neighbor balance properties in much the
same way. Theorem 2.1 generalizes Gordon’s result [15] for finite complete squares and
Anderson’s [1] and Etzion, Golomb and Taylor’s results [10] for finite Vatican squares to
the infinite.

For any bijection a : I → G define a square L(a) = (`ij) by `ij = a(i)−1a(j). As a
is a bijection, each row and column contains each symbol exactly once and so L is a
Latin square (indeed, this square can be obtained from the Cayley table of G—given by
C(a) = (cij) where cij = a(i)a(j)—by a permutation of the rows). Call a Latin square
created in this way based on G, or simply group-based. To match the usual coordinate
system for R2, we think of the column indices running from left to right geometrically (as
is the usual Latin square convention) and the row indices running upwards geometrically
(as opposed to the usual Latin square convention).

Theorem 2.1. Let G be a group of infinite order κ. If G has a directed TD-terrace for
an index set I then there is a D-complete Latin square of order |G| on I. Further, if G
has a directed T∞-terrace then there is a Vatican square of order |G|.

Proof. Let a be a directed TD-terrace for G on I and consider L(a).
Take x and y to be distinct elements of G. For any d 6 D we have that a(d) is a

bijection and so there is a unique j with a(j)−1a(j + d) = x−1y and a unique i with
a(i)−1a(j) = x. We therefore have that x appears in row i and column j of L(a) and
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that y appears in row i and column j+d of L(a) and that x and y do not appear anywhere
else with y exactly distance d to the right of x.

There is also a unique i with xy−1 = a(i)−1a(i + d) and then a unique j with
a(i)−1a(j) = x. This identifies a unique place where y appears at exactly distance d
above x in the square. Therefore L(a) is a D-complete square on I.

If we replace a with a directed T∞-terrace in the above argument we see that L(a) is
a Vatican square on I.

The 1-complete case with I ∈ {N,Z} of Theorem 2.1 is equivalent to results of
Caulfield [5].

We wish to know which infinite groups have directed TD- and T∞-terraces.
We use transfinite induction to build such terraces, and later to build the squares more

generally. The construction will proceed by building better and better approximations
to the object in transfinitely many steps, using each step to satisfy a requirement. Our
approximations will be coherent and, at the end of the construction, we will end up with
an object that satisfies all the requirements for the object we are trying to build.

We organize these constructions as follows. In each case we consider the partially
ordered set P consisting of the approximations under consideration. Following established
set-theoretic practice, we call elements of P conditions, and they are ordered so that p 6 q
if p is a better approximation than q (we say that p is a stronger condition than q, or that
it extends q). Our inductive construction thus amounts to building a descending chain
of conditions, at each step meeting a requirement. A major part of our proofs is showing
that, given a requirement, any condition can be extended to meet it. This is usually
phrased in terms of the set of conditions which satisfy the requirement being dense (in
the sense of the order topology, i.e., for a set to be dense, any condition has an extension
in this set). The key is to judiciously pick out the dense sets in the poset which enable
the object we are trying to build to clearly satisfy our desired properties.

Theorem 2.2. Let G be an abelian squareful group. Then G has a directed T∞-terrace.

Proof. Let I be an index set in an ordered field F, where |I| = κ is the order of G.
(Such an I exists since ordered fields of arbitrary size exist by Löwenheim-Skolem.) We
build a directed T∞-terrace for G by transfinite induction on κ. Consider the poset P
consisting of partial directed T∞-terraces on G. These partial terraces are as in the
definition of a directed T∞-terrace, except the functions a and its Td-sequencings a(d) for
each d ∈ F+ with I(d) 6= ∅ are only required to be injective partial functions from I to
G with domains of cardinality less than κ. Here P should be partially ordered so that
a 6 b if and only if a extends b as a function, i.e. dom b ⊆ dom a and a � dom b = b
(where “dom a” denotes the domain of a and “a � dom b” denotes the restriction of a to
dom b). If A = dom a for some partial function a then, parallel to the definition for I(d),
let A(d) = {a ∈ A : a+ d ∈ A}.

Below we identify the requirements the approximations have to meet and establish
that the set of conditions satisfying each of them is dense.

1. For each i ∈ I, the set Di = {d ∈ P | i ∈ dom d} is dense.

To see this, let a ∈ P with domain A and i ∈ I \ A. We need to find d ∈ Di

satisfying d 6 a. In order to find such a d, first we must ensure that the value
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we assign to i is not equal to anything in the range of a, namely d(i) 6= a(a) for
each a ∈ A. Since the range of a is smaller than κ, this forbids fewer than κ many
possible values for d(i).

Secondly, we must ensure the Td-sequencings for d are injections. This amounts to
ensuring that for each d and each a ∈ A(d),

a(a)−1a(a+ d) 6= d(i)−1a(i+ d)

and/or
a(a)−1a(a+ d) 6= a(i− d)−1d(i)

if i− d and/or i+ d happen to be in A. Since there are strictly fewer than κ many
elements in the range of a, this leaves fewer than κ many elements of G to avoid
assigning d(i). In the case where i − d and i + d are both in A we need to also
make sure that d(i)−1a(i + d) 6= a(i − d)−1d(i). As G is abelian, this is the same
as making sure that

(d(i))2 6= a(i+ d)a(i− d).

Again, since the range of a is small, there are fewer than κ many forbidden values
for d(i)2 and, since G is squareful, this gives fewer than κ new forbidden values for
d(i).

This means that altogether the set of values to rule out for d(i) has size less than
κ, and we can just pick an element of G that has not been forbidden and assign it
to d(i). Then d is a partial T∞-terrace with i in its domain.

2. For each g ∈ G, the set Rg = {d ∈ P | g ∈ range d} is dense.

Again, as in the above case, the idea should be that we only have to avoid fewer
than κ many cases, but we have room in I for that.

Let a be a condition with g ∈ G\ range a. We need to find d ∈ Rg satisfying d 6 a.
This amounts to finding g so that we can let d(g) = g. This g of course cannot be
in A = dom a. We also choose such that g ± d is not in A for any d such that A(d)

is nonempty, and such that g 6= a+a′

2
for any pair a, a′ ∈ A. This avoids any issues

in the partial Td-sequencings and again forbids only fewer than κ many values for
g, so we can make a suitable choice.

3. For each g ∈ G and each d ∈ F+ with I(d) 6= ∅, the set Rd
g =

{
d ∈ P | g ∈ range d(d)

}
is dense.

To see this, fix d ∈ F+ such that I(d) 6= ∅ and let g ∈ G. Let a ∈ P, and suppose
that g /∈ range a(d). We want to see that it is possible to extend a to a condition
d ∈ Rd

g such that g = d(g)−1d(g + d) for some g ∈ I. This amounts to finding a
suitable g. First we need g to be so that g /∈ A(d) where A = dom a. Then we need
to ensure that d(g),d(g+d) /∈ range a, and also obviously that g = d(g)−1d(g+d).
Also make sure that neither g nor g + d fall halfway between elements of A.

It must also be the case that for any a ∈ A, we have that

a(a)−1d(g) /∈ range a(g−a), d(g)−1a(a) /∈ range a(a−g),
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a(a)−1d(g + d) /∈ range a(g+d−a), d(g + d)−1a(a) /∈ range a(a−g−d).

Since we have only eliminated less than κ many options, as we are restricted by A
and its image under a, we have plenty of room to choose a g as desired.

We should note that we will not inadvertently disrupt another sequencing. In
particular, if we have that both g + d′, g + d+ d′ ∈ A for some d′ ∈ I+ and

d(g)−1a(g + d′) = d(g + d)−1a(g + d+ d′),

then, as G is abelian, we must satisfy

g = d(g)−1d(g + d) = a(g + d′)−1a(g + d+ d′).

But this contradicts the requirement that g /∈ range a(d). Dually, whenever there is
some d′ ∈ I+ such that g − d′, g − d− d′ ∈ A, and

a(g − d′)−1d(g) = a(g + d− d′)−1d(g + d),

and this again contradicts g /∈ range a(d).

Let

D = {Di | i ∈ I} ∪ {Rg | g ∈ G} ∪
{
Rd
g | d ∈ F+ with I(d) 6= ∅, g ∈ G

}
,

and note that |D| = κ, so we may enumerate all of the dense sets as D = 〈Dα | α < κ〉.
We will define a descending sequence of conditions 〈bα | α < κ〉 by transfinite induc-

tion, ensuring that bα ∈ Dα and |bα| < |α+ω|, so that the sequence isn’t growing at too
fast a rate, at each step. (We saw it is possible to meet the dense sets without growing
the conditions too fast while showing that each set in D is dense.) Assume that we have
built an initial segment of this sequence 〈bα | α < λ〉, and we wish to construct the
condition bλ in the next step. First notice that b′λ =

⋃
α<λ bα is itself a condition. This

is because the only requirements are that b′λ and (b′λ)(d) be injective functions, and this
will be true if it was true for every earlier bα. Furthermore, the domain of b′λ is just the
union of the domains of the earlier bα and each bα has size at most |α + ω|, so b′λ itself
is smaller than κ. We can now let bλ be any extension of b′λ in Dλ; such an extension
exists since we showed that Dλ is dense.

By construction,
⋃
α<κ bα defines a directed T∞-terrace b : I −→ G as desired:

1. b is a bijection: This is ensured by meeting, for each i ∈ I, the dense sets Di for
injectivity and for meeting Rg for each g ∈ G for surjectivity.

2. For each d ∈ I+, b(d) is a bijection: The fact that the sequencing is injective is
ensured by item 1 as well, since at some point we will add both i ∈ I and i + d to
the domain of the partial terrace we are constructing. The dense sets Rd

g for each
g ∈ G guarantee surjectivity.

Given groups Gj, j ∈ J , the direct product,
∏

j∈J Gj, is the group with elements∏
j∈J gj, gj ∈ Gj, multiplication given by

∏
j∈J gj

∏
j∈J hj =

∏
j∈J gjhj. The direct sum,∑

j∈J Gj, is the subgroup of
∏

j∈J Gj consisting of elements
∏

j∈J gj in which gj 6= e for
finitely many values of j.
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Corollary 2.3. For every index set I there is a Vatican square on I. In particular, there
is a Vatican square of every infinite order.

Proof. For every infinite order κ, let G =
∑

j∈κ Z. This is a squareful group of order κ.
Use G in Theorems 2.1 and 2.2 to produce the required Vatican square.

The constraints on G in Theorem 2.2 were due to the method of proof rather than
fundamental impediments. Which other infinite groups admit directed TD- and T∞-
terraces? Are there any that do not? Vanden Eynden shows that all countably infinite
groups have a directed 1-terrace on N [26] and the proof is easily adapted to apply to
index set Z.

The proof method of Theorem 2.2 can be applied to an additional family of groups:

Theorem 2.4. If every non-identity element of an infinite abelian group G is an invo-
lution, then G has a directed T∞-terrace for any index set of size |G|.

Proof. Such a group G is not squareful, but otherwise meets the constraints of Theo-
rem 2.2. Apply the same proof (with the same notation). There is only one point at
which we use squarefulness: given a value of i we need to choose a value for d(i) such
that

(d(i))2 6= a(i+ d)a(i− d)

for all d for which a(i + d) and a(i − d) are both defined. As (d(i))2 is necessarily the
identity and a(i+ d) 6= a(i− d), this inequality unavoidably holds in G.

3 Squares not based on groups

The results of the previous section raise the question about what is and is not possible
for infinite squares more generally. Perhaps all countably infinite squares may be made
complete, or even Vatican, with a suitable permutation of their rows and columns? In
a similar vein, it is known that all infinite Steiner triple systems are resolvable [8], an
uncommon property among finite systems. However, Theorem 3.1 eliminates this possi-
bility, showing that for every index set (and hence every infinite order) there is a square
that cannot be made row-complete via permuting columns.

In the other direction, a question asked (and answered positively) about finite squares
was whether there exist row-complete Latin squares that are not based on groups, see
[7, 9, 24]. We answer the infinite version of this question, also positively, in Theorem 3.2.
Indeed, this result gives a Vatican square that is not group-based for every index set. All
known finite Vatican squares are based on groups [6].

Theorem 3.1. For every index set I there is a Latin square on I that cannot be made
row-complete by permuting columns.

Proof. We build a Latin square on an ordered field Fκ of size κ = |I| by approximations
to it, by transfinite induction on κ. The same procedure would give one on I.

Consider the poset P consisting of injective partial functions from Fκ×Fκ to κ whose
domains have size strictly less than κ. We think of these as populating a κ-by-κ grid
with ordinals less than κ—each condition fills in some portion, or region, of the full grid.
These regions must satisfy that each ordinal appears at most once in each row/column
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(they are Latin). Moreover we require that the Latin regions in P are immune: a region is
immune if every Latin region obtainable by a permutation of its columns has a repeated
occurrence of an ordered pair at horizontal distance 1. Again, partially order the immune
Latin regions by l 6 m if l extends m as a function.

We will start our transfinite induction with the following finite immune Latin region,
a condition which we name l−1:

2 0 1
1 2 0
0 1 2

We again list the requirements that the approximations will have to meet and show that
densely many conditions satisfy these requirements.

1. For each α, β < κ, the set Dα,β = {l ∈ P | α appears in row β of l} is dense.

In other words, we need to see how to add a desired number α to row β of a condition
l, if it isn’t already there. Place α into the β-th row, again without violating the
Latin constraint (this might require us to introduce a new column).

We have produced a larger Latin rectangle l′ which contains l and has α in the β-th
row but may not be immune, if we introduced a new column. We now perform the
following immunization procedure to extend l′ to an immune Latin region in Dα,β.

Immunization: For each combination of three different nonempty columns from
our new region l′, pick the least number γ larger than the largest number used
in l′, and add the following three columns in entirely new rows above the three
different columns:

γ + 2 γ γ + 1
γ + 1 γ + 2 γ
γ γ + 1 γ + 2

in whatever order you would like. Keep doing this with every possible com-
bination of three different columns until all of the possible combinations of 3
different columns have been exhausted. Then fill in the gaps with whatever
you would like without contravening the Latin constraints.

To illustrate the technique, let’s say that we would like to add the number 3 to row
0 in our initial immune Latin rectangle l−1. Following the described algorithm, we
first produce the following region l′−1

2 0 1 .
1 2 0 .
0 1 2 3

We added 3 to the first row of a new column. In this example, there are 4 columns
available and thus 4 possible combinations of 3 columns, so we end up adding 12
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new rows to the top of our condition.

. 15 13 14

. 14 15 13

. 13 14 15
12 . 10 11
11 . 12 10
10 . 11 12
9 7 . 8
8 9 . 7
7 8 . 9
6 4 5 .
5 6 4 .
4 5 6 .
2 0 1 .
1 2 0 .
0 1 2 3

2. For each α, β < κ, the set Dα,β = {l ∈ P | α appears in column β of l} is dense.

Here we need to add a specified number α to the column number β of a condition
l, if it isn’t already there. The strategy is the same as before: place α in column
β as required so that the region l′ produced is still Latin. Then run through the
immunization procedure as outlined above if l doesn’t have any entries in column
α to begin with, to produce a new condition extending l′ that is in Dα,β.

3. For each α, β < κ, the set Eα,β = {l ∈ P | l has a symbol in row α, column β} is
dense.

Meeting this dense set ensures that we fill up all the holes we might have left when
we met other dense sets. Given an immune Latin region l, in order to add something
to position (α, β) simply place a symbol that is not in l in that position to produce
l′. If l did not have anything in column β yet, run through the immunization
procedure outlined above on l′ to make it immune.

We enumerate the listed dense sets into a sequence {Dα | α < κ} and build a descend-
ing chain of conditions 〈lα | α < κ〉 by transfinite induction, ensuring that lα ∈ Dα at
each step and that |lα| < |α + ω| so that the sequence isn’t growing at too fast a rate.
Note that if a condition m has infinite size µ, the immunization process will add at most
|µ3 · 9| many new entries to a condition, which has size µ. So the growth constraint on
the sequence is reasonable given how we chose to meet dense sets in the above.

Proceed the same way as in the proof of Theorem 2.2. Given an initial segment of
this sequence 〈lα | α < λ〉, notice that l′λ =

⋃
α<λ lα is a condition, since the growth rate

of the sequence is not too high. We then let lλ be any extension of l′λ in Dλ.
We have produced L =

⋃
{lα | α < κ}, which defines a Latin square with the desired

properties. Indeed, by meeting the dense sets we have ensured that the square is total
and that every column and row contain all ordinals below κ. Moreover, if L failed to be
Latin, this failure would show up in some approximation lα, but these are all Latin, so
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L must be as well. Finally, it isn’t possible to permute columns in L to obtain a row-
complete square. To see this, suppose otherwise, that we could produce a row-complete
Latin square L∗ by permuting columns of L. Then take the first three columns of L∗.
These correspond to some columns, say α, β, and γ, of L. There has to be a condition,
say lδ, in which all three of these columns are nonempty for the first time. In that stage,
we made sure that lδ was immune; meaning every region obtained by a permutation of
its columns has a repeated occurrence of an ordered pair at horizontal distance 1. In
the way we performed the immunization procedure, we made sure that if you were to
permute columns so that columns α, β, and γ were all “next” to each other (according
to the ordered field Fκ), there would be a 3× 3 Latin square somewhere, which can’t be
row-complete. This contradicts L′ being row-complete. So L is a Latin square of size κ
which cannot be made row-complete by permuting columns, as desired.

Prior to giving Theorem 3.2 we need a result that lets us be sure that a square is not
group-based. The quadrangle criterion states that in a square based on a group if the
three equations

ai1j1 = ai2j2 , ak1j1 = ak2j2 , ai1l1 = ai2l2

are satisfied then ak1l1 = ak2l2 [9, Theorem 1.2.1]. That is, if two “quadrangles” in a
group-based square agree on three points then they agree on the fourth.

Theorem 3.2. For every index set I there is a Vatican square on I that is not based on
a group.

Proof. Let Fκ be an ordered field on κ = |I|. We build a Vatican square L on Fκ with
symbol set κ by transfinite induction. We use integers to indicate the elements of X, the
strategy to build one on an arbitrary index set is exactly the same as outlined below.

Again we find it useful to define an appropriate poset in order to build the Vatican
square by growing a finite one via meeting dense sets. The conditions in our poset P
consist of Vatican regions which are not group based. These are injective partial functions
of the form l : Fκ × Fκ −→ κ. Again we think of these populating κ × κ grid, although
distances between columns and rows are computed by the ordered field Fκ. Moreover,
these regions should be Vatican in the sense of a finite square, in that for each d ∈ F+

κ

such that (Fκ)(d) 6= ∅ we have that each ordered pair of distinct symbols coming from κ
appear at distance d at most once in each order in rows and at most once in each order
in columns. We partially order P by letting l 6 m so long as l extends m as a function.

We start the induction with the following Vatican region on κ, call it l−1:

0 5 6 1
7 0 1 8
9 2 3 10
2 11 12 4

No square containing this as a subsquare can be group-based since it fails to satisfy
the quadrangle criterion. We then begin meeting dense sets in some enumeration of the
following four families of dense sets. We build a descending chain of conditions lα, starting
with l−1, in κ many stages exactly as before. At each stage we use the fact that the union
of a descending chain of fewer than κ many conditions is itself a condition, making sure
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that the sequence doesn’t grow at too fast a rate (we see below that it is possible to meet
each dense set by only adding at most 2 symbols to a condition), and then extend into
the dense set under consideration at that stage.

1. For each α, β < κ, the set Dα,β = {l ∈ P | α appears in row β of l} is dense.

The trick here is not to mess up the Vatican property on the region. If α does not
appear in row β of a condition l yet, it is not necessarily enough to simply add it to
the end of row β, since it is possible that then α appears more than once at some
distance from another element in that row or column. We are only guaranteed to be
safe with that method if α doesn’t already appear anywhere in the partial square.
Thus the idea is to go far enough out to where it is safe to add α in row β.

If l doesn’t even have a row β yet, then on the βth row, add α at the end, creating
a new column with just α in it.

Otherwise, l already has entries in row β, go far enough out in row β (at worst the
length of its longest row plus β in the field addition of Fκ) so that no column or
row distance between an element of row β of l and α could even have occurred in l
initially.

For example, if Fκ has the usual ordering on the natural numbers, in the above
square l−1, this is how we would add 0 to the bottom row:

0 5 6 1 . . . .
7 0 1 8 . . . .
9 2 3 10 . . . .
2 11 12 4 . . . 0

and if we would like to add 0 to the sixth row:

. . . . 0

. . . . .
0 5 6 1 .
7 0 1 8 .
9 2 3 10 .
2 11 12 4 .

2. For each α, β < κ, the set Dα,β = {l ∈ P | α appears in column β of l} is dense.

Same procedure as with rows.

3. For each α, β < κ, the set

Fα,β = {l ∈ P | there is a symbol in row α, column β of l}

is dense.

This dense set guarantees that we fill in the holes left by meeting the other dense
sets. If there isn’t already an entry in coordinate (α, β) of l, then pick a symbol
that hasn’t appeared yet in l and add it to that entry. The condition produced
is Latin since that entry only appears once. Since this symbol did not previously
appear in any of the entries of l, it must also be Vatican.
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4. For each α, β < κ and d ∈ F+
κ , the set

Ed
α,β = {l ∈ P | α, β appear at distance d apart in some row of l, in that order}

is dense.

If α and β already do not appear distance d apart anywhere in a Vatican region l,
what we should do to absolutely guarantee we have no conflicts is start a new row.
Go far enough out in this row, up to the length of the longest row. Then add α,
then add β at distance d further out from α. This indeed will still be a condition,
since β and d are less than κ.

For example, with our starting square l−1, this is how we would extend it to have 0
and 1 be distance 2 apart (if the field Fκ has the same ordering on finite numbers
that the natural numbers do):

. . . . 0 . 1
0 5 6 1 . . .
7 0 1 8 . . .
9 2 3 10 . . .
2 11 12 4 . . .

5. For each α, β < κ and d ∈ F+
κ , the set

Eα,β
d ={l ∈ P | α, β appear at distance d apart in some column of l, in that order}

is dense.

Same procedure as with rows.

We produce a square L at the end of this construction by taking the union of all of
the lα’s in the chain we described building above. Clearly L is Latin, since at some stage
every ordinal less than κ was added to every row and every column as guaranteed by our
first three families of dense sets. It must be that L is Vatican as well. First of all, we
know that the pair occurrence for each row and column must be satisfied at least once
in each row and column by meeting the last two families of dense sets described above.
Moreover if this happened somewhere more than once, it would have to happen in some
condition lα, but conditions in P are not allowed to have this property. And L is not
group-based since it includes the square l−1.

4 Semi-Vatican squares

Infinite semi-Vatican squares—recall that these are squares in which each pair of symbols
appears exactly once at each distance d in rows and columns, rather than exactly once
in each order—behave very similarly to Vatican squares.

We define directed SD- and S∞-terraces as the required generalization of directed TD-
and T∞-terraces. As before, let I be an index set in an ordered field F. Let G be a group
of order |I|. Recall that for a bijection a : I → G we have a function a(d) : I → G \ {e}
for each d ∈ F+ with I(d) 6= ∅ given by

a(d)(i) = a(i)−1a(i+ d).
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If G has no involutions, and if there is a D such that for all d < D with I(d) 6= ∅ we have
that the image of a(d) contains exactly one occurrence from each set {x, x−1} ⊆ G \ {e},
then call a a directed SD-terrace for G. If a(d) has this property for all d with I(d) 6= ∅
then call a a directed S∞-terrace for G.

The requirement that G has no involutions comes into play when we consider con-
structing semi-Vatican squares using the method of Theorem 2.1. Suppose z ∈ G is an in-
volution and a(d)(i) = z for some bijection a with the usual definition for a(d). If a(i) = x,
then a(i+ d) = xz. There is a j such that a(j) = xz and now a(j + d) = xz2 = x. Thus
the pair {x, xz} occurs twice at distance d in L(a), once in each order. Hence a square
constructed with this method using a group with an involution cannot be semi-Vatican.

The proofs of the previous two sections require only minor modifications to give the
following slate of results:

Theorem 4.1. Let G be a group of infinite order κ with no involutions. If G has a
directed S∞-terrace for an index set I then there is a semi-Vatican square of order |G|.

Theorem 4.2. Let G be an involution-free abelian squareful group of infinite order κ.
Then G has a directed S∞-terrace.

Corollary 4.3. For every index set I there is a semi-Vatican square on I. In particular,
there is a semi-Vatican square of every infinite order.

Theorem 4.4. For every index set I there is a Latin square on I that cannot be made
semi-Vatican by permuting columns.

Theorem 4.5. For every index set I there is a semi-Vatican square on I that is not
based on a group.

All of the existence results presented so far are non-constructive and rely on transfi-
nite induction. Perhaps surprisingly, in the case when the group is (R,+), the tools of
undergraduate calculus are sufficient to construct to a semi-Vatican square.

Theorem 4.6. There is a semi-Vatican square on index set R based on (R,+).

Proof. We give a direct definition for a directed S∞-terrace a:

a(x) =

{
ex − 1 x > 0

− ln(1− x) otherwise

This is a continuous, strictly increasing bijection from R to R. Its derivative is:

a′(x) =

{
ex x > 0
1

1−x otherwise

which is a continuous, strictly increasing bijection from R+ to R+.
Therefore, for each d ∈ R+, we have that a(d) is a bijection from R+ to R+. Hence a is

a directed S∞-terrace and Theorem 4.1 gives a semi-Vatican square based on I = R.
Similar approaches for Vatican squares quickly run into difficulties.
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5 Orthogonality

Let G be a group and θ : G → G a bijection. If g 7→ g−1θ(g) is a bijection then θ
is an orthomorphism; if g 7→ gθ(g) is a bijection then θ is a complete mapping. Two
orthomorphisms, θ, φ are orthogonal if g 7→ θ(g)−1φ(g) is a bijection.

Let L be the Cayley table of a group G that has ijth entry gigj and for any bijection θ :
G→ G define Lθ to be the Latin square with ijth entry giθ(gj). If θ is an orthomorphism
then Lθ is orthogonal to L; if θ and φ are orthogonal orthomorphisms then Lθ is orthogonal
to Lφ (see, for example, [12]).

It is known that every infinite group has an orthomorphism [2], so there is a pair of
orthogonal Latin squares of every infinite order. In [3], countably many orthogonal Latin
squares of countable order are constructed using mutually orthogonal orthomorphisms
(although without using this terminology) of a specific countably infinite group.

The work of Section 2 may be adapted to give families of mutually orthogonal ortho-
morphisms. In the finite case, directed terraces and directed R-terraces are similar ob-
jects, with directed terraces giving rise to complete Latin squares and directed R-terraces
giving rise to orthogonal Latin squares via orthomorphisms. See [12] for a survey of the
finite situation. Our definitions and results preserve these connections as we move to the
infinite.

Let I be an index set in an ordered field F. Let G be a group of order |I|. For a
bijection a : I → G \ {e}, despite the different codomain of a, we also define a(d) : I(d) →
G \ {e} for each d ∈ F+ with I(d) 6= ∅ by

a(d)(i) = a(i)−1a(i+ d).

Such a function is called a Rd-sequencing for a, if it is a bijection. If there is a D such that
for all d < D with I(d) 6= ∅ we have that each a(d) is a bijection, then a is a directed RD-
terrace for G. If a(d) is a bijection for all d with I(d) 6= ∅ then a is a directed R∞-terrace
for G.

Theorem 5.1. Let G be a group of infinite order κ. If G has a directed R∞-terrace
then G has a set of κ mutually orthogonal orthomorphisms.

Proof. Let a be a directed R∞-terrace for G over some index set I. For each d such
that Id 6= ∅ (of which there are κ) define θd(e) = e and θd(a(i)) = a(i+ d). This gives us
the orthogonal orthomorphisms we’re looking for.

First, they are orthomorphisms: given g ∈ G \ {e} with a(i) = g we get

g−1θd(g) = a(i)−1a(i+ d) = a(d)(i)

which, when we also consider that θd(e) = e, gives us a bijection on G.
Second, they are orthogonal: again taking g ∈ G \ {e} with a(i) = g, if d2 > d1 we

get:
θ−1d1 (g)θd2(g) = a(i+ d1)

−1a(i+ d2) = a(d2−d1)(i+ d1).

If d1 < d2 we get:

θ−1d1 (g)θd2(g) = a(i+ d1)
−1a(i+ d2) = a(d1−d2)(i+ d2)

−1.

Also θd1(e)
−1θd2(e) = e in each case, giving bijections on G.
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If we have a directed RD-terrace, then the same argument gives |{d 6 D : I(d) 6= ∅}|
mutually orthogonal orthomorphisms for G.

Theorem 5.2. Let G be an abelian squareful group of infinite order. Then G has a
directed R∞-terrace.

Proof. The only difference between a directed R∞-terrace and a directed T∞-terrace is
that the identity is not in the domain of a directed R∞-terrace. The presence of the
identity is not relied upon in the Theorem 2.2’s proof that abelian squareful groups of
infinite order have a directed T∞ terrace; a simple adjustment of the argument produces
the required directed R∞-terrace.

This immediately gives:

Corollary 5.3. There is a set of κ mutually orthogonal Latin squares of order κ for all
infinite cardinalities κ.

As with directed T∞-terraces, we can now ask which infinite groups have (or do not
have) directed R∞-terraces.

If we do not insist that our orthomorphisms come from directed R-terraces we can
completely remove the restrictions on the groups:

Theorem 5.4. Let G be a group of infinite order κ. Then G has a set of κ mutu-
ally orthogonal orthomorphisms and can hence be used to construct a set of κ mutually
orthogonal squares of order κ.

Proof. We build the required set of mutually orthogonal orthomorphisms of G by transfi-
nite induction on κ. One difference to earlier proofs is that rather than partial functions
the approximations to the desired object are infinite sequences of partial functions.

Let I be a set of size κ. Let P be the poset whose elements are length κ sequences of
the form d = 〈θi : i ∈ I〉 of partial injective functions from G to G with |

⋃
i dom θi| < κ

and are mutually orthogonal partial orthomormorphisms in the sense that the partial
functions ηi : g 7→ g−1θi(g) and ηij : g 7→ θ−1i (g)θj(g) (where i 6= j) are also injective.
Let a = 〈θ′i : i ∈ I〉 and b = 〈θi : i ∈ I〉. The relation on P is given by a 6 b if and only
if for each i ∈ I we have that θ′i extends θi as a function; that is, dom θi ⊆ dom θ′i and
θ′i � dom θi = θi.

There are four requirements that the approximations have to meet. We show that the
set of conditions satisfying each of them is dense.

1. For each i ∈ I and g ∈ G, the set Dg
i = {d ∈ P : g ∈ dom θi} is dense.

Let a = 〈θi : i ∈ I〉 ∈ P with g 6∈ dom θi. We need a d = 〈θ′i : i ∈ I〉 ∈ Dg
i

with g ∈ dom θ′i, which is guaranteed by definition, and d 6 a. To extend a to d,
choose an h such that h 6∈ range θi, g

−1h 6∈ range ηi and h−1θj(g) 6∈ range ηij and
set θ′i(g) = h. Such an h exists as the ranges of each of the ηi and ηij are smaller
than κ.

2. For each i ∈ I and h ∈ G, the set Rh
i = {d ∈ P : h ∈ range θi} is dense.

Let a = 〈θi : i ∈ I〉 ∈ P with h 6∈ range θi. We need a d = 〈θ′i : i ∈ I〉 ∈ Rh
i

with h ∈ range θ′i, which is guaranteed by definition, and d 6 a. To extend a to d,
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choose a g such that g 6∈ dom θj for any j (including j = i) and g−1h 6∈ range ηi.
These choices are possible because the restricted sets in each case have size smaller
than κ. Set θi(g) = h.

3. For each i ∈ I and h ∈ G, the set Eh
i = {d ∈ P : h ∈ range ηi} is dense.

Let a = 〈θi : i ∈ I〉 ∈ P with h 6∈ range ηi. We need a d = 〈θ′i : i ∈ I〉 ∈ Eh
i

with h ∈ range η′i, which is guaranteed by definition, and d 6 a. To extend a to d,
choose a g such that g 6∈ dom θj for any j (including j = i) and gh 6∈ range θi.
These choices are possible because the restricted sets in each case have size smaller
than κ. Set θi(g) = gh and hence ηi(g) = h.

4. For each i, j ∈ I, with i 6= j, and h ∈ G, the set Eh
ij = {d ∈ P : h ∈ range ηij} is

dense.

Let a = 〈θi : i ∈ I〉 ∈ P with h 6∈ range ηij. We need a d = 〈θ′i : i ∈ I〉 ∈ Eh
ij

with h ∈ range η′ij, which is guaranteed by definition, and d 6 a. To extend a
to d, choose a g such that g 6∈ dom θk for any k. Choose a pair (hi, hj) from
(G\ range θi)× (G\ range θj) such that h−1i hj = h, g−1hi 6∈ range ηi and g−1hj 6∈ ηj.
These choices are possible because the restricted sets in each case have size smaller
than κ. Set θi(g) = hi and θj(g) = hj.

The transfinite induction now goes through as usual.

An embellishment of the complete mapping concept is the strong complete mapping:
If θ is both an orthomorphism and a complete mapping then it is a strong complete
mapping.

In [13] it is claimed that every countably infinite group has a strong complete mapping.
The following result generalizes that to groups of arbitrary infinite order using essentially
the same construction. However, for the argument to go through we need that the
group is squareful, a condition that is required for the argument in [13], but which was
not included. In Theorem 5.11 we construct strong complete mappings for many non-
squareful abelian groups.

Theorem 5.5. Let G be a squareful group of infinite order κ. Then G has a strong
complete mapping.

Proof. We again use transfinite induction on κ. Let P be the poset whose elements are
partial strong complete mappings (i.e. injective partial functions θ such that η : g 7→
g−1θ(g) and ζ : g 7→ gθ(g) are also injective) with domain of size less than κ. The
relation is given by θ′ 6 θ when dom θ ⊆ dom θ′ and θ′ � dom θ = θ.

We show that the sets of conditions meeting the requirements are dense.

1. For each g ∈ G the set Dg = {θ ∈ P : g ∈ dom θ} is dense.

Let θ in P with g 6∈ dom θ. We need a θ′ ∈ Dg with g ∈ dom θ′ and θ′ 6 θ. To
extend θ to θ′, choose an h such that h 6∈ range θ, g−1h 6∈ range η and gh 6∈ range ζ
and set θ′(g) = h. Such an h exists as the ranges of each of the partial functions
are smaller than κ.
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2. For each h ∈ G the set Rh = {θ ∈ P : h ∈ range θ} is dense.

Let θ in P with h 6∈ range θ. We need a θ′ ∈ Rh with h ∈ range θ′ and θ′ 6 θ. To
extend θ to θ′, choose a g such that g 6∈ dom θ, g−1h 6∈ range η and gh 6∈ range ζ and
set θ′(g) = h. Such a g exists as the number of restricted elements is less than κ.

3. For each h ∈ G the set Rη
h = {θ ∈ P : h ∈ range η} is dense.

Let θ in P with h 6∈ range η. We need a θ′ ∈ Rh with h ∈ range η′ and θ′ 6 θ. To
extend θ to θ′, choose a g such that g 6∈ dom θ, gh 6∈ range θ and g2h 6∈ range ζ and
set θ′(g) = gh. Such a g exists as G is squareful and so the number of restricted
elements is less than κ.

4. For each h ∈ G the set Rζ
h = {θ ∈ P : h ∈ range ζ} is dense.

Let θ in P with h 6∈ range ζ. We need a θ′ ∈ Rh with h ∈ range ζ ′ and θ′ 6 θ. To
extend θ to θ′, choose a g such that g 6∈ dom θ, g−1h 6∈ range θ and g−2h 6∈ range η
and set θ′(g) = h. Such a g exists as G is squareful and so the number of restricted
elements is less than κ.

The result follows.

Theorem 5.6. If Gj, j ∈ J , are groups that have strong complete mappings, then both
the direct product

∏
j∈J Gj and the direct sum

∑
j∈J Gj have strong complete mappings.

Proof. Let G =
∏

j∈J Gj, and, for each j ∈ J , let φj be a strong complete mapping of Gj.
It is routine to show that φ :

∏
j∈J gj 7→

∏
j∈J φj(gj) is a strong complete mapping of G.

Let H =
∑

j∈J Gj, and, for each j ∈ J , let φ′j be defined by φ′j(x) = φj(x)φj(e)
−1: φ′j

is a strong complete mapping of Gj that fixes e. It is routine to show that φ′ :
∑

j∈J gj 7→∑
j∈J φ

′
j(gj) is a strong complete mapping of H.

We now turn to abelian groups and for the remainder of the section use additive
notation write 0 for the group identity. Which abelian groups have strong complete
mappings? This question is answered for finite abelian groups.

Theorem 5.7. A finite abelian group has a strong complete mapping if and only if its
Sylow 2-subgroup is trivial or non-cyclic and its Sylow 3-subgroup is trivial or non-cyclic.

Proof. See Theorem 4 in [13].

An important component in the proof of Theorem 5.7 is a quotient group construction
of strong complete mappings: such a construction for finite abelian groups is given in [11]
and [20]. The construction used works in the infinite case as well.

Theorem 5.8. Let H be a subgroup of an abelian group G. If both H and G/H have a
strong complete mapping, then so does G.

Proof. Let θ be a strong complete mapping of H, let φ be a strong complete mapping
of G/H, and let D be a system of distinct coset representatives for H in G. Define
α : G/H → D by α(gi +H) = gi, and define β : G→ G by

β(gi + h) = αφ(gi +H) + θ(h).

It is routine to show that β is a strong complete mapping of G.
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It should be noted that no proof of Theorem 5.8 has been given for non-abelian groups,
even in the finite case. As an easy corollary of Theorem 5.8, we obtain the following.

Corollary 5.9. If H is a subgroup of an abelian group G, H has a strong complete
mapping θ, and G/H has a strong complete mapping, then there exists a strong complete
mapping θ′ of G satisfying θ′ �H = θ.

Proof. In the proof of Theorem 5.8 choose 0 ∈ D and require that φ(0 + H) = 0 + H:
this latter requirement can always be met as, if φ is a strong complete mapping of G/H,
then the mapping φ′ defined by φ′(x + H) = φ(x + H) − φ(0 + H) is a strong complete
mapping of G/H for which φ′(0 +H) = 0 +H.

Having answered the question for finite abelian groups, let us turn to infinite abelian
groups. The structure of infinite abelian groups is studied in [14], [21], and Chapter 10
of [25]. An abelian group G is divisible if, for all g ∈ G and all n > 1, the equation nx = g
has a solution in G. Let A be an infinite abelian group. The 2-primary component of A
is the subgroup

A2 = {g ∈ A : |g| = 2n, for some n > 0}.

As a special case of Kulikov’s Theorem, A2 has a subgroupB with the following properties:

• B is a direct sum of cyclic groups,

• B ∩ nA2 = nB for all n, i.e., B is a pure subgroup of A2, and

• A2/B is divisible.

Any subgroup of A2 satisfying these properties is a basic subgroup of A2.

Lemma 5.10. If J is an infinite set and A =
∑

j∈J Cj, where Cj is a cyclic group of
order 2nj for some nj > 1, then A has a strong complete mapping.

Proof. Let x, y ∈ J , x 6= y, and set C =
∑

j∈J,i6=x,y Cj. We claim that C has a subgroup
E, that has a strong complete mapping, and for which C/E is finite. Let P be the
poset whose elements are strong complete mappings of subgroups of C and set θ 6 θ′ if
dom θ ⊆ dom θ′ and θ′ � dom θ = θ.

Let CI = {θI : i ∈ I} be a totally ordered set in P. Let θI be defined by dom θI =⋃
i∈I dom θi and θI(x) = θi(x) if x ∈ dom θi. Clearly θI is well-defined and an upper bound

for CI . Hence, by Zorn’s lemma, P has a maximal element, θM say. Let E = dom θM .
Let K ⊇ E be the subgroup of C for which K/E is the subgroup of C/E generated by
the involutions of C/E.

If K/E is infinite, then K/E has a complete mapping by [2], and it is easily seen
that any complete mapping of K/E is a strong complete mapping of K/E. Hence, by
Corollary 5.9, K has a strong complete mapping, contradicting the maximality of θM .
Therefore K/E is finite. It follows that, if C/E is infinite, that C/E is squareful and
hence has a strong complete mapping: but then C has a strong complete mapping,
contradicting the maximality of θM . Hence, C/E is finite.

Having established that C has a subgroup E, that has a strong complete mapping, for
which C/E is finite, we note that, by Theorem 5.7, Cx⊕Cy⊕C/E has a strong complete
mapping, from which the result follows by Corollary 5.9.
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Theorem 5.11. Let A be an infinite abelian group with 2-primary component A2. Then
A has a strong complete mapping except, possibly, when A/A2 is finite and has a non-
trivial, cyclic Sylow 3-subgroup.

Proof. There are two cases to consider.

Case 1. A is squareful. In this case A has a strong complete mapping by Theorem 5.5.

Case 2. A is not squareful. In this case A2 has a basic subgroup B that is infinite.
By Lemma 5.10, B has a strong complete mapping. As A2/B is divisible and hence
squareful, A2/B has a strong complete mapping by Theorem 5.5. Hence A2 has a strong
complete mapping by Theorem 5.8.

Now, either A/A2 is squareful and, hence, A has a strong complete mapping, or A/A2

is finite and of odd order and, hence, A has a strong complete mapping except possibly
if A/A2 has a non-trivial, cyclic Sylow 3-subgroup by Theorem 5.7.

Recall that, for a group G, the Cayley table of G is the Latin square with ijth entry
gigj. The normal multiplication table of G is the Latin square with ijth entry gig

−1
j .

In the finite case, strong complete mappings can be used to construct Knut Vik designs
and to construct Latin squares orthogonal to both the Cayley table of a group and the
normal multiplication table of the group. For a Latin square of order n; the kth left
diagonal consists of the cells (i, k + i), i = 0, . . . , n − 1, addition modulo n; and the kth
right diagonal consists of the cells (i, k − i), i = 0, . . . , n − 1, subtraction modulo n. A
Knut Vik design of order n is a Latin square of order n in which the entries on each left
diagonal, and the entries on each right diagonal form a permutation of the symbol set.
In other words, a Knut Vik design is a Latin square that is orthogonal to both the cyclic
and back-circulant Latin squares.

In [16] and [17] it is shown that a Knut Vik design of order n exists if and only if
gcd(n, 6) = 1.

For a Latin square L of infinite order κ we may assume that the rows and columns
of L are indexed by an abelian group A of order κ. For k ∈ A, the kth left diagonal of
L consists of the cells (i, k + i), i ∈ A; and the kth right diagonal of L consists of the
cells (i, k− i), i ∈ A. When A is Z or R, these definitions naturally extend the geometric
sense of the finite case to the plane. We say that a Latin square L is a Knut Vik design
if each left diagonal, and each right diagonal contains each symbol exactly once.

Theorem 5.12. There exists a Knut Vik design of every infinite order κ.

Proof. Let A be a squareful abelian group of order κ and let θ be a strong complete
mapping of A: this exists by Theorem 5.5. Let L be the Latin square with rows and
columns indexed by A, with symbol set A, and with ijth entry i + θ(j). It is routine to
show that L is a Knut Vik design.

Choosing A ∈ {Z,R} in the proof of Theorem 5.12 gives a Knut Vik design embedded
in the plane with a natural geometric interpretation.

Theorem 5.13. If a group G has a strong complete mapping, then there exists a Latin
square orthogonal to both the Cayley table of G and the normal multiplication table of G.
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Proof. Let θ be a strong complete mapping of G. Let L be the Latin square with ijth
entry giθ(gj). It is routine to show that L is orthogonal to both the Cayley table of G
and the normal multiplication table of G.
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